首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abundance and biomass of the large heterotrophic dinoflagellateNoctiluca scintillans, together with the changes in its potentialprey items, were monitored in the Seto Inland Sea, Japan, duringsummer 1997 (17 July-11 August). Growth and grazing rates ofNscintillans fed natural plankton populations were also measuredeight and seven times, respectively, during the survey period.The abundance and biomass of N scintillans averaged over thewater column (19 m) were in the range 1–345 cells 1–1(temporalaverage = 93 cell1–1) and 0.1–49.6 µg C l–1(temporalaverage = 13.8 µg C l–1; three times higher thanthat of calanoid copepods during the same period). Noctilucascintillans populations followed the changes in phytoplankton:N.scintillans biomass was increasing during the period of diatomblooms and was at a plateau or decreasing during periods oflow chlorophyll a. The growth rates of N.scintillans (µ)were also consistent with the wax and wane of the N.scintillanspopulation: N.scintillans showed highest growth rates duringdiatom blooms. A simple relationship between µ and chlorophylla concentration was established, and the production of N.scintillanswas estimated using this relationship and the measured biomass.The estimated production averaged over the water column wasin the range >0.1–5.2 µg C l–1 day–1(temporalaverage = 1.4 µg C l–1 day–1; 64% of the productionof calanoid copepods during the same period). Diatom clearancerates by N.scintillans were in the range 0.10–0.35 mlcell–1 day–1, and the phytoplankton population clearanceby N.scintillans was >12% day–1. Thus, although thefeeding pressure of N.scintillans on phytoplankton standingstock was low, N.scintillans was an important member of themesozooplank-ton in terms of biomass and production in the SetoInland Sea during summer.  相似文献   

2.
Ammonia excreted by mixed zooplankton populations over an annual(1972–1973) cycle in Narragansett Bay varied from 0.04to 3.21 µg at NH3-N dry wt–1 day–1, exclusiveof two exceptional rates measured one year apart: 11.74 and18.39 µg at NH3-N mg dry wt–1 day–1. Grossphytoplankton production integrated over the year (1972–1973)averaged 151 mg C m–3 day–1 for an 8 m water column;peaks of 332 and 905 mg C m–3 day–1 occurred duringthe winter-spring and summer blooms, respectively. Excretedammonia, integrated seasonally and annually, contributed only0.2% and 4.9% of the nitrogen required for observed gross productionduring the winter-spring and summer blooms, respectively, and4.4% annually. However, excreted ammonia may be an importantsource of the nitrogen required by Skeletonema costatum, thedominant diatom in Narragansett Bay, during the post-bloom periodwhen 186% of the nitrogen required for its net production wasmet by ammonia excretion. A combination of zooplankton ammoniaexcretion and benthic ammonia flux contributed 22% of the nitrogenrequired for the annual gross production (440 g C m–2)while 51% of the nitrogen required for the net production ofSkeletonema was accounted for by regenerated nitrogen. 1This research was supported by NSF grant GA 31319X awardedto Dr.T.J.Smayda.  相似文献   

3.
Seventeen size-fractionation experiments were carried out duringthe summer of 1979 to compare biomass and productivity in the< 10, <8 and <5 µm size fractions with that ofthe total phytoplankton community in surface waters of NarragansettBay. Flagellates and non-motile ultra-plankton passing 8 µmpolycarbonate filters dominated early summer phytoplankton populations,while diatoms and dinoflagellates retained by 10 µm nylonnetting dominated during the late summer. A significant numberof small diatoms and dinoflagellates were found in the 10–8µm size fraction. The > 10 µm size fraction accountedfor 50% of the chlorophyll a standing crop and 38% of surfaceproduction. The <8 µm fraction accounted for 39 and18% of the surface biomass and production. Production by the< 8 µm fraction exceeded half of the total communityproduction only during a mid-summer bloom of microflagellates.Mean assimilation numbers and calculated carbon doubling ratesin the <8 µm (2.8 g C g Chl a–1 h–1; 0.9day–1)and<5 µm(1.7 g C g Chl a–1h–1; 0.5day–1)size fractions were consistently lower than those of the totalpopulation (4.8 g C g Chl a–1 h–1; 1.3 day–1)and the <10 µm size fraction (5.8 g C g Chl a–1h–1; 1.4 day –1). The results indicate that smalldiatoms and dinoflagellates in fractionated phytoplankton populationscan influence productivity out of proportion to their numbersor biomass. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia.  相似文献   

4.
The growth of heterotrophic nanoflagellates (HNF) in mesotrophicLake Constance was measured in situ during a 13 month period.Experiments were conducted with 10 µm pre-filtered lakewater incubated in diffusion chambers at 3 m water depth atthe sampling location for 24 h. Growth rates were calculatedfrom changes in cell numbers occurring during the period ofincubation. Growth rates of all dominant taxa showed pronouncedseasonal variation (–0.13 to 1.76 day–1 and weregenerally highest in summer at high water temperatures. In situgrowth rates were well below maximum growth rates known forthe respective and similar species from laboratory experiments.While water temperature was a key parameter positively relatedto the growth of all HNF species, the effect of various potentialfood items was taxon specific and less clear. Bacterial abundancewas equally important as temperature for growth in the smallbactenvorous Spumella sp., but was insignificant for growthrates of the larger omnivorous Kathablepharis sp. In Spuniellasp., 84% of the observed seasonal variation of its growth ratecould be explained by temperature and bacterial food supply.Based on these results, a multiple linear regression equationwith temperature and bacterial concentration as dependent variableswas calculated for the growth rate of Spumella. Taxon-specificproduction rates were derived from growth rates and averagebiomass of these two species, and compared to total HNF productionestimated from previously measured community growth rates andbiomass in Lake Constance. Production peaks of Spumella sp.and Kathablepharis sp. alternated seasonally. Total HINF productionranged from –0.01 to 10 mg C m–3 day–1. Theaverage seasonal production varied between 1.4 and 33 mg C m–3day–1 over 6 consecutive years. These small protozoa thuscontribute a substantial amount to total zooplankton productionin Lake Constance.  相似文献   

5.
The factors controlling pelagic primary and bacterial productionof a humic, boreal lake in winter were investigated, combininglaboratory and field experiments where some of the predictedconsequences of the climate change, i.e.the increased load ofphosphate-phosphorus and dissolved organic matter (DOM), weresimulated. In situ incubations were performed in eight acrylictubes lowered underneath the ice cover for 1–4 months.In the lake, production of phytoplankton (0.03–0.33 µgC l–1 day–1) was lower than that of bacteria (0.2–2.3µg C l–1 day–1) from the end of January tomid-April. Later in spring, the light conditions improved dueto the disappearance of snow and finally ice itself, and primaryproduction was revived. The importance of light as the factorcontrolling primary production in winter was confirmed in laboratoryexperiments where additions of phosphorus and DOM did not enhancethe primary production. These same enrichments resulted in highergrowth rates and production of bacteria. However, bacterioplanktonwas simultaneously controlled by heterotrophic flagellates,as in the laboratory experiments the exclusion of flagellatesalways resulted in higher yields of bacteria of increased cellsize. There was also some evidence that the quality of substratesis of importance for microbial activities. The importance oftemperature was highlighted with the significant correlation(r2 = 0.59) between bacterial production and temperature withinthe range 0.6–2.1C. Thus, on the boreal zone the possiblewarming of climate may lead to enhanced activities in winter,but under unchanged light conditions no effects on primary productionwill be expected.  相似文献   

6.
The impact of grazing by natural assemblages of microzooplanktonwas estimated in an upwelling area (Concepción, Chile)during the non-upwelling season in 2003 and 2004. Seawater dilutionexperiments using chlorophyll a (Chl a) as a tracer were usedto estimate daily rates of phytoplankton growth and microzooplanktongrazing. Initial Chl a concentrations ranged from 0.4 to 1.4mg Chl a m–3 and phytoplankton prey biomass and abundancewere numerically dominated by components <20 µm. Phytoplanktongrowth and microzooplankton grazing rates were 0.19–0.25day–1 and 0.26–0.52 day –1, respectively.These results suggest that microzooplankton exert a significantremoval of primary production (>100%) during the non-upwellingperiod.  相似文献   

7.
The fecundity and somatic growth rates of Calanus agulhensisand Calanoides carinatus, the dominant large calanoid copepodsin the southern Benguela upwelling system, as well as the fecundityof several other common copepods, were measured between Septemberand March of 1993/94 and 1994/95. Mean egg production of mostcopepods was low at >30 eggs female-1 day-1 {Calanoides carinatus23.7, Calanus agulhensis 19.0, Neocalanus tonsus 16.1 and Rhincalanusnasutus 26.1), whereas the mean fecundity of Centropages brachiatuswas significantly greater (83.6 eggs female–1 day-1).This study also presents the first comprehensive field estimatesof the fecundity of Nanno-calanus minor (mean: 26.1 eggs female–1day–1, range: 0.0–96.2 eggs female–1 day–1)and of somatic growth of N6 and all copepodite stages of Calanoidescarinatus (decreasing from 0.58 day–1 for N6 to 0.04 day–1for C5). Somatic growth rates of Calanus agulhensis also declinedwith age: from 0.57 day1 for N6 to 0.09 day1 for C5. Data ongrowth rates were used to assess the relative importance offood [as measured by total chlorophyll (Chi) a concentration],phytoplankton cell size (proportion of cells >10 µm)and temperature to the growth of copepods. Multiple regressionresults suggested that fecundity and somatic growth rates werepositively related to both Chi a concentration and phytoplanktoncell size, but not to temperature. Although it was not possibleto separate the effects of Chi a concentration and phytoplanktoncell size, data from previous laboratory experiments suggestthat copepod growth is not limited by small cells per se, butby the low Chi a concentrations that are associated with theseparticles in the field. Despite growth not being directly relatedto temperature, a dome-shaped relationship was evident in somespecies, with slower growth rates at cool (<13°C) andwarm (>18°C) temperatures. The shape of this relationshipmirrors that of Chi a versus temperature, where poor Chi a concentrationsare associated with cool and warm temperatures. It is concludedthat the effect of food limitation on growth of copepods outweighsthat of temperature in the southern Benguela region. Sourcesof variability in relationships between growth and Chi a concentrationare discussed.  相似文献   

8.
Carbon (C) fixation and nitrogen (N) assimilation rates havebeen estimated from 14C and 15N techniques for a 12 month periodin a Scottish sea loch. The maximum rate of nitrogen assimilated(29.92 mmol N m–2 day–1) was in April at the mostseaward station; similar high rates were experienced duringMay at the other stations. Carbon fixation rates were maximal(488–4047 mg C m–2day–1) at the time of highphytoplankton biomass (maximum 8.3 mg m–3 chlorophylla) during May, whilst nitrate concentrations remained >0.7µ.mol l–1. C:N assimilation ratios suggest nitrogenlimitation only during the peak of the spring bloom, althoughat times nitrogen (nitrate and ammonium) concentration fellto 0.2 µmol l–1 in the following months. The verticalstability of the water column, influenced by tidal and riverineflushing, varied along the axis of the loch, resulting in markeddifferences between sampling stations. Although ammonium waspreferentially assimilated by phytoplankton, >50% of productionwas supported by nitrate uptake and only during the summer monthswas the assimilation of ammonium quantitatively important.  相似文献   

9.
Ephyra larvae and small medusae (1.7–95 mm diameter, 0.01–350mg ash-free dry wt, AFDW) of the scyphozoan jellyfish Aureliaaurita were used in predation experiments with phytoplankton(the flagellate Isochrysis galbana, 4 µm diameter, {smalltilde}6 x 10–6 µg AFDW cell–1), ciliates (theoligotrich Strombidium sulcatum, 28 µm diameter, {smalltilde}2 x 10–3 µg AFDW), rotifers (Synchaeta sp.,0.5 µg AFDW individual–1) and mixed zooplankton(mainly copepods and cladocerans, 2.1–3.1 µg AFDWindividual–1). Phytoplankton in natural concentrations(50–200 µg C I–1) were not utilized by largemedusae (44–95 mm diameter). Ciliates in concentrationsfrom 0.5 to 50 individuals ml"1 were consumed by ephyra larvaeand small medusae (3–14 mm diameter) at a maximum predationrate of 171 prey day–1, corresponding to a daily rationof 0.42%. The rotifer Synchaeta sp., offered in concentrationsof 100–600 prey I–1, resulted in daily rations ofephyra larvae (2–5 mm diameter) between 1 and 13%. Mixedzooplankton allowed the highest daily rations, usually in therange 5–40%. Large medusae (>45 mm diameter) consumedbetween 2000 and 3500 prey organisms day"1 in prey concentrationsexceeding 100 I–1. Predation rate and daily ration werepositively correlated with prey abundance. Seen over a broadsize spectrum, the daily ration decreased with increased medusasize. The daily rations observed in high abundance of mixedzooplankton suggest a potential ‘scope for growth’that exceeds the growth rate observed in field populations,and this, in turn, suggests that the natural populations areusually food limited. The predicted predation rate at averageprey concentrations that are characteristic of neritic environmentscannot explain the maximum growth rates observed in field populations.It is therefore suggested that exploitation of patches of preyin high abundance is an important component in the trophodynamicsof this species. 1Present address: University of Bergen, Department of MarineBiology, N-5065 Blomsterdalen, Norway  相似文献   

10.
Feeding on natural plankton populations and respiration of thesmall cyclopoid copepod Oithona similis were measured duringthe warm season in Buzzards Bay, Massachusetts, USA. AlthoughO.similis did not significantly ingest small autotrophic andheterotrophic flagellates (2–8 µn), this copepodactively fed on >10 µm particles, including autotrophic/heterotrophic(dino)flagel-lates and ciliates, with clearance rates of 0.03–0.38ml animal–1 h–1. The clearance rates increased withthe prey size. O.similis also fed on copepod nauplii (mainlycomposed of the N1 stage of Acartia tonsa with a clearance rateof 0.16 ml animal–1 h–1. Daily carbon ration fromthe combination of these food items averaged 148 ng C animal–1day–1 (41% of body C day–1), with ciliates and heterotrophicdino-flagellates being the main food source ({small tilde}69%of total carbon ration). Respiration rates were 020–0.23µl O2 animal–1 day–1. Assuming a respiratoryquotient of 0.8 and digestion efficiency of 0.7, the carbonrequirement for respiration was calculated to be 125–143ng C animal–1 day–1, close to the daily carbon rationestimated above. We conclude that predation on ciliates andheterotrophic dinoflagellates was important for O.similis tosustain its population in our study area during the warm season.  相似文献   

11.
Microzooplankton grazing and community structure were investigatedin the austral summer of 1995 during a Southern Ocean Drogueand Ocean Flux Study (SODOFS) at the ice-edge zone of the LazarevSea. Grazing was estimated at the surface chlorophyll maximum(5–10 m) by employing the sequential dilution technique.Chlorophyll a concentrations were dominated by chainformingmicrophytoplankton (>20 µm) of the genera Chaetocerosand Nitzschia. