首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phytoextraction has been identified as one of the most propitious methods of phytoremediation. This pot experiment were treated with varying amounts of (ethylenediamine triacetic acid) EDTA 3–15, (Nitriloacetic acid) NTA 3–10, (Ammonium citrate) NH4 citrate 10 – 25 mmol and one mg kg–1Cd, filled with 5 kg soil. The addition of chelators significantly increased Cd concentration in soil and plant. The results showed that maximum Cd uptake was noted under root, shoot and leaf of castor plant tissue (2.26, 1.54, and 0.72 mg kg–1) under EDTA 15, NTA 10, and NH4 citrate 25 mmol treatments respectively, and in soil 1.08, 1.06 and 0.52 mg kg–1 pot–1 under NH4 citrate 25, NTA 10 and EDTA 15 mmol treatments respectively, as against to control (p < 0.05). Additions of chelators reduction biomass under the EDTA 15 mmol as compared to other treatments, However, Bioconcentration factor (BCF), translocation factor (TF) and remediation factor (RF) were significantly increased under EDTA 15 and NH4 citrate 25 mmol as against control. Our results demonstrated that castor plant proved satisfactory for phytoextraction on contaminated soil, and EDTA 15 and NH4 citrate 25 mmol had the affirmative effect on the Cd uptake in the artificial Cd-contaminated soil.  相似文献   

2.
罗艳  张世熔  徐小逊  贾永霞 《生态学报》2014,34(20):5774-5781
采用盆栽试验研究了可降解螯合剂EDDS和NTA对镉胁迫下籽粒苋(Amaranthus hybridus L.)根系形态及生理生化特征的影响。结果表明:当螯合剂施入10 mg/kg的镉污染土壤后,籽粒苋根系生物量和总长等根系形态指标与对照无显著差异,过氧化物酶(POD)、过氧化氢酶(CAT)活性、谷胱甘肽(GSH)和可溶性蛋白含量显著上升。当螯合剂施入100 mg/kg的镉污染土壤后,籽粒苋根系生物量、总长、表面积、体积及侧根数比对照显著减少了12.30%—23.98%、17.01%—24.90%、41.87%—57.93%、16.46%—32.94%和23.48%—53.35%;EDDS的施入使籽粒苋根系POD、CAT活性、GSH和可溶性蛋白含量显著升高;而NTA施入后,根系中的POD活性比对照降低了4.12%—35.95%,并且CAT活性和可溶性蛋白含量在2 mmol/kg NTA处理下分别显著降低了14.66%—15.79%和26.81%—30.48%;EDDS和NTA施入后,GSH含量比对照显著升高了14.73%—65.65%和28.05%—84.10%。当镉处理浓度分别为10 mg/kg和100 mg/kg时,螯合剂的施入显著增强了籽粒苋根系对镉的吸收,比对照分别增加了40.76%—103.10%和15.03%—49.49%。因此,EDDS和NTA施入镉污染土壤后,通过影响籽粒苋根系形态和生理生化过程以响应重金属镉的胁迫。  相似文献   

3.
Enhanced phytoextraction uses soil chelators to increase the bioavailability of heavy metals. This study tested the effectiveness of ethylenediaminetetraacetic acid (EDTA) and citric acid in enhancing cadmium (Cd) phytoextraction and their effects on the growth, yield, and ionic uptake of maize (Zea mays). Maize seeds of two cultivars were sown in pots treated with 15 (Cd15) or 30 mg Cd kg?1 soil (Cd30). EDTA and citric acid at 0.5 g kg?1 each were applied 2 weeks after germination. Results demonstrated that the growth, yield per plant, and total grain weight were reduced by exposure to Cd. EDTA increased the uptake of Cd in shoots, roots, and grains of both maize varieties. Citric acid did not enhance the uptake of Cd, rather it ameliorated the toxicity of Cd, as shown by increased shoot and root length and biomass. Cadmium toxicity reduced the number of grains, rather than the grain size. The maize cultivar Sahiwal-2002 extracted 1.6% and 3.6% of Cd from soil in both Cd+ EDTA treatments. Hence, our study implies that maize can be used to successfully phytoremediate Cd from soil using EDTA, without reducing plant biomass or yield.  相似文献   

