首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the resistance to stress as a function of age in Drosophila melanogaster overexpressing Hsp70. The resistances to starvation, paraquat, and cold in flies from 1 to 7 week-old have been measured. The line carrying the insertion vector without the transgenes is more resistant to starvation and cold than the parental and transgenic lines. In contrast, transgenic flies carrying extra-copies of hsp70 are more resistant to paraquat, however this is due to an especially high resistance in two age groups compared to all the other groups. I showed that exposure to a mild heat shock does not increase starvation resistance, slightly increases paraquat resistance, and strongly increases cold resistance. The transgenic flies expressing Hsp70 at higher levels after the heat shock do not exhibit enhanced stress resistance compared to control lines expressing less Hsp70 after the heat shock. The lack of effect of a mild heat shock on starvation and paraquat resistance is not due to a disappearance of the effect with age, since no effect is observed at any age. In contrast, when an effect of Hsp70 induction is observed as on cold resistance, this effect is still observed in old flies.  相似文献   

2.
The expression of two temperature-sensitive reporter genes, hsp70 and an hsp70-LacZ fusion, in free-ranging adult Drosophila melanogaster indicates that natural thermal stress experienced by such small and mobile insects may be either infrequent or not severe. Levels of the heat-shock protein Hsp70, the major inducible Hsp of Drosophila, were similar in most wild Droso- phila captured after warm days to levels previously reported for unstressed flies in the laboratory. In a transgenic strain transformed with an hsp70-LacZ fusion (i.e., the structural gene encoding bacterial β-galactosidase under control of a heat shock promoter), exposure to temperatures ≥32°C in the laboratory typically resulted in β-galactosidase activities exceeding 140 mOD450 h–1μg–1 soluble protein. Flies caged in sun frequently had β-galactosidase activities in excess of this level, whereas flies caged in shade and flies released and recaptured on cool days did not. Most flies (>80%) released on warm, sunny days had low β-galactosidase activities upon recapture. Although the balance of recaptured flies had elevated β-galactosidase activities on these days, their β-galactosidase activities were <50% of levels for flies caged in direct sunlight or exposed to laboratory heat shock. These data suggest that even on warm days most flies may avoid thermal stress, presumably through microhabitat selection, but that a minority of adult D. melanogaster undergo mild thermal stress in nature. Both temperature-sensitive reporter genes, however, are limited in their ability to infer thermal stress and demonstrate its absence. Received: 14 July 1999 / Accepted: 21 December 1999  相似文献   

3.
Early life events can have dramatic consequences on performance later in life. Exposure to stressors at a young age affects development, the rate of aging, risk of disease, and overall lifespan. In spite of this, mild stress exposure early in life can have beneficial effects on performance later in life. These positive effects of mild stress are referred to as physiological conditioning hormesis. In our current study we used anoxia conditioning hormesis as a pretreatment to reduce oxidative stress and improve organismal performance, lifespan, and healthspan of Caribbean fruit flies. We used gamma irradiation to induce mild oxidative damage in a low-dose experiment, and massive oxidative damage in a separate high-dose experiment, in pharate adult fruit flies just prior to adult emergence. Irradiation-induced oxidative stress leads to reduced adult emergence, flight ability, mating performance, and lifespan. We used a hormetic approach, one hour of exposure to anoxia plus irradiation in anoxia, to lower post-irradiation oxidative damage. We have previously shown that this anoxic-conditioning treatment elevates total antioxidant capacity and lowers post-irradiation oxidative damage to lipids and proteins. In this study, conditioned flies had lower mortality rates and longer lifespan compared to those irradiated without hormetic conditioning. As a metric of healthspan, we tracked mating both at a young age (10 d) and old age (30 d). We found that anoxia-conditioned male flies were more competitive at young ages when compared to unconditioned irradiation stressed male flies, and that the positive effects of anoxic conditioning hormesis on mating success were even more pronounced in older males. Our data shows that physiological conditioning hormesis at a young age, not only improves immediate metrics of organismal performance (emergence, flight, mating), but the beneficial effects also carry into old age by reducing late life oxidative damage and improving lifespan and healthspan.  相似文献   

4.
5.
Organisms cope physiologically with extreme temperature by producing heat shock proteins (HSPs). Expression of Hsp70 enhances thermal tolerance and represents a key strategy for ectotherms to tolerate elevated temperature in nature. Synthesis of these proteins, together with other physiological responses to elevated temperatures, increases energy demands. A positive association between multiple and single locus heterozygosity (MLH and SLH, respectively) and individual fitness has been widely demonstrated. In molluscs, MLH can decrease routine metabolic rates and improve energetic status. Juvenile Concholepas concholepas live in the intertidal zone and are constantly exposed to temperature fluctuations. Thus, these young individuals are exposed both to thermal risks and the large metabolic costs required to cope with thermal stress. We evaluated the effects of allozyme MLH and SLH on basal (control animals) and induced (stressed animals) levels of the Hsp70 in juveniles C. concholepas. Juveniles (n = 400) were acclimated at 16 °C for 2 weeks; then 100 animals were exposed to 24 °C (stress) and 100 were kept at 16 °C (control) for 2 and 7 days. The variability of 20 loci was analyzed by starch gel electrophoresis. For SLH effects we used 7 polymorphic loci. We quantified expression of Hsp70 by Western blot analyses. Hsp70 expression increased markedly (~ 90%) with temperature. We found a positive association between MLH and basal and induced levels of Hsp70 in the 2-day exposure experiment. Regardless of temperature, Hsp70 levels increased with MLH (r2 = 0.7 and 0.9, for basal and induced levels, respectively) reaching maximal levels in juveniles with intermediate and high MLH levels (2 and 3 loci), and decreasing slightly (but not significantly) in juveniles with highest MLH (≥ 4 heterozygous loci). However, after 7 days of exposure to thermal stress, less heterozygous juveniles attained the same levels of Hsp70 than more heterozygous juveniles. Given the faster increment of Hsp70 in C. concholepas juveniles with intermediate-high levels of MLH, these individuals could be less affected by thermal stress in the intertidal zone. We found an association between specific loci genotype and higher Hsp70 levels (basal or induced). In comparison to homozygous juveniles, heterozygous juveniles for several loci showed higher Hsp70. However, these associations were not for the same loci in juveniles exposed to high temperature for 2 and 7 days. This suggests genotypic variation at some allozyme loci could be more important in the period of initial response to high temperature and others can be more important in the response to the chronic temperature stress.  相似文献   

6.
Aging affects expression of 70-kDa heat shock proteins in Drosophila   总被引:1,自引:0,他引:1  
We examined the effect of cellular aging on adult mortality and hsp70 gene expression in Drosophila melanogaster under thermal stress. The results showed that flies exposed to 37 degrees C for various time intervals had reduced survival rate with age. The level of hsp70 mRNA increases in flies up to 23-28 days of age, but then declines as they get older. When flies are shifted to 25 degrees C after 30 min of heat stress, the time-dependent decrease in hsp70 mRNA levels occurs more rapidly in young flies than in old ones. The hsp70 mRNA present during this recovery period is translated into protein, and senescent flies continue to synthesize this protein for up to 5 h after heat shock. The prolonged expression of hsp70 RNA during recovery from heat shock was also observed in young flies fed canavanine, an arginine analogue. These data suggest that in old insects, the accumulation of conformationally altered proteins plays a role in the regulation of hsp70 RNA expression. These results are discussed in relation to the finding that old flies are more sensitive to thermal stress than young ones.  相似文献   

7.
In this study we show for the first time that moderate high larval density induces Hsp70 expression in Drosophila melanogaster larvae. Larval crowding led to both increased mean and maximal longevity in adults of both sexes. Two different measures of heat-stress resistance increased in adult flies developed at high density compared to flies developed at low density. The hardening-like effect of high larval density carried over to the adult life stage. The hardening memory (the period of increased resistance after hardening) was long compared to hardening of adult flies, and possibly lasts throughout life. The increase in resistance in adults following development at high larval density seemed not to be connected to Hsp70 itself, since Hsp70 expression level in adult flies after hardening was independent of whether larvae developed at low or high densities. More likely, Hsp70 may be one of many components of the stress response resulting in hardening.  相似文献   

8.
Although bone marrow-derived mesenchymal stem cells (MSCs) are an attractive cell therapy candidate, their potential is limited by poor survival following transplantation. Over-expression of anti-apoptotic heat shock proteins using viral vectors can improve the survival of these cells under stressful conditions in vitro and in vivo. It is also possible to induce heat shock protein expression in many cell types by simply exposing them to a transient, nonlethal elevation in temperature. The response profile of MSCs to such a thermal stress has not yet been reported. Therefore, this study sought to determine the kinetics of thermally induced heat shock protein expression by MSCs in vitro. To determine if heat shock protein expression was a function of thermal stress exposure time, MSCs were exposed to 42°C for 15, 30, 45, and 60 min and were harvested 24 h later. To establish the time-course of heat shock protein expression, MSCs were heat shocked for 60 min and harvested 2, 24, 48, 72, 96, and 120 h later. The cells were then analyzed for Hsp27 and Hsp70 expression by Western blot. Densitometric analysis revealed that exposure to a thermal stress induced expression of both Hsp27 and Hsp70 and that the level of expression was dependant on stress exposure time. Following 60 min of heat stress, both Hsp27 and Hsp70 accumulated maximal expression after 48 h with both proteins returning to constitutive expression levels by 120 h. This study demonstrates that heat shock protein expression can be induced in MSCs by a simple thermal stress.  相似文献   

9.
10.
11.
Bovine respiratory disease complex (BRD), a major economic concern to the beef cattle industry all over the world, is triggered by physical, biological and psychological stresses. It is becoming noticeable that the key to reducing BRD appears to be centered at reducing the response to stress. The aims of the present study were to detect individual variations in the stress response of newly received young calves through their leukocyte heat shock protein (Hsp) response, selected neutrophil-related gene expression and oxidative stress, and relate them to pulmonary adhesions at slaughter, an indicative sign of clinical and subclinical episodes of BRD at an early age. Differential expression patterns of Hsp60 and Hsp70A1A were revealed in newly received calves 1 h, 5 h and 1 day after arrival, distinguishing between stress-responsive and non-stress-responsive individuals. Plasma cortisol was also indicative of stress-responsive and non-stress-responsive individuals, 1 h and 5 h after arrival. At the longer term, β-glycan levels were highest 7 days after arrival and significantly correlated with an adhesion-free phenotype at slaughter. Oxidative stress responses, measured through the oxidation products of the exogenous linoleoyl tyrosine (LT) marker, revealed that hydroperoxidation and epoxidation of membranes may readily occur. Based on the LT oxidation products and levels of β-glycan, we present a discriminant analysis model, according to which vulnerable individuals may be predicted at near 100% probability 7 days after arrival. Since clinical signs of BRD may often go undetected in feedlot calves, such a model, after its examination in large-scale experiments, may be a reliable tool for an early prediction of subclinical signs of BRD.  相似文献   

12.
Gong WJ  Golic KG 《Genetics》2006,172(1):275-286
The heat-shock response is a programmed change in gene expression carried out by cells in response to environmental stress, such as heat. This response is universal and is characterized by the synthesis of a small group of conserved protein chaperones. In Drosophila melanogaster the Hsp70 chaperone dominates the profile of protein synthesis during the heat-shock response. We recently generated precise deletion alleles of the Hsp70 genes of D. melanogaster and have used those alleles to characterize the phenotypes of Hsp70-deficient flies. Flies with Hsp70 deletions have reduced thermotolerance. We find that Hsp70 is essential to survive a severe heat shock, but is not required to survive a milder heat shock, indicating that a significant degree of thermotolerance remains in the absence of Hsp70. However, flies without Hsp70 have a lengthened heat-shock response and an extended developmental delay after a non-lethal heat shock, indicating Hsp70 has an important role in recovery from stress, even at lower temperatures. Lack of Hsp70 also confers enhanced sensitivity to a temperature-sensitive lethal mutation and to the neurodegenerative effects produced by expression of a human polyglutamine disease protein.  相似文献   

13.
Severe hypoxia can lead to injury and mortality in vertebrate or invertebrate organisms. Our research is focused on understanding the molecular mechanisms that lead to injury or adaptation to hypoxic stress using Drosophila as a model system. In this study, we employed the UAS-Gal4 system to dissect the protective role of Hsp70 in specific tissues in vivo under severe hypoxia. In contrast to overexpression in tissues such as muscles, heart, and brain, we found that overexpression of Hsp70 in hemocytes of flies provides a remarkable survival benefit to flies exposed to severe hypoxia for days. Furthermore, these flies were tolerant not only to severe hypoxia but also to other stresses such as oxidant stress (e.g., paraquat feeding or hyperoxia). Interestingly we observed that the better survival with Hsp70 overexpression in hemocytes under hypoxia or oxidant stress is causally linked to reactive oxygen species (ROS) reduction in whole flies. We also show that hemocytes are a major source of ROS generation, leading to injury during hypoxia, and their elimination results in a better survival under hypoxia. Hence, our study identified a protective role for Hsp70 in Drosophila hemocytes, which is linked to ROS reduction in the whole flies and thus helps in their remarkable survival during oxidant or hypoxic stress.  相似文献   

14.
15.
The effects of pre-treatment of para-chlorophenylalanine (p-CPA) on sleep–wake electroencephalograms (EEG) have been demonstrated in three age groups of rats subjected to heat stress. Each age group for both p-CPA pre-treated and untreated subjects was sub-divided into three groups: (i) acute heat stress—subjected to a single heat exposure for 4 h at 38 °C; (ii) chronic heat stress—exposed for 21 days daily for 1 h in the incubator at 38 °C; and (iii) handling control groups. Digital polygraphic sleep recordings were performed just after the heat exposure from acute stressed rats and on the 22nd day from chronic stressed rats. The analyses of results demonstrated that many changes associated with sleep-EEG (either in sleep–wake parameter or in EEG frequencies) due to acute and chronic heat stress were reversed (changes were analyzed; P<0.05 or better) in p-CPA pre-treated groups of rats. However, differential observations between acute and chronic heat stress groups of subjects were recorded, which are thought to have happened due to acclimatization of subjects to the hot environment. The results of present study supported the previous hypothesis about the significant involvement of serotonin in sleep–wake parameters and also demonstrated its participation in brain electrophysiological alterations in stressed conditions.  相似文献   

16.
The purpose of this study was to investigate the alterations in serum heat shock protein (Hsp) 70 levels during a 15-consecutive-day intermittent heat–exercise protocol in a 29-year-old male ultra marathon runner. Heat acclimation, for the purpose of physical activities in elevated ambient temperatures, has numerous physiological benefits including mechanisms such as improved cardiac output, increased plasma volume and a decreased core temperature (T c). In addition to the central adaptations, the role of Hsp during heat acclimation has received an increasing amount of attention. The acclimation protocol applied was designed to correspond with the athlete’s tapering period for the 2007 Marathon Des Sables. The subject (VO2max = 50.7 ml·kg−1·min−1, peak power output [PPO] = 376 W) cycled daily for 90 min at a workload corresponding to 50% of VO2max in a temperature-controlled room (average WBGT = 31.9 ± 0.9°C). Venous blood was sampled before and after each session for measurement of serum osmolality and serum Hsp70. In addition, T c, heart rate (HR) and power output (PO) was measured throughout the 90 min to ensure that heat acclimation was achieved during the 15-day period. The results show that the subject was successfully heat acclimated as seen by the lowered HR at rest and during exercise, decreased resting and exercising T c and an increased PO. The heat exercise resulted in an initial increase in Hsp70 concentrations, known as thermotolerance, and the increase in Hsp70 after exercise was inversely correlated to the resting values of Hsp70 (Spearman’s rank correlation = −0.81, p < 0.01). Furthermore, the 15-day heat–exercise protocol also increased the basal levels of Hsp70, a response different from that of thermotolerance. This is, as far as we are aware, the first report showing Hsp70 levels during consecutive days of intermittent heat exposure giving rise to heat acclimation. In conclusion, a relatively longer heat acclimation protocol is suggested to obtain maximum benefit of heat acclimation inclusive of both cellular and systemic adaptations.  相似文献   

17.
18.
The mammal's high elevation(hypoxia) adaptation was studied by using the immu-nological and the molecular biological methods to understand the significance of Hsp(hypoxia) ad-aptation in the organic high elevation,through the mammal heat shock response.(1) From high ele-vation to low elevation(natural hypoxia) :Western blot and conventional RT-PCR and real-time fluo-rescence quota PCR were adopted.Expression difference of heat shock protein of 70(Hsp70) and natural expression of brain tissue of Hsp70 gene was determined in the cardiac muscle tissue among the different elevation mammals(yak) .(2) From low elevation to high elevation(hypoxia induction) :The mammals(domestic rabbits) from the low elevation were sent directly to the areas with different high elevations like 2300,3300 and 5000 m above sea level to be raised for a period of 3 weeks be-fore being slaughtered and the genetic inductive expression of the brain tissue of Hsp70 was deter-mined with RT-PCR.The result indicated that all of the mammals at different elevations possessed their heat shock response gene.Hsp70 of the high elevation mammal rose abruptly under stress and might be induced to come into being by high elevation(hypoxia) .The speedy synthesis of Hsp70 in the process of heat shock response is suitable to maintain the cells' normal physiological functions under stress.The Hsp70 has its threshold value.The altitude of 5000 m above sea level is the best condition for the heat shock response,and it starts to reduce when the altitude is over 6000 m above sea level.The Hsp70 production quantity and the cell hypoxia bearing capacity have their direct ratio.  相似文献   

19.
The Mediterranean land snail Xeropicta derbentina forms huge populations in Southern France. In order to characterize heat exposure and the induction of the 70-kD heat shock protein (Hsp70) response system during the life cycle of this snail, a selected population from the Vaucluse area, Provence, was investigated encompassing the issues of morphological life cycle parameters (shell size and colouration), the daily courses of heat exposure at different heights above the ground, of shell temperature, and that of the individual Hsp70 levels. The study covered all four seasons of the year 2011. Snails were found to be annual, reaching their final size in August. The shell colouration pattern showed high variation in juveniles (spring) with a strong tendency towards becoming uniformly white at old age in autumn. In all seasons, ambient air temperature decreased with increasing distance from the ground surface during daytime while remaining constantly low in the night. Overall, the Hsp70 level of individuals followed the ambient temperature during diurnal and seasonal variations. Correlation analysis revealed a positive association of individual shell temperature and Hsp70 level for the most part of the life cycle of the snails until late summer, whereas a negative correlation was found for aged animals indicating senescence effects on the capacity of the stress response system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号