首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical properties of integrin-extracellular matrix (ECM) interactions are important for the mechanotransduction of vascular smooth muscle cells (VSMC), a process that is associated with focal adhesions, and can be of particular significance in cardiovascular disease. In this study, we characterized the unbinding force and binding activity of the initial fibronectin (FN)-alpha5beta1 interaction on the surface of VSMC using atomic force microscopy (AFM). It is postulated that these initial binding events are important to the subsequent focal adhesion assembly. FN-VSMC adhesions were selectively blocked by antibodies against alpha5- and beta1-integrins as well as RGD-containing peptides but not by antibodies against alpha4- and beta3-integrins, indicating that FN primarily bound to alpha5beta1. A characteristic unbinding force of 39 +/- 8 pN was observed and interpreted to represent the FN-alpha5beta1 single-bond strength. The ability of FN to adhere to VSMC (binding probability) was significantly reduced by integrin antagonists, serum starvation, and platelet-derived growth factor (PDGF)-BB, whereas lysophosphatidic acid (LPA) increased FN binding. However, no significant change in the resolved unbinding force was observed. After engagement, the force required to dislodge the FN-coated bead from VSMC increased with increasing of contact time, suggesting a time-dependent increase in number of adhesions and/or altered binding affinity. LPA enhanced this process, whereas PDGF reduced it, suggesting that these factors also affect the multimolecular process of focal contact assembly. Thus AFM is a powerful tool for the characterization of the mechanical properties of integrin-ECM interactions and their regulation. Our results indicate that the functional activity of alpha5beta1 and focal contact assembly can be rapidly regulated.  相似文献   

2.
It is believed that increased transmural pressure exerts force on vascular smooth muscle cells (VSMCs) and triggers Ca(2+) signaling as an initiating event responsible for the arteriolar myogenic response. However, the mechanisms linking the pressure increase to Ca(2+) signaling are unclear. We have shown previously using atomic force microscopy (AFM) that mechanical force induces a VSMC contractile response when applied to single fibronectin (FN; Sun Z, Martinez-Lemus LA, Hill MA, Meininger GA. Am J Physiol Cell Physiol 295; C268-C278, 2008) focal adhesion sites. This current study seeks to determine whether application of force to single focal adhesions can cause a change in VSMC Ca(2+). Experiments were performed in low passage (p3~10) as well as in freshly isolated skeletal muscle arteriole VSMCs. AFM-attached microbeads (5 μm) were coated with FN or collagen type I (CN-I) or type IV (CN-IV) and placed on a VSMC for 20 min, resulting in formation of a focal adhesion between the cell and the microbead. In low passage VSMCs, mechanically pulling on the FN-coated beads (800~3000 pN) did not induce a Ca(2+) increase but did cause a contractile response. In freshly isolated VSMCs, application of an FN or CN-I-coated bead onto the cell surface induced global Ca(2+) increases. However, these Ca(2+) increases were not correlated with the application of AFM pulling force to the bead or with the VSMC contractile responses to FN-coupled pulling. Chelating cytosolic Ca(2+) using BAPTA loading had no negative effect on the focal adhesion-related contractile response in both freshly isolated and low passage VSMCs, while the Rho-kinase inhibitor Y27632 abolished the micromyogenic response in both cases. These observations suggest that, in freshly isolated and cultured VSMCs, application of mechanical force to a focal adhesion does not invoke an acute global Ca(2+) increase. On the other hand, our data support a role for Rho-linked signaling mechanism involved in mechanotransduction leading to focal contraction that is independent of the need for a global increase in VSMC Ca(2+).  相似文献   