4.
A pot trial using Glomus mosseae along with EDTA (ethylenediaminetetraacetic acid) was conducted for the phytoextraction of cadmium (Cd) by celery (Apium graveolens Linn.) plants from soil artificially contaminated with Cd under glass house conditions. The experiment is a 2 × 2 × 4 factorial design with two levels of G. mosseae inoculations (G. mosseae inoculated and uninoculated), two EDTA concentrations (without and with 2.5 mmol kg?1 soil EDTA) and four Cd concentrations (0, 5, 10, and 20 mg kg?1 soil). The results indicate the formation of an effective symbiosis between G. mosseae and celery in the contaminated soil. However, an increase in Cd input level and EDTA addition showed strong phytotoxic effect on celery plants and G. mosseae, as a considerable decrease in the frequency of root colonization and spore density was noticed. However, the plants were able to withstand the stressed condition due to the benefits provided by G. mosseae through increased P accumulation, chlorophyll content, and plant growth, resulting in an increase in Cd accumulation, which was good enough for the phytoextraction purpose. Thus, celery plants inoculated with G. mosseae and later supplemented with EDTA could be an effective and potentially suitable practice for the remediation of Cd-contaminated sites.  相似文献   

5.
The roles of gibberellic acid (GA3) and ethylenediaminetetraacetic acid (EDTA) in phytoremediation of cadmium (Cd)-contaminated soil by Parthenium hysterophorus plant was investigated. GA3 (10?9, 10?7, and 10?5M) was applied as a foliar spray. EDTA was added to soil in a single dose (160 mg/kg soil) and split doses (40 mg/kg soil, four split doses). GA3 and EDTA were used separately and in various combinations. P. hysterophorus was selected due to its fast growth and unpalatable nature to herbivores to reduce the entrance of metal into the food chain. The Cd phytoextraction potential of the P. hysterophorus plant was evaluated for the first time. Cd significantly reduced plant growth and dry biomass (DBM). GA3 alone increased the plant growth and biomass in Cd-contaminated soil, whereas EDTA reduced it. GA3 in combination with EDTA significantly increased the growth and biomass. The highest significant DBM was found in treatment T3 (10?5M GA3). All treatments of GA3 or EDTA significantly enhanced the plant Cd uptake and accumulation compared with control (C1). The highest significant root and stem Cd concentrations were found in the combination treatment T11 (GA3 10?5M + EDTA split doses), whereas in leaves it was found in the EDTA treatments. Cd concentration in plant parts increased in the order of stem < leaves < roots. The combination treatment T9 (GA3 10?7M + EDTA split doses) showed the significantly highest total Cd accumulation (8 times greater than control C1, i.e., only Cd used). The GA3 treatments accumulated more than 50% of the total Cd in the roots, whereas the EDTA treatments showed more than 50% in the leaves. Root dry biomass showed a positive and significant correlation with Cd accumulation. GA3 is environment friendly as compared with EDTA. Therefore, further investigation of GA3 is recommended for phytoremediation research for the remediation of metal-contaminated soil.  相似文献   

