首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Ruuhola T  Yang S  Ossipov V  Haukioja E 《Oecologia》2008,154(4):725-730
Induced resistance of the mountain birch against its main defoliator Epirrita autumnata is a well-characterized phenomenon. The causal mechanism for this induced deterioration, however, has not been unequivocally explained, and no individual compound or group of traditional defensive compounds has been shown to explain the phenomenon. Phenolic compounds are the main secondary metabolites in mountain birch leaves, and the biological activity of phenolics usually depends on their oxidation. In this study, we found that the activity of polyphenoloxidases (PPOs), enzymes that oxidize o-diphenols to o-diquinones, was induced in trees with introduced larvae, and bioassays showed that both growth and consumption rates of larvae were reduced in damaged trees. PPO activity was negatively associated with both larval growth and consumption rates in trees with bagged larvae, but not in control trees. Our results suggest that the oxidation of phenolics by PPOs may be a causal explanation for the rapidly induced resistance of mountain birch against E. autumnata. This finding also helps to explain why correlations between insect performance and phenolics (without measuring indices explaining their oxidation) may not produce consistent results.  相似文献   

2.
3.
4.
5.
Background and Aims Polyphenol oxidases (PPOs) catalyse the oxidation of monophenols and/or o-diphenols to highly reactive o-quinones, which in turn interact with oxygen and proteins to form reactive oxygen species (ROS) and typical brown-pigmented complexes. Hence PPOs can affect local levels of oxygen and ROS. Although the currently known substrates are located in the vacuole, the enzyme is targeted to the thylakoid lumen, suggesting a role for PPOs in photosynthesis. The current study was designed to investigate the potential involvement of PPOs in the photosynthetic response to oxidative stress.Methods Photosynthesis (A, Fv/Fm, ΦPSII, qN, qP, NPQ) was measured in leaves of a wild-type and a low-PPO mutant of red clover (Trifolium pratense ‘Milvus’) under control conditions and under a stress treatment designed to induce photooxidative stress: cold/high light (2 °C/580 µmol m2 s–1) or 0–10 µm methyl viologen. Foliar protein content and oxidation state were also determined.Key Results Photosynthetic performance, and chlorophyll and protein content during 4 d of cold/high light stress and 3 d of subsequent recovery under control growth conditions showed similar susceptibility to stress in both lines. However, more extensive oxidative damage to protein in mutants than wild-types was observed after treatment of attached leaves with methyl viologen. In addition, PPO activity could be associated with an increased capacity to dissipate excess energy, but only at relatively low methyl viologen doses.Conclusions The presence of PPO activity in leaves did not correspond to a direct role for the enzyme in the regulation or protection of photosynthesis under cold stress. However, an indication that PPO could be involved in cellular protection against low-level oxidative stress requires further investigation.  相似文献   

6.
Yu H  Kowalski SP  Steffens JC 《Plant physiology》1992,100(4):1885-1890
Tetralobulate glandular trichomes are present on the foliage of many solanaceous species. Resistance of many of these species to insects is conditioned by the ability of trichomes to rupture upon contact and to rapidly polymerize their contents, resulting in entrapment of insects in hardened trichome exudate. In the wild potato, Solanum berthaultii, polymerization of trichome exudate is initiated by a soluble Mr 59,000 polyphenol oxidase (PPO), which is a dominant protein constituent of the organ. PPOs, although ubiquitous in angiosperms, typically display great heterogeneity in molecular weight and are found at low levels in plant cells. Because of the unusually high accumulation and tissue-specific expression of the Mr 59,000 PPO in S. berthaultii glandular trichomes, we analyzed trichome proteins of a number of Lycopersicon and Solanum species to assess the extent to which possession of the Mr 59,000 PPO is conserved. Trichomes were collected manually and examined for PPO activity, immuno-cross-reactivity with S. berthaultiiMr 59,000 PPO, and protein content. In addition, N-terminal amino acid sequences were obtained for five trichome PPOs. All species analyzed possessed trichome PPOs similar in structure and level of expression to that of S. berthaultii. The relationship between sequences and structures of these conserved PPOs and the variable PPOs of leaf is discussed.  相似文献   

