首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
2.
3.
Distinct protein kinase C (PKC) isoforms differentially regulate cellular proliferation in rat microvascular endothelial cells (EC). Overexpression of PKCalpha has little effect on proliferation, whereas PKCdelta slows endothelial cell proliferation and induces S-phase arrest. Analyses were performed on EC overexpressing PKCalpha (PKCalphaEC) or PKCdelta (PKCdeltaEC) to determine the role of specific cell cycle regulatory proteins in the PKCdelta-induced cell cycle arrest. Serum-induced stimulation of cyclins D1, E, and A-associated kinase activity was delayed by 12 h in the PKCdeltaEC line in association with S-phase arrest. However, the protein levels for cyclins D1, E, and A were similar. Nuclear accumulation of cyclin D1 protein in response to serum was also delayed in PKCdeltaEC. In the PKCdeltaEC line, serum induced p27(Kip1) but not p16(Ink4a) or p21(Cip1). Serum did not affect p27(Kip1) levels in the control vascular endothelial cell line. Immunoprecipitation-Western blotting analysis of p27(Kip1) showed serum stimulation of the vascular endothelial cell line resulted in increased amounts of cyclin D1 bound to p27(Kip1). In the PKCdeltaEC line, serum did not increase the amount of cyclin D1 bound to p27(Kip1). Transfection of full-length p27(Kip1) antisense into the PCKdeltaEC line reversed the S-phase arrest and resulted in normal cell cycle progression, suggesting a critical role for p27(Kip1) in the PKCdelta-mediated S-phase arrest.  相似文献   

4.
Constitutive activation of the ERK pathway is associated with the neoplastic phenotype of a relatively large number of human tumor cells. Blockade of the ERK pathway by treatment with PD98059, a specific inhibitor of mitogen-activated protein (MAP) kinase/ERK kinase (MEK), completely suppressed the growth of tumor cells in which the pathway is constitutively activated (RPMI-SE and HT1080 cells). Consistent with its prominent antiproliferative effect, PD98059 induced a remarkable G(1) cell cycle arrest, followed by a modest apoptotic response, in these tumor cells. Selective up-regulation of p27(Kip1) was observed after PD98059 treatment of RPMI-SE and HT1080 cells. Overexpression in RPMI-SE cells of either a kinase-negative form of MEK1 or wild-type MAP kinase phosphatase-3 also induced up-regulation of p27(Kip1). The up-regulation of p27(Kip1) correlated with increased association of p27(Kip1) with cyclin E-cyclin-dependent kinase (CDK) 2 complexes, a concomitant inhibition of cyclin E-CDK2 kinase activity, and a consequent decrease in the phosphorylation state of retinoblastoma protein, which would culminate in the marked G(1) cell cycle arrest observed in these tumor cells. These results suggest that the complete growth suppression that follows specific blockade of the ERK pathway in tumor cells in which the pathway is constitutively activated is mediated by up-regulation of p27(Kip1).  相似文献   

5.
Cyclin-dependent kinase (CDK) inhibitor p27Kip1 binds to the cyclin E.CDK2 complex and plays a major role in controlling cell cycle and cell growth. Our group and others have reported that anti-HER2 monoclonal antibodies exert inhibitory effects on HER2-overexpressing breast cancers through G1 cell cycle arrest associated with induction of p27Kip1 and reduction of CDK2. The role of p27Kip1 in anti-HER2 antibody-induced cell cycle arrest and growth inhibition is, however, still uncertain. Here we have provided several lines of evidence supporting a critical role for p27Kip1 in the anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. Induction of p27Kip1 and G1 growth arrest by anti-HER2 antibody, murine 4D5, or humanized trastuzumab (Herceptin) are concentration-dependent, time-dependent, irreversible, and long-lasting. The magnitude of G1 cell cycle arrest induced by trastuzumab or 4D5 is well correlated with the level of p27Kip1 protein induced. Up-regulation of p27Kip1 and G1 growth arrest could no longer be removed with as little as 14 h of treatment with trastuzumab. Anti-HER2 antibody-induced p27Kip1 protein, G1 arrest, and growth inhibition persist at least 5 days after a single treatment. The magnitude of growth inhibition of breast cancer cells induced by anti-HER2 antibody closely parallels the level of p27Kip1 induced. Induced expression of exogenous p27Kip1 results in a p27Kip1 level-dependent G1 cell cycle arrest and growth inhibition similar to that obtained with anti-HER2 antibodies. Reducing p27Kip1 expression using p27Kip1 small interfering RNA blocks anti-HER2 antibody-induced p27Kip1 up-regulation and G1 arrest. Treatment with anti-HER2 antibody significantly increases the half-life of p27Kip1 protein. Inhibition of ubiquitin-proteasome pathway, but not inhibition of calpain and caspase activities, up-regulates p27Kip1 protein to a degree comparable with that obtained with anti-HER2 antibodies. We have further demonstrated that anti-HER2 antibody significantly decreases threonine phosphorylation of p27Kip1 protein at position 187 (Thr-187) and increases serine phosphorylation of p27Kip1 protein at position 10 (Ser-10). Expression of S10A and T187A mutant p27Kip1 protein increases the fraction of cells in G1 and reduces a further antibody-induced G1 arrest. Consequently, p27Kip1 plays an important role in the anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition through post-translational regulation. Regulation of the phosphorylation of p27Kip1 protein is one of the post-translational mechanisms by which anti-HER2 antibody upregulates the protein.  相似文献   