6.
Enhanced phytoextraction: in search of EDTA alternatives   总被引:6,自引:0,他引:6  
Enhanced phytoextraction proposes the use of soil amendments to increase the heavy-metal content of above-ground harvestable plant tissues. This study compares the effect of synthetic aminopolycarboxylic acids [ethylenediamine tetraacetatic acid (EDTA), nitriloacetic acid (NTA), and diethylenetriamine pentaacetic acid (DTPA)] with a number of biodegradable, low-molecular weight, organic acids (citric acid, ascorbic acid, oxalic acid, salicylic acid, and NH4 acetate) as potential soil amendments for enhancing phytoextraction of heavy metals (Cu, Zn, Cd, Pb, and Ni) by Zea mays. The treatments in this study were applied at a dose of 2 mmol/kg(-1) 1 d before sowing. To compare possible effects between presow and postgermination treatments, a second smaller experiment was conducted in which EDTA, citric acid, and NH4 acetate were added 10 d after germination as opposed to 1 d before sowing. The soil used in this screening was a moderately contaminated topsoil derived from a dredged sediment disposal site. This site has been in an oxidized state for more than 8 years before being used in this research. The high carbonate, high organic matter, and high clay content characteristic to this type of sediment are thought to suppress heavy-metal phytoavailability. Both EDTA and DTPA resulted in increased levels of heavy metals in the above-ground biomass. However, the observed increases in uptake were not as large as reported in the literature. Neither the NTA nor organic acid treatments had any significant effect on uptake when applied prior to sowing. This was attributed to the rapid mineralization of these substances and the relatively low doses applied. The generally low extraction observed in this experiment restricts the use of phytoextraction as an effective remediation alternative under the current conditions, with regard to amendments used, applied dose (2 mmol/kg(-1) soil), application time (presow), plant species (Zea mays), and sediment (calcareous clayey soil) under study.  相似文献   

7.
A greenhouse experiment using 24 plastic pots filled with 6 kg of Pb- and Cd-contaminated soil was carried out. In all 24 pots, soils were heavy metal–contaminated with 10 mg Cd kg?1 soil and 500 mg of Pb kg?1 soil by using CdCl and PbNO3. Two-month-old tobacco (Nicotiana tabacum L.) plants were used to extract these heavy metals. Results showed that tobacco is able to remove Cd and Pb from contaminated soils and concentrate them in its harvestable part, that is, it could be very useful in phytoextraction of these heavy metals. Increasing additions of ammonium nitrate to soil (50, 100, and 150 mg N kg?1 soil) significantly (p ≤ .05) increased aboveground Cd and Pb accumulation during a 50-day experimental period, whereas increasing additions of urea to soil (50 and 100 mg N kg?1 soil) did not show these effects at the same significance levels. Increasing additions of ammonium nitrate to soil shows as dry matter increases, both accumulated Cd and accumulated Pb also increase when tobacco plants are growing under Pb- and Cd-contaminated soil conditions. Higher Pb concentrations depress Cd/Pb ratios for concentrations and accumulations, suggesting that Pb negatively affects Cd concentration and/or accumulation.  相似文献   

8.

Background  

Cadmium (Cd) translocation and accumulation in the grain and aerial plant parts of rice (Oryza sativa L.) is an important aspect of food safety and phytoextraction in areas with contaminated soil. Because control of Cd translocation and accumulation is likely to be determined by the plants genetics, the Cd contents of grain and the aerial parts of rice may be manipulated to improve food safety and for phytoextraction ability. This study studied Cd translocation and accumulation and their genetic control in aerial parts of rice to provide a starting point for improving food safety and phytoextraction in Cd-contaminated soils.  相似文献   

9.
Cadmium (Cd) and zinc (Zn) phytoavailability and their phytoextraction by Sedum plumbizincicola using different nitrogen fertilizers, nitrification inhibitor (dicyandiamide, DCD) and urease inhibitor (N-(n-Butyl) thiophosphoric triamide, NBPT) were investigated in pot experiments where the soil was contaminated with 0.99 mg kg?1 of Cd and 241 mg kg?1 Zn. The soil solution pH varied between 7.30 and 8.25 during plant growth which was little affected by the type of N fertilizer. The (NH4)2SO4+DCD treatment produced higher NH4+?N concentrations in soil solution than the (NH4)2SO4 and NaNO3 treatment which indicated that DCD addition inhibited the nitrification process. Shoot Cd and Zn concentrations across all treatments showed ranges of 52.9–88.3 and 2691–4276 mg kg?1, respectively. The (NH4)2SO4+DCD treatment produced slightly higher but not significant Cd and Zn concentrations in the xylem sap than the NaNO3 treatment. Plant shoots grown with NaNO3 had higher Cd concentrations than (NH4)2SO4+DCD treatment at 24.0 and 15.4 mg kg?1, respectively. N fertilizer application had no significant effect on shoot dry biomass. Total Cd uptake in the urea+DCD treatment was higher than in the control, urea+NBPT, urea+NBPT+DCD, or urea treatments, by about 17.5, 23.3, 10.7, and 25.1%, respectively.  相似文献   