7.
Type A glandular trichomes of the wild potato (Solanum berthaultii Hawkes) entrap insects by rapidly polymerizing the trichome contents after breakage by insect contact. Polymerization of trichome exudate appears to be driven by a soluble polyphenol oxidase (PPO). PPO constitutes up to 70% of the protein in individually collected trichomes and reaches a concentration approaching 200 μm in these organs. Trichome PPO has been purified and shown to be a monomeric copper metalloprotein with an isoelectric point of 5.5, possessing only o-diphenol oxygen oxido-reductase activity, and is larger than most other reported PPOs, with relative molecular weight of 59,000. Chlorogenic and caffeic acid were the most readily oxidized of 14 phenolic substrates tested. Polyclonal antibodies raised against the relative molecular weight 59,000 S. berthaultii trichome PPO were used to show that S. tuberosum L. trichomes express low levels of a cross-reactive protein that lacks detectable PPO activity.  相似文献   

8.
9.
Tran LT  Constabel CP 《Planta》2011,234(4):799-813
Polyphenol oxidases (PPOs) are oxidative enzymes that convert monophenols and o-diphenols to o-quinones using molecular oxygen. The quinone products are highly reactive following tissue damage and can interact with cellular constituents and cause oxidative browning and cross-linking. The induction of PPO in some plants as a result of wounding, herbivore attack, or pathogen infection has implicated them in defense. However, PPO-like enzymes that act as specific hydroxylases, for example in lignan and pigment biosynthesis, have also been discovered. Here, we present the first genome-enabled analysis of a PPO gene family. The Populus trichocarpa genome was found to contain a minimum of nine complete PPO genes, and seven of these were characterized further. The PPO gene family includes both recently duplicated and divergent sequences that are 36–98% identical at the amino acid level. Gene expression profiling in poplar tissues and organs revealed that the PPO genes are all differentially expressed during normal development, but that only a small subset of PPO genes are significantly upregulated by wounding, methyl jasmonate or pathogen infection. Our studies also identified PtrPPO13, a novel PPO gene that is predicted to encode an N-terminal signal peptide. Transient expression of green fluorescent protein fusions demonstrated its localization to the vacuolar lumen. Together, our findings show that the poplar PPO family is diverse and is likely linked to diverse physiological functions.  相似文献   

10.
Red clover (Trifolium pratense) leaves contain high levels of polyphenol oxidase (PPO) activity and o-diphenol substrates. Wounding of leaves during harvest and ensiling results in browning of leaf tissues from activity of PPO on the o-diphenols. In association with browning, leaf proteins remain undegraded during ensiling, presumably due to PPO-generated o-quinone inhibition of leaf proteases. We cloned three red clover PPO cDNAs, PPO1, PPO2, and PPO3, from a leaf cDNA library. Sequence comparisons among the three red clover PPO clones indicated they are 87% to 90% identical at the nucleotide level (80%-83% amino acid identity). All three encode proteins predicted to localize to the chloroplast thylakoid lumen. RNA-blotting and immunoblotting experiments indicated PPO1 is expressed primarily in young leaves, PPO2 in flowers and petioles, and PPO3 in leaves and possibly flowers. We expressed mature PPO1 in Escherichia coli. A portion of the expressed protein was soluble and functional in an assay for PPO activity. We also expressed the red clover PPO cDNAs under the control of a constitutive promoter in alfalfa (Medicago sativa). The expressed red clover PPO proteins were active in alfalfa extracts as evidenced by o-diphenol-dependant extract browning and quantitative assays of PPO activity. Proteolysis in leaf extracts of alfalfa expressing red clover PPO1 was dramatically reduced in the presence of an o-diphenol compared to controls. Transgenic alfalfa expressing red clover PPO should prove an excellent model system to further characterize the red clover PPO enzymes and PPO-mediated inhibition of postharvest proteolysis in forage plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号