6.
7.
8.
The p27(Kip1) cyclin-dependent kinase inhibitor translocates in response to transforming growth factor-beta to a Cdk2-cyclin E complex inhibiting its catalytic activity, but the p27(Kip1) protein levels are unaffected [1]. We show here that transforming growth factor-beta induces the accumulation of a form of p27(Kip1) representing a subpopulation of total p27(Kip1) in growth-arrested Mv1Lu epithelial cells. The inducible p27(Kip1) is detectable only by a specific p27(Kip1) monoclonal antibody recognizing a native form of p27(Kip1). The increase in this subset of p27(Kip1) correlates with G(1) arrest and withdrawal of the cells from the cycle induced by transforming growth factor-beta, serum starvation, or contact inhibition. In contrast to the majority of p27(Kip1) in the cells, the transforming growth factor-beta-inducible p27(Kip1) is devoid of cyclin-dependent kinase/cyclin interactions. The results indicate that growth arresting treatments induce the accumulation of non-cyclin-dependent kinase-bound p27(Kip1), which may function as a reservoir for inhibition of Cdk2-cyclin E activities.  相似文献   

9.
10.
Activation of the somatostatin receptor sst2 inhibits cell proliferation by a mechanism involving the stimulation of the protein-tyrosine phosphatase SHP-1. The cell cycle regulatory events leading to sst2-mediated growth arrest are not known. Here, we report that treatment of Chinese hamster ovary cells expressing sst2 with the somatostatin analogue, RC-160, led to G1 cell cycle arrest and inhibition of insulin-induced S-phase entry through induction of the cyclin-dependent kinase inhibitor p27(Kip1). Consequently, a decrease of p27(Kip1)-cdk2 association, an inhibition of insulin-induced cyclin E-cdk2 kinase activity, and an accumulation of hypophosphorylated retinoblastoma gene product (Rb) were observed. However, RC-160 had no effect on the p21(Waf1/Cip1). When sst2 was coexpressed with a catalytically inactive mutant SHP-1 in Chinese hamster ovary cells, mutant SHP-1 induced entry into cell cycle and down-regulation of p27(Kip1) and prevented modulation by insulin and RC-160 of p27(Kip1) expression, p27(Kip1)-cdk2 association, cyclin E-cdk2 kinase activity, and the phosphorylation state of Rb. In mouse pancreatic acini, RC-160 reverted down-regulation of p27(Kip1) induced by a mitogen, and this effect did not occur in acini from viable motheaten (mev/mev) mice expressing a mutant SHP-1 with markedly deficient enzymes. These findings provide the first evidence that sst2 induces cell cycle arrest through the up-regulation of p27(Kip1) and demonstrate that SHP-1 is required for maintaining high inhibitory levels of p27(Kip1) and is a critical target of the insulin, and somatostatin signaling cascade, leading to the modulation of p27(Kip1).  相似文献   

11.
IgM cross-linking induces G1 arrest and apoptosis in murine B-lymphoma cells. It prevents pRb phosphorylation by decreasing cyclin-dependent kinase 2 activity via the up-regulation of cyclin kinase inhibitor p27Kip1. Anti-IgM also causes an increase in cytosolic free calcium and a loss of c-myc mRNA and protein. This down-regulation of c-Myc is prevented by CD40L, which rescues cells from anti-IgM-induced apoptosis. In this study, we addressed the mechanism(s) of anti-IgM-induced p27Kip1 accumulation. We examined effects of early events in B-cell receptor-mediated signaling, c-Myc down-regulation, and an increase in free calcium on p27Kip1. Down-regulation of c-myc alone had no effect on p27Kip1; neither did an increase in free calcium alone. Together, these two events led to p27Kip1 induction, growth arrest, and apoptosis. CD40L, the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester, and cyclosporin A all prevented anti-IgM-induced p27Kip1 accumulation, suggesting that both the decrease in c-Myc expression and an increase in free calcium are necessary for p27Kip1 up-regulation.  相似文献   

12.
Barrier stabilizing effects of cAMP as well as of the small GTPase Rac 1 are well established. Moreover, it is generally believed that permeability‐increasing mediators such as thrombin disrupt endothelial barrier functions primarily via activation of Rho A. In this study, we provide evidence that decrease of both cAMP levels and of Rac 1 activity contribute to thrombin‐mediated barrier breakdown. Treatment of human dermal microvascular endothelial cells (HDMEC) with Rac 1‐inhibitor NSC‐23766 decreased transendothelial electrical resistance (TER) and caused intercellular gap formation. These effects were reversed by addition of forskolin/rolipram (F/R) to increase intracellular cAMP but not by the cAMP analogue 8‐pCPT‐2′‐O‐Methyl‐cAMP (O‐Me‐cAMP) which primarily stimulates protein kinase A (PKA)‐independent signaling via Epac/Rap 1. However, both F/R and O‐Me‐cAMP did not increase TER above control levels in the presence of NSC‐23766 in contrast to experiments without Rac 1 inhibition. Because Rac 1 was required for maintenance of barrier functions as well as for cAMP‐mediated barrier stabilization, we tested the role of Rac 1 and cAMP in thrombin‐induced barrier breakdown. Thrombin‐induced drop of TER and intercellular gap formation were paralleled by a rapid decrease of cAMP as revealed by fluorescence resonance energy transfer (FRET). The efficacy of F/R or O‐Me‐cAMP to block barrier‐destabilizing effects of thrombin was comparable to Y27632‐induced inhibition of Rho kinase but was blunted when Rac 1 was inactivated by NSC‐23766. Taken together, these data indicate that decrease of cAMP and Rac 1 activity may be an important step in inflammatory barrier disruption. J. Cell. Physiol. 220: 716–726, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Overexpression of the cyclin-dependent kinase inhibitor p27(Kip1) has been demonstrated to induce cell cycle arrest and apoptosis in various cancer cell lines, but has also been associated with the opposite effect of enhanced survival of tumor cells and increased resistance towards chemotherapeutic treatment. To address the question of how p27(Kip1) expression is related to apoptosis induction, we studied doxycycline-regulated p27(Kip1) expression in K562 erythroleukemia cells. p27(Kip1) expression effectively retards proliferation, but it is not sufficient to induce apoptosis in K562 cells. p27(Kip1)-expressing K562 cells, however, become resistant to apoptosis induction by the proteasome inhibitors PSI, MG132 and epoxomicin, in contrast to wild-type K562 cells that are efficiently killed. Cell cycle arrest in the S phase by aphidicolin, which is not associated with an accumulation of p27(Kip1) protein, did not protect K562 cells against the cytotoxic effect of the proteasome inhibitor PSI. The expression levels of p27(Kip1) thus constitute an important parameter, which decides on the overall sensitivity of cells against the cytotoxic effect of proteasome inhibitors.  相似文献   

14.
Infections with Streptococcus pyogenes exhibit a wide spectrum of infections ranging from mild pharyngitis to severe Streptococcal toxic shock syndrome (STSS). The M1 serotype of Streptococcus pyogenes is most commonly associated with STSS. In the present study, we hypothesized that Rac1 signaling might regulate M1 protein-induced lung injury. We studied the effect of a Rac1 inhibitor (NSC23766) on M1 protein-provoked pulmonary injury. Male C57BL/6 mice received NSC23766 prior to M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema and CXC chemokine formation. Neutrophil expression of Mac-1 was quantified by use of flow cytometry. Quantitative RT-PCR was used to determine gene expression of CXC chemokines in alveolar macrophages. Treatment with NSC23766 decreased M1 protein-induced neutrophil infiltration, edema formation and tissue injury in the lung. M1 protein challenge markedly enhanced Mac-1 expression on neutrophils and CXC chemokine levels in the lung. Inhibition of Rac1 activity had no effect on M1 protein-induced expression of Mac-1 on neutrophils. However, Rac1 inhibition markedly decreased M1 protein-evoked formation of CXC chemokines in the lung. Moreover, NSC23766 completely inhibited M1 protein-provoked gene expression of CXC chemokines in alveolar macrophages. We conclude that these novel results suggest that Rac1 signaling is a significant regulator of neutrophil infiltration and CXC chemokine production in the lung. Thus, targeting Rac1 activity might be a potent strategy to attenuate streptococcal M1 protein-triggered acute lung damage.  相似文献   