10.
不同施肥处理对土壤活性有机碳和甲烷排放的影响   总被引:5,自引:0,他引:5  
通过采集田间试验区连续3a施入有机肥的稻田耕层土壤,分析土壤中微生物量碳(MBC)、水溶性有机碳(DOC)、易氧化有机碳(ROC)和可矿化有机碳(readily mineralizable carbon,RMC)等活性有机碳的含量,稻田甲烷(CH_4)的排放通量,探讨施用有机肥的土壤活性有机碳变化及与CH_4排放的关系。研究结果显示:(1)施有机肥对土壤中的活性有机碳均有一定的促进作用。3a不同施肥处理土壤中DOC、ROC、MBC和RMC的平均含量分别为383.6、2501.2、640.4 mg/kg和291.7 mg/kg。3a施猪粪(猪粪+化肥,PM)、鸡粪(鸡粪+化肥,CM)和稻草(稻草+化肥,RS)的DOC的含量分别比化肥(CF)处理增加5.6%、6.7%和19.3%,ROC的含量分别比CF增加6.6%、8.4%和9.8%;MBC含量分别比CF增加5.1%、14.8%和21.5%,RMC增加6.8%、22.0%和33.9%。不同施肥处理的稻田土壤活性有机碳为分蘖期高于成熟期。(2)施肥处理显著增加稻田CH_4排放,CH_4分蘖期的排放通量是成熟期的143倍,3a PM、CM和RS处理的CH_4排放分别比CF处理增加37.0%(P0.05)、92.7%(P0.05)和99.4%(P0.05)。(3)不同施肥处理的DOC、ROC、MBC和RMC含量与CH_4排放通量均存在显著正相关关系,ROC与CH_4排放的相关系数最高,为0.754(P0.01),且4种有机碳间关系密切。稻田分蘖期土壤中的活性有机碳与稻田CH_4排放呈显著正相关关系。(4)综合分析,在4种有机碳中,土壤中ROC和MBC的含量直接影响CH_4排放。  相似文献   

11.
A 40-day incubation experiment was carried out in order to evaluate the microbial activities and heavy metal availability in long-term contaminated arable and grassland soils after addition of EDTA (ethylenediaminetetraacetic acid) or EDDS ([S,S]-ethylenediaminedisuccinic acid). Soils with similar contamination of heavy metal from the vicinity of a lead smelter were used in the experiment. The soil microbial carbon (Cmic) decreased significantly after addition of EDTA in the arable soil (CM1); lesser effects were observed in the grassland soil (CM2). Addition of EDDS caused a decrease of Cmic during the first 10 days of incubation. In the later phases of the experiment, Cmic increased, and even exceeded the amounts found in the control soils. Respiratory activities and metabolic quotients (qCO2) increased after the addition of the chelating agents into the soils. Higher respiratory activities and qCO2 were observed in the EDTA-treated soils. The readily available heavy metal fractions were extracted with NH4NO3 solution. Readily mobilizable heavy metal fractions of Cd, Pb, Zn, and (in part) Cu increased during the first 3-10 days of incubation in the presence of EDTA. The addition of EDDS particularly increased concentrations of available Cu. Significant correlations between NH4NO3-extractable metals, soil respiratory activities, and qCO2 were found in both soil treatments with EDTA and EDDS. This indicates that enhanced metal mobility seriously affects the microbial processes in experimental soils. In addition, the relationships between NH4NO3-extractable Cd, Cu, and the microbial biomass were found in the CM1 soil amended with EDTA.  相似文献   

12.
The effect of NTA (nitrilotriacetic acid) and elemental sulfur (S), two soil amendments suggested for the enhancement of metal phytoavailability in phytoextraction, on heavy metal uptake by Nicotiana tabacum (tobacco) and Zea mays (maize) were studied and compared in two Zn-, Cu-, Cd -, and Pb-contaminated soils from northern Switzerland. Experiments were performed in the greenhouse with topsoil (0 to 20 cm) material from two locations, Dornach and Rafz. The Dornach soil was calcareous and had been contaminated by dust emissions from a nearby brass metal smelter. The Rafz soil, free of carbonates, had been polluted by former sewage sludge application. Soil amendments with S increased the solubility (NaNO3 extraction) of Zn and Cd about 10-fold in Dornach soil and up to 30-fold in Rafz soil after 55 days. Zn and Cd removal by N. tabacum and Z. mays, however, increased only about 5.5- and 2.5-fold in these treatments in Rafz soil, respectively, while in the Dornach soil only a slight increase for Cd was found. Repeated NTA application increased soluble Zn, Cu, and Cd about 100-, 20-, and 19-fold in the Dornach soil and 13-, 4-, and 2-fold in the Rafz soil shortly after application. Soluble Pb was increased by NTA up to 50-fold in Rafz soil. After 90 days soluble heavy metal concentrations were only slightly elevated in both soils. Again, however, Zn, Cd, and Cu removal by N. tabacum and Z. mays increased only about 1.5- to 2.5-fold in the two soils, whereas Pb removal by N. tabacum increased about fivefold in the Rafz soil as a result of NTA application  相似文献   

13.
Grčman  H.  Velikonja-Bolta  Š.  Vodnik  D.  Kos  B.  Leštan  D. 《Plant and Soil》2001,235(1):105-114
Synthetic chelates such as ethylene diamine tetraacetic acid (EDTA) have been shown to enhance phytoextraction of some heavy metals from contaminated soil. In a soil column study, we examined the effect of EDTA on the uptake of Pb, Zn and Cd by Chinese cabbage (Brassica rapa), mobilization and leaching of heavy metals and the toxicity effects of EDTA additions on plants. The most effective was a single dose of 10 mmol EDTA kg–1 soil where we detected Pb, Zn and Cd concentrations that were 104.6, 3.2 and 2.3-times higher in the aboveground plant biomass compared to the control treatments. The same EDTA addition decreased the concentration of Pb, Zn and Cd in roots of tested plants by 41, 71 and 69%, respectively compared to concentrations in the roots of control plants. In columns treated with 10 mmol kg–1 EDTA, up to 37.9, 10.4 and 56.3% of initial total Pb, Zn and Cd in soil were leached down the soil profile, suggesting high solubility of heavy metals-EDTA complexes. EDTA treatment had a strong phytotoxic effect on the red clover (Trifolium pratense) in bioassay experiment. Moreover, the high dose EDTA additions inhibited the development of arbuscular mycorrhiza. The results of phospholipid fatty acid analyses indicated toxic effects of EDTA on soil fungi and increased environmental stress of soil microfauna.  相似文献   