3.
Extracellular matrix receptors on ductus arteriosus smooth muscle cells (SMC) must enable the cells to migrate through both interstitial and basement membrane matrices to form intimal mounds during postnatal ductus closure. We examined the role of beta 1 and beta 3 integrin receptors on SMC adhesion and migration. Using a new assay to measure cell migration, we found that lamb ductus arteriosus SMC attach to and migrate over surfaces coated with fibronectin (FN), laminin (LN), vitronectin (VN), and collagens I (I) and IV (IV). Blocking antibodies, specific to different integrin complexes, showed that SMC adhesion to FN, LN, I, and IV depended exclusively on functioning beta 1 integrins with little, if any, contribution by the alpha V beta 3 integrin; on the other hand, cell migration over these substrates depended to a large extent on the alpha V beta 3 receptor. Immunofluorescent staining demonstrated that during the early phase of SMC migration, the beta 1 integrins organized rapidly into focal plaques that, with time, gradually covered the cell's basal surface; on the other hand, the beta 3 receptor remained concentrated at all times at the cell's margins. Ligand affinity chromatography and immunoprecipitation techniques identified a unique series of beta 1 integrins binding to each matrix component: FN (alpha 5 beta 1, alpha 3 beta 1, alpha V beta 1), LN (alpha 1 beta 1, alpha 7 beta 1), VN (alpha V beta 1), I (alpha 1 beta 1, alpha 2 beta 1), and IV (alpha 1 beta 1). In contrast, the beta 3 integrin, alpha V beta 3, bound to all the substrates tested: FN, LN, VN, I, and IV. The results indicate that beta 1 and beta 3 integrins may play different roles in attachment and migration as SMC move through the vascular extracellular matrix to produce obliteration of the ductus arteriosus lumen.  相似文献   

4.
Integrin subunits present on human bladder cells displayed heterogeneous functional specificity in adhesion to extracellular matrix proteins (ECM). The non-malignant cell line (HCV29) showed significantly higher adhesion efficiency to collagen IV, laminin (LN) and fibronectin (FN) than cancer (T24, Hu456) and v-raf transfected (BC3726) cell lines. Specific antibodies to the alpha(2), alpha(5) and beta(1) integrin subunits inhibited adhesion of the non-malignant cells, indicating these integrin participation in the adhesion to ECM proteins. In contrast, adhesion of cancer cells was not inhibited by specific antibodies to the beta(1) integrin subunit. Antibodies to alpha(3) integrin increased adhesion of cancer cells to collagen, LN and FN, but also of the HCV29 line with collagen. It seems that alpha(3) subunit plays a major role in modulation of other integrin receptors especially in cancer cells. Differences in adhesion to ECM proteins between the non-malignant and cancer cell lines in response to Gal and Fuc were not evident, except for the v-raf transfected cell line which showed a distinct about 6-fold increased adhesion to LN on addition of both saccharides. N-Acetylneuraminic acid inhibited adhesion of all cell lines to LN and FN irrespective of their malignancy.  相似文献   

5.
Thrombospondin (TSP), a 450-kDa trimeric glycoprotein secreted by platelets and endothelial cells at sites of tissue injury or inflammation, may play an important role in polymorphonuclear leukocyte (PMN) adherence to blood vessel walls before diapedesis. We have examined the adherence of PMN to TSP and compared it to adherence to other extracellular matrix proteins. PMN adherence to TSP-coated plastic was complete by 60 min with spreading completed by 2 h. The kinetics of adhesion and spreading on TSP were similar to that of vitronectin (VN), laminin (LN), and fibronectin (FN). Activation of PMN with the calcium ionophore A23187 or the chemotactic peptide FMLP increased PMN adherence to LN and FN, but not to TSP or VN, suggesting that PMN activation may differentially regulate expression of TSP and VN receptors as compared to LN and FN receptors. The specificity of PMN adherence to TSP was confirmed by competition with saturating amounts of TSP and inhibition with anti-TSP antibodies. mAb A6.1, which binds to the protease-resistant core of TSP, was the most effective in blocking PMN adherence to TSP. Using TSP proteolytic fragments, we demonstrated that the primary interaction of PMN with TSP was mediated through the 140-kDa COOH-terminal domain. Inasmuch as the 140-kDa fragment of TSP contains an Arg-Gly-Asp sequence similar to the cell recognition site of FN and VN, we determined whether RGDS peptides would inhibit PMN adhesion. RGDS did not significantly inhibit PMN adhesion to TSP, VN, or LN, but reduced PMN adhesion to FN by 50%. To determine if PMN adhesion to TSP was mediated by a beta 2 integrin receptor such as LFA-1, MO-1, or p150,95, we performed adhesion assays using PMN isolated from patients with leukocyte adhesion deficiency that lack beta 2 receptors. Leukocyte adhesion deficiency PMN exhibited normal adherence to TSP. In contrast, adherence to VN, LN, and FN was reduced by 95%. Therefore, adherence to TSP is probably not mediated by a beta 2 integrin receptor. These data contribute to the accumulating evidence that PMN can interact with extracellular matrix proteins through a CD11/CD18-independent process.  相似文献   