15.
16.
17.
In many tissues, progenitor cells permanently withdraw from the cell cycle prior to commitment towards a differentiated phenotype. In the oligodendrocyte lineage a counting mechanism has been proposed, linking the number of cell divisions to growth arrest and differentiation. A direct prediction of this model is that an increase in the number of cell divisions would result in a delayed onset of differentiation. Since the cell cycle inhibitor p27Kip1 is an essential component of the machinery leading to oligodendrocyte progenitor growth arrest, we examined the temporal relationship between cell cycle withdrawal and expression of late differentiation markers in vivo, in mice carrying a targeted deletion in the p27Kip1 gene. Using bromodeoxyuridine to label proliferating cells, quaking (QKI) to identify embryonic glial progenitors, NG2 to identify neonatal oligodendrocyte progenitors, and myelin basic protein to label differentiated oligodendrocytes, we found an increased number of proliferating QKI- and NG2-positive cells in germinal zones of p27Kip1(-/-) mice at the peak of gliogenesis. However, no delay was observed in these mice in the appearance of the late differentiation marker myelin basic protein in the developing corpus callosum and cerebellum. Significantly, a decrease in cyclin E levels was observed in the brain of p27Kip1 null mice coincident with oligodendrocyte growth arrest. We conclude that two distinct modalities of growth arrest occur in the oligodendrocyte lineage: a p27Kip1-dependent mechanism of growth arrest affecting proliferation in early phases of gliogenesis, and a p27Kip1-independent event leading to withdrawal from the cell cycle and differentiation.  相似文献   

18.
The cyclin-dependent kinase (Cdk) inhibitor p27Kip1 contributes to the timing of cell cycle withdrawal during development and, consequently, in organogenesis. Within the retina, this effector protein is up-regulated during the birth of neuronal and glial cells [Dev. Biol. (2000) 299]. However, its expression within the retinal pigment epithelium (RPE), a supporting cell layer that is essential for neural retina development and function, has not previously been reported. We show that p27Kip1 protein expression in the RPE occurs in two phases: an up-regulation during mid-to late embryonic stages and a down-regulation during the subsequent postnatal period. In the early phase of up-regulation, an inverse relationship is seen between expression of p27Kip1 and PCNA, an indicator of cycling cells. During both up-and down-regulation, the change in spatial pattern of expression proceeds in a central to peripheral manner, with p27Kip1 up-regulation paralleling retinal maturation. These data suggest that this cell cycle regulator may be an important factor controlling the timing of RPE cell cycle withdrawal.  相似文献   

19.
BACKGROUND: Eukaryotic initiation factor 4E (eIF4E) is essential for cap-dependent initiation of translation. Cell proliferation is associated with increased activity of eIF4E and elevated expression of eIF4E leads to tumorigenic transformation. Many tumors express very high levels of eIF4E and this may be a critical factor in progression of the disease. In contrast, overexpression of 4EBP, an inhibitor of eIF4E, leads to cell cycle arrest and phenotypic reversion of some transformed cells. RESULTS: A constitutively active form of 4EBP-1 was inducibly expressed in the human breast cancer cell line MCF7. Induction of constitutively active 4EBP-1 led to cell cycle arrest. This was not associated with a general inhibition of protein synthesis but rather with changes in specific cell cycle regulatory proteins. Cyclin D1 was downregulated while levels of the CDK inhibitor p27Kip1 were increased. The levels of cyclin E and CDK2 were unaffected but the activity of CDK2 was significantly reduced due to increased association with p27Kip1. The increase in p27Kip1 did not reflect changes in p27Kip1 mRNA or degradation rates. Rather, it was associated with enhanced synthesis of the protein, even though 4EBP-1 is expected to inhibit translation. This could be explained, at least in part, by the ability of the p27Kip1 5'-UTR to mediate cap-independent translation, which was also enhanced by expression of constitutively active 4EBP-1. CONCLUSIONS: Expression of active 4EBP-1 in MCF7 leads to cell cycle arrest which is associated with downregulation of cyclin D1 and upregulation of p27Kip1. Upregulation of p27Kip1reflects increased synthesis which corresponds to enhanced cap-independent translation through the 5'-UTR of the p27Kip1 mRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号