14.
Soil contamination with radiocaesium is a significant problem at any countries when a nuclear accident occurred. Recently, phytoextraction technique is developed to remediate the contaminated environment. However, the application is limited by the availability of the contaminant for root uptake. Therefore, a green house trial experiment of soil amendment with ethylene diamine tetraacetic acid (EDTA) has been conducted to examine 134Cs availability for root uptake. Two groups of Indian mustard (Brassica juncea) were cultivated in 134Cs contaminated soil. The soil in the first group was treated with EDTA amendment, while the other was not. Plant growth was observed gravimetrically and the 134Cs concentration in soil as well as plants were determined using gamma spectrometry. The plant uptake capacity was determined as transfer factor (Fv), and the Fv values of 0.22 ± 0.0786 and 0.12 ± 0.039 were obtained for the soil treated with and without EDTA amendment, respectively. The phytoextraction efficiency of the plant cultivated in 134Cs contaminated soil both with and without EDTA amendment was low. The EDTA amendment to the soil seems to enhance the 134Cs availability for root uptake of Indian mustard and can still be considered to assist the field phytoremediation of contaminated soil.  相似文献   

15.
Enhanced phytoextraction using EDTA for the remediation of an agricultural soil contaminated with less mobile risk elements Cd and Pb originating from smelting activities in Príbram (Czech Republic) was assessed on the laboratory and the field scale. EDTA was applied to the first years crop Zea mays. Metal mobilization and metal uptake by the plants in the soil were monitored for two additional years when Triticum aestivum was planted. The application ofEDTA effectively increased water-soluble Cd and Pb concentrations in the soil. These concentrations decreased over time. Anyhow, increased concentrations could be still observed in the third experimental year indicating a low possibility of groundwater pollution after the addition of EDTA during and also after the enhanced phytoextraction process under prevailing climatic conditions. EDTA-applications caused phytotoxicity and thereby decreased biomass production and increased Cd and Pb uptake by the plants. Phytoextraction efficiency and phytoextraction potential were too low for Cd and Pb phytoextraction in the field in a reasonable time frame (as less than one-tenth of a percent of total Cd and Pb could be removed). This strongly indicates that EDTA-enhanced phytoextraction as implemented in this study is not a suitable remediation technique for risk metal contaminated soils.  相似文献   

16.
The current study was performed to assess the effect of Burkholderia cepacia CS8 on the phytoremediation of cadmium (Cd) by Catharanthus roseus grown in Cd-contaminated soil. The plants cultivated in Cd amended soil showed reduced growth, dry mass, gas-exchange capacity, and chlorophyll contents. Furthermore, the plants exhibited elevated levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) under Cd stress. The bacterized plants showed higher shoot length, root length; fresh and dry weight. The improved stress tolerance in inoculated plants was attributed to the reduced quantity of MDA and H2O2, enhanced synthesis of protein, proline, phenols, flavonoids, and improved activity of antioxidant enzymes including peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase. Similarly, the 1-aminocyclopropane-1-carboxylate deaminase activity, phosphate solubilization, auxin, and siderophore production capability of B. cepacia CS8 improved growth and stress alleviation in treated plants. The bacterial inoculation enhanced the amount of water extractable Cd from soil. Furthermore, the inoculated plants showed higher bioconcentration factor and translocation factor. The current study exhibits that B. cepacia CS8 improves stress alleviation and phytoextraction potential of C. roseus plants growing under Cd stress.  相似文献   

17.
The variations of Cd accumulation in three rootstalk crop species (radish, carrot and potato) were investigated by using twelve cultivars grown in acidic Ferralsols and neutral Cambisols under two Cd treatments (0.3 and 0.6 mg kg?1) in a pot experiment. The result showed that the total Cd uptake was significantly affected by genotype, soil type and interaction between them, suggesting the importance of selecting proper cultivars for phytoextraction in a given soil type. Among the cultivars tested, potato cultivar Luyin No.1 in Ferralsols and radish cultivar Zhedachang in Cambisols exhibited the highest Cd phytoextraction efficiency in aerial parts (4.45% and 0.59%, respectively) under 0.6 mg kg?1Cd treatment. Furthermore, the Cd concentrations in their edible parts were below the National Food Hygiene Standard of China (0.1 mg kg?1, fresh weight). Therefore, phytomanagement of slightly Cd-contaminated soils using rootstalk crops for safe food production combined with long-term phytoextraction was feasible, and potato cultivar Luyin No.1 for Ferralsols and radish cultivar Zhedachang for Cambisols were promising candidates for this approach.  相似文献   

18.

Aims

Phytomanagement of metal-polluted soils requires information on plant responses to metal availability in soil, but the predictability of metal accumulation in plant shoots and/or roots may be limited by metal toxicity and inherent shortfalls of the bioavailability assays.

Methods

We measured the uptake of Cd and Zn in a Salix smithiana clone grown in a pot experiment on soils with different characteristics and metal availabilities, determined by conventional soil single extractions (0.05 M Na2-EDTA and 1 M NH4NO3), soil solution obtained by centrifugation, and diffusive gradients in thin films (DGT). The Cd and Zn phytoavailability after a 2-year phytoextraction by willow was assessed by metal accumulation in the straw of the following barley culture.

Results

The phytoextraction efficiency was largest on a moderately polluted acid soil. Biomass and shoot Zn concentrations of S. smithiana were better predicted by DGT-measured Zn concentrations in soil solution (C DGT) than by Zn concentrations in the soil solution and extractable soil fractions. The weaker correlation for Cd in shoots may be related to relative Cd enrichment in the plant tissues. The metal accumulation in barley straw was unaffected or increased after a 2-year phytoextraction.

Conclusions

The shoot Zn and Cd removal of the tested Salix clone can be predicted by C DGT concentrations and is highest on either calcareous or moderately polluted acid soils. Single extraction with NH4NO3 and the C DGT value of Cd were not able to predict shoot Cd removal on the tested soils. Only shoot removal of Zn was predicted fairly well by the C DGT value.  相似文献   

19.
The potential suitability of Eucalyptus camaldulensis for Cd phytoextraction was tested in a hydroponic study. Saplings were exposed to 4.5 and 89 μM Cd for one month, with and without EDTA and s,s-EDDS at 0.1, 1, and 5 mM. The saplings’ growth was not affected at the 4.5 μM Cd concentration, yet it decreased 3-fold at 89 μM, and almost all the Cd taken up was immobilized in the roots, reaching 360 and 5300 mg Cd kg?1, respectively (approximately 75% of which was non-washable in acid). The respective Cd root-to-shoot translocation factors were 0.14 and ≈5*10?4. At 0.1 mM concentration, EDTA and EDDS had no effect or even a positive effect on the saplings growth. This was reversed at 1 mM, and the chelants became lethal at the 5 mM concentration. At 89 μM Cd in the growth medium, 0.1 mM EDTA increased Cd translocation into the shoots by almost 10-fold, however it strongly reduced Cd content inside the roots. This hydroponic study indicates the feasibility of E. camaldulensis use for cleanup Cd-contaminated soils at environmental concentrations, both for site stabilization (phytostabilization) and gradual remediation (phytoextraction). EDTA was shown to be much more efficient in enhancing Cd translocation than s,s-EDDS.  相似文献   

20.
A glasshouse pot experiment was conducted to study the effects of phytoextraction by Sedum plumbizincicola and application of rapeseed cake (RSC) on heavy metal accumulation by a subsequent rice (Oryza sativa L.) crop in a contaminated paddy soil collected from east China. After phytoextraction by S. plumbizincicola the soil and brown rice Cd concentrations effectively declined. After phytoextraction, RSC application reduced brown rice Cd concentrations in the subsequent rice crop to 0.23–0.28 mg kg?1, almost down to the standard limit (0.2 mg kg?1). After phytoextraction and then application of RSC, the soil solution pH, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations increased during early stages of rice growth resulting directly and indirectly in lowering the bioavailability of the heavy metals. Thus the grain yield of the subsequent rice crop increased and the heavy metals in the brown rice declined significantly. In this contaminated acid soil, growing the hyperaccumulator S. plumbizincicola and rice in rotation together with RSC application may therefore be regarded as a viable strategy for safe grain production and bioremediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号