6.
The activity of matrix metalloproteinases (MMPs) specifies the ability of the trophoblast cell to degrade extracellular matrix (ECM) substrates. Usually the process of normal human placentation involves a coordinated interaction between the fetal-derived trophoblast cells and their microenvironment in the uterus. In this study, the effects of ECM proteins on the expression of MMP-2, -9, and -14 (membrane-type MMP-1); and the production of tissue inhibitors of metalloproteinase (TIMP) types -1, -2, and -3 have been investigated. Cytotrophoblast cells at 9 or 10 wk of gestation were cultured on various ECM coated dishes under serum-free conditions. Gelatin zymography analysis showed that cells grown on fibronectin (FN), laminin (LN), and vitronectin (VN) secreted more MMP-9 (about 1.5- to 3-fold more) than cells cultured on collagen I (Col I), whereas the secretion of MMP-9 by cells cultured on collagen IV (Col IV) was only half that by the cells on Col I. Northern Blot analysis gave the same results as zymography, indicating that expression of the MMP-9 gene in cytotrophoblast cells can be affected by matrix proteins. There was no significant difference in the expression of MMP-2 either at protein or mRNA levels among the cells cultured on the different matrix substrates. The expression of MMP-14 was regulated in a manner similar to that of MMP-2. Using ELISA, we detected higher levels of TIMP-1 in the culture medium of cells grown on VN, LN, and FN compared with that grown on Col I. But the expression of TIMP-3 mRNA was remarkably inhibited by VN, and ECM proteins had no effect on TIMP-1 and TIMP-2 mRNA expression. It was also observed that cultured cytotrophoblast cells expressed the corresponding receptors for the tested matrix proteins, such as integrins alpha(1), alpha(5), alpha(6), beta(1), and beta(4). Furthermore, the adhesiveness of cytotrophoblast cells on Col I, Col IV, FN, and LN was increased by 62%, 45%, 21%, and 22%, respectively, when compared with adhesiveness on VN. Isolated cytotrophoblast cells remained stationary when cultured on dishes coated with Col I and Col IV, but they assumed a more motile morphology and aggregated into a network when cultured on LN and VN. These data indicate that human trophoblast cells interact with their microenvironment to control their behavior and function.  相似文献   

7.
8.
Skeletal homeostasis is partly regulated by the mechanical environment and specific signals generated by a cell's adhesion to the matrix. Previous studies demonstrated that osteopontin (OPN) expression is stimulated in response to both cellular adhesion and mechanical stimulation. The present studies examine if specific integrin ligands mediate osteoblast selective adhesion and whether opn mRNA expression is induced in response to these same ligands. Embryonic chicken calvaria osteoblastic cells were plated on bacteriological dishes coated with fibronectin (FN), collagen type I (Col1), denatured collagen/gelatin (G), OPN, vitronectin (VN), laminin (LN) or albumin (BSA). Osteoblastic cells were shown to selectively adhere to FN, Col1, G and LN, yet not to VN, OPN or BSA. Opn mRNA expression was induced by adhesion to Col1, FN, LN and G, but neither OPN nor VN induced this expression. Examination of the activation of the protein kinases A and C second signaling systems showed that only adhesion to FN induced protein kinase A and protein kinase C (PKC) activity while adherence to Col1 induced PKC. Evaluation of the intracellular distribution of focal adhesion kinase (FAK) and p-tyrosine within cells after adherence to FN, VN or BSA demonstrated that adherence to FN stimulated FAK translocation from the nucleus to the cytoplasm and high levels of p-tyrosine localization at the cell surface. However, cell adherence to VN or BSA did not show these morphological changes. These data illustrate that osteoblast selective adhesion is mediated by specific integrin ligands, and induction of intracellular second signal kinase activity is related to the nature of the ligand.  相似文献   

9.
Integrins are transmembrane heterodimeric proteins that link extracellular matrix (ECM) to cytoskeleton and have been shown to function as mechanotransducers in nonmuscle cells. Synthetic integrin-binding peptide triggers Ca(2+) mobilization and contraction in vascular smooth muscle cells (VSMCs) of rat afferent arteriole, indicating that interactions between the ECM and integrins modulate vascular tone. To examine whether integrins transduce extracellular mechanical stress into intracellular Ca(2+) signaling events in VSMCs, unidirectional mechanical force was applied to freshly isolated renal VSMCs through paramagnetic beads coated with fibronectin (natural ligand of alpha(5)beta(1)-integrin in VSMCs). Pulling of fibronectin-coated beads with an electromagnet triggered Ca(2+) sparks, followed by global Ca(2+) mobilization. Paramagnetic beads coated with low-density lipoprotein, whose receptors are not linked to cytoskeleton, were minimally effective in triggering Ca(2+) sparks and global Ca(2+) mobilization. Preincubation with ryanodine, cytochalasin-D, or colchicine substantially reduced the occurrence of Ca(2+) sparks triggered by fibronectin-coated beads. Binding of VSMCs with antibodies specific to the extracellular domains of alpha(5-) and beta(1)-integrins triggered Ca(2+) sparks simulating the effects of fibronectin-coated beads. Preincubation of microperfused afferent arterioles with ryanodine or integrin-specific binding peptide inhibited pressure-induced myogenic constriction. In conclusion, integrins transduce mechanical force into intracellular Ca(2+) signaling events in renal VSMCs. Integrin-mediated mechanotransduction is probably involved in myogenic response of afferent arterioles.  相似文献   

10.
Adherence to endothelium and then to the extracellular matrix is a prerequisite for extravasation of monocytes into injured tissues. There, monocytes differentiate into macrophages and express heparin binding epidermal growth factor-like growth factor (HB-EGF), a key growth factor involved in normal wound healing. We investigated whether the interaction of human monocytic THP-1 cells with the endothelial cell adhesion molecules (vascular CAM-1, VCAM-1; intercellular adhesion molecule-1 ICAM-1 and endothelial-selectin, E-selectin), or the extracellular matrix (ECM) proteins (fibronectin, FN; laminin, LN and fibrinogen, FG) regulate HB-EGF expression. We have shown that adherence of THP-1 cells via VCAM-1, E-selectin or FN, which are all overexpressed at sites of inflammation, potentiates HB-EGF mRNA expression. In contrast, adhesion of THP-1 cells via ICAM-1 or FG, has no significant effect. Since THP-1 cells interact with ICAM-1 and FG through beta2 integrins, and with VCAM-1 and FN via beta1 integrins, regulation of HB-EGF expression appears to be specific to beta1 integrin ligation. In addition, we demonstrate that THP-1 binding to LN, through the beta1 integrin VLA-6, down regulates HB-EGF expression. Thus physiologically, transient destruction of LN and expression of VCAM-1, E-selectin and fibronectin at sites of inflammation, may locally induce HB-EGF overexpression.  相似文献   

11.
Integrins are glycoprotein heterodimers located in the cell membranes that stimulate intercellular adhesion and act as extracellular matrix (ECM) protein receptors. Although integrins have been detected in the implantation sites of various species, little is known about their participation in ruminant non-invasive placentation. The objective of this study was the detection of alphav, alpha4, alpha5, beta1 and beta3 integrin subunits and of two of their ligands, fibronectin and vitronectin, to determine their participation in the caprine peri-implantation process. On Day 21 post-coitum (pc), endometrial epithelium and trophoblastic cells showed an intense alphav and beta3 integrin subunits expression and moderate staining for alpha4 and alpha5. On Day 23 pc, integrin expression decreased noticeably and only a weak staining of alpha4 and beta3 integrin subunits were observed. No beta1 integrin subunit expression was detected on either of the days studied. Fibronectin (FN) expression in trophectodermic and endometrial epithelium was weak or moderate on the days studied while vitronectin (VN) expression in the same tissues was moderate or strong on Day 21 pc but decreased on Day 23 pc. These results suggest that alphavbeta3 integrin, alpha4 and alpha5 subunits, VN and FN are expressed in caprine endometrium and blastocyst and may play a role in the cascade of the implantation process.  相似文献   

12.
The integrin and extracellular matrix protein (ECM)-mediated adhesion and invasion of the receptive maternal uterine endometrium by trophoblasts is a critical event in the complex physiological process of pregnancy. Although the process has been largely characterized in mice, the relevant mechanism in primates remains unclear. We investigated the expression patterns and dynamic alterations of integrin subunits (alpha1, alpha5, alpha6, beta1, and beta4) and their ECM ligands, such as laminin (LN), type IV collagen (Col IV), and fibronectin (FN), at the maternal-fetal interface during Gestational Days 15, 25, 50, and 100 and at full term in 20 pregnant rhesus monkeys. Immunohistochemistry and in situ hybridization revealed that a relatively high expression of integrins occurred in trophoblast cells at Gestational Day 15, with the peak level occurring at Day 25. The expression level decreased from Day 50 to term. Along the invasive pathway, expression levels of integrin alpha1, alpha5, and beta1 subunits were gradually elevated from the proximal to distal column, reaching peak level in the trophoblast shell, but were reduced in those invasive extravillous cytotrophoblast (EVCT) cells in contact with the decidua. Integrin alpha1, alpha5, beta1, and beta4 subunits were also highly expressed in decidual stromal cells and moderately expressed in the maternal epithelium and endothelium. Immunoreactive FN, LN, and Col IV were distributed in EVCT and decidual stromal cells and part of the uterine epithelial and endothelial cells. These data suggest that the correlated expression of integrins and their ECM ligands at the maternal-fetal interface might be involved in regulation of cell proliferation and differentiation and the counterbalanced invasion-accelerating and invasion-restraining processes in trophoblast cells during the early stage of pregnancy.  相似文献   

13.
The fibronectin (FN)-binding integrins alpha4beta1 and alpha5beta1 confer different cell adhesive properties, particularly with respect to focal adhesion formation and migration. After analyses of alpha4+/alpha5+ A375-SM melanoma cell adhesion to fragments of FN that interact selectively with alpha4beta1 and alpha5beta1, we now report two differences in the signals transduced by each receptor that underpin their specific adhesive properties. First, alpha5beta1 and alpha4beta1 have a differential requirement for cell surface proteoglycan engagement for focal adhesion formation and migration; alpha5beta1 requires a proteoglycan coreceptor (syndecan-4), and alpha4beta1 does not. Second, adhesion via alpha5beta1 caused an eightfold increase in protein kinase Calpha (PKCalpha) activation, but only basal PKCalpha activity was observed after adhesion via alpha4beta1. Pharmacological inhibition of PKCalpha and transient expression of dominant-negative PKCalpha, but not dominant-negative PKCdelta or PKCzeta constructs, suppressed focal adhesion formation and cell migration mediated by alpha5beta1, but had no effect on alpha4beta1. These findings demonstrate that different integrins can signal to induce focal adhesion formation and migration by different mechanisms, and they identify PKCalpha signaling as central to the functional differences between alpha4beta1 and alpha5beta1.  相似文献   

14.
《The Journal of cell biology》1990,111(6):3141-3154
Basal cells of stratified epidermis are anchored to the basement membrane zone (BMZ) of skin via hemidesmosomes. We previously identified integrin alpha 3 beta 1, in focal adhesions (FAs), of cultured human keratinocytes (HFKs) as a mediator of HFK adhesion to secreted BMZ-like extracellular matrix (ECM; Carter, W.G., E.A. Wayner, T.S. Bouchard, and P. Kaur. 1990. J. Cell Biol. 110: 1387-1404). Here, we have examined the relation of integrins alpha 6 beta 4 and alpha 3 beta 1, to bullous pemphigoid antigen (BPA), a component of hemidesmosomes. We conclude that alpha 6 beta 4 in HFKs localizes in a new stable anchoring contact (SAC) that cooperates with alpha 3 beta 1- FAs to mediate adhesion to ECM, based on the following. (a) Comparison of secreted ECM, with exogenous laminin, fibronectin and collagen identified ECM as the preferred ligand for HFK adhesion and spreading and for formation of both alpha 6 beta 4-SACs and alpha 3 beta 1-FAs. (b) Inhibition of HFK adhesion with combined anti-alpha 3 beta 1 (P1B5) and anti-alpha 6 beta 4 (GoH3) antibodies indicated that both receptors were functional in adhesion to ECM while alpha 3 beta 1 played a dominant role in spreading. (c) alpha 6 beta 4 colocalized with BPA in SACs that were proximal to but excluded from FAs. Both alpha 6 beta 4- SACs and alpha 3 beta 1-FAs were in contact with the adhesion surface as indicated by antibody exclusion and interference reflection microscopy. (d) In contrast to alpha 3 beta 1-FAs, alpha 6 beta 4-SACs were present only in nonmotile cells, not associated with stress fibers, and were relatively stable to detergents and urea, suggesting a nonmotile, or anchoring function for SACs and motility functions for alpha 3 beta 1-FAs. (e) alpha 6 beta 4 formed a detergent-insoluble complex with exogenous ECM in an affinity isolation procedure, confirming the ability of an unidentified ECM ligand to interact with alpha 6 beta 4. (f) We suggest that alpha 6 beta 4/BPA-SACs in culture restrict migration of HFKs on ECM while alpha 3 beta 1-FAs form dynamic adhesions in spreading and migrating cells. alpha 6 beta 4/BPA-SACs in culture bear functional and compositional similarities to hemidesmosomes in skin.  相似文献   

15.
Alphavbeta3-integrin antagonists reduced neointimal formation following vascular injury in eight different animal models. Because alpha-thrombin contributes to neointimal formation, we examined the hypothesis that alphavbeta3-integrins influence alpha-thrombin-induced signaling. Cultured rat aortic smooth muscle cells (RASMC) expressed alphavbeta3-integrins as demonstrated by immunofluorescence microscopy and fluorescence-activated cell sorting analysis. Proliferative responses to alpha-thrombin were partially inhibited by anti-beta3-integrin monoclonal antibody F11 and by cyclic RGD peptides. Immunofluorescence microscopy showed that alpha-thrombin stimulated a rapid increase in the formation of focal adhesions as identified by vinculin staining and that this effect was partially inhibited by alphavbeta3 antagonists. Beta3-integrin staining was diffuse in quiescent RASMC and did not concentrate at sites of focal adhesions following thrombin treatment. Alpha-thrombin elicited a time-dependent increase in activation of c-Jun NH2-terminal kinase-1 (JNK1) and in tyrosine phosphorylation of focal adhesion kinase (FAK). Alphavbeta3-integrin antagonists partially inhibited increases in JNK1 activity but had no effect on FAK phosphorylation. In SMC isolated from beta3-integrin-deficient mice, focal adhesion formation was impaired in response to thrombin but not sphingosine-1-phosphate, a potent activator of Rho. In summary, alphavbeta3-integrins play an important role in alpha-thrombin-induced proliferation and focal adhesion formation in RASMC.  相似文献   

16.
Regulated adhesion of leukocytes to the extracellular matrix is essential for transmigration of blood vessels and subsequent migration into the stroma of inflamed tissues. Although beta(2)-integrins play an indisputable role in adhesion of polymorphonuclear granulocytes (PMN) to endothelium, we show here that beta(1)- and beta(3)-integrins but not beta(2)-integrin are essential for the adhesion to and migration on extracellular matrix molecules of the endothelial cell basement membrane and subjacent interstitial matrix. Mouse wild type and beta(2)-integrin null PMN and the progranulocytic cell line 32DC13 were employed in in vitro adhesion and migration assays using extracellular matrix molecules expressed at sites of extravasation in vivo, in particular the endothelial cell laminins 8 and 10. Wild type and beta(2)-integrin null PMN showed the same pattern of ECM binding, indicating that beta(2)-integrins do not mediate specific adhesion of PMN to the extracellular matrix molecules tested; binding was observed to the interstitial matrix molecules, fibronectin and vitronectin, via integrins alpha(5)beta(1) and alpha(v)beta(3), respectively; to laminin 10 via alpha(6)beta(1); but not to laminins 1, 2, and 8, collagen type I and IV, perlecan, or tenascin-C. PMN binding to laminins 1, 2, and 8 could not be induced despite surface expression of functionally active integrin alpha(6)beta(1), a major laminin receptor, demonstrating that expression of alpha(6)beta(1) alone is insufficient for ligand binding and suggesting the involvement of accessory factors. Nevertheless, laminins 1, 8, and 10 supported PMN migration, indicating that differential cellular signaling via laminins is independent of the extent of adhesion. The data demonstrate that adhesive and nonadhesive interactions with components of the endothelial cell basement membrane and subjacent interstitium play decisive roles in controlling PMN movement into sites of inflammation and illustrate that beta(2)-integrins are not essential for such interactions.  相似文献   

17.
We investigated in a colon adenocarcinoma cell line, the exclusive role of extracellular matrix (ECM) components in the absence of soluble factors regarding the integrin clustering processes, and their implication in cell adhesion, spreading and organization of the actin cytoskeleton. Caco-2 cells were shown to express at the plasma membrane 11 integrins, some of which (e.g. alpha3beta1, alpha5beta1, alpha6beta1/beta4, alpha8beta1 and alpha(v)beta1/beta5/beta6) were identified for the first time in this cell line. Cell adhesion and spreading processes were governed essentially by lamellipodium, the regulation of which was shown to be induced by two types of integrin clustering processes mediated by ECM proteins alone. During these phenomena, alpha2beta1, alpha(v)beta6 and alpha6beta1 integrins, the Caco-2 cell specific receptors of type IV collagen, fibronectin and laminin, respectively, were clustered in small focal complexes (point contacts), whereas alpha(v)beta5, the vitronectin receptor in this cell line, was aggregated in focal adhesions. The two levels of integrin clustering induced only F-actin cortical web formation organized in thin radial and/or circular filaments. We conclude thus that ECM components per se through their action on integrin clustering are involved in cell adhesion, cortical actin cytoskeleton organization and cell spreading.  相似文献   

18.
Integrins are transmembrane adhesion receptors that play important roles in the cardiovascular system by interacting with the extracellular matrix (ECM). However, direct quantitative measurements of the adhesion properties of the integrins on cardiomyocyte (CM) and their ECM ligands are lacking. In this study, we used atomic force microscopy (AFM) to quantify the adhesion force (peak force and mean force) and binding probability between CM integrins and three main heart tissue ECM proteins, ie, collagen (CN), fibronectin (FN), and laminin (LN). Functionalizing the AFM probes with ECM proteins, we found that the peak force (mean force) was 61.69 ± 5.5 pN (76.54 ± 4.0 pN), 39.26 ± 4.4 pN (59.84 ± 3.6 pN), and 108.31 ± 4.2 pN (129.63 ± 6.0 pN), respectively, for the bond of CN‐integrin, FN‐integrin, and LN‐integrin. The binding specificity between CM integrins and ECM proteins was verified by using monoclonal antibodies, where α10‐ and α11‐integrin bind to CN, α3‐ and α5‐integrin bind to FN, and α3‐ and α7‐integrin bind to LN. Furthermore, adhesion properties of CM integrins under physiologically high concentrations of extracellular Ca2+ and Mg2+ were tested. Additional Ca2+ reduced the adhesion mean force to 68.81 ± 4.0 pN, 49.84 ± 3.3 pN, and 119.21 ± 5.8 pN and binding probability to 0.31, 0.34, 0.40 for CN, FN, and LN, respectively, whereas Mg2+ caused very minor changes to adhesion properties of CM integrins. Thus, adhesion properties between adult murine CM integrins and its main ECM proteins were characterized, paving the way for an improved understanding of CM mechanobiology.  相似文献   

19.
The influence of the extracellular matrix (ECM) on cell behavior, myofibrillogenesis and cytoarchitecture was investigated in neonatal rat cardiac myocytes in vitro. Cell behavior was examined by analyzing cell spreading on different ECM components under a variety of experimental conditions. Area measurements were made on digitized images of cells grown for various time intervals on fibronectin (FN), laminin (LN), collagens I and III (C I+III), plastic, and bovine serum albumin (BSA). The amount of spreading was varied on the different matrices and was maximal on FN greater than LN greater than C I+III greater than plastic greater than BSA. Addition of anti-beta 1 integrin antibodies to myocytes cultured on FN, LN and C I+III blocked spreading outward on the substrates and altered normal myofibrillogenesis, especially on LN. Concomitantly, the integrin antibodies induced the formation of giant pseudopodial processes which protruded upward from the substrates. These pseudopods contained actin polygonal networks which exhibited a regular geometrical configuration. Effects of the ECM on cytoarchitecture was examined by analyzing the temporal and spatial patterns of fluorescence and immunogold labeling of cytoskeletal and integrin proteins as myocytes spread in culture. The first indication of sarcomeric patterns was the appearance at 4 hours of striations formed by lateral alignment of alpha-actinin aggregates into Z bands. At later times, vinculin at 8 hours and beta 1 integrin at 22 hours became co-localized with alpha-actinin at the Z bands and focal adhesions. These data indicate that ECM components influence myocyte spreading and that myofibril assembly and/or stability is associated with ECM-integrin-cytoskeleton associations.  相似文献   

20.
Cell adhesion to extracellular matrix (ECM) components through cell-surface integrin receptors is essential to the formation, maintenance and repair of numerous tissues, and therefore represents a central theme in the design of bioactive materials that successfully interface with the body. While the adhesive responses associated with a single ligand have been extensively analyzed, the effects of multiple integrin subtypes binding to multivalent ECM signals remain poorly understood. In the present study, we generated a high throughput platform of non-adhesive surfaces presenting well-defined, independent densities of two integrin-specific engineered ligands for the type I collagen (COL-I) receptor alpha(2)beta(1) and the fibronectin (FN) receptor alpha(5)beta(1) to evaluate the effects of integrin cross-talk on adhesive responses. Engineered surfaces displayed ligand density-dependent adhesive effects, and mixed ligand surfaces significantly enhanced cell adhesion strength and focal adhesion assembly compared to single FN and COL-I ligand surfaces. Moreover, surfaces presenting mixed COL-I/FN ligands synergistically enhanced FAK activation compared to the single ligand substrates. The enhanced adhesive activities of the mixed ligand surfaces also promoted elevated proliferation rates. Our results demonstrate interplay between multivalent ECM ligands in adhesive responses and downstream cellular signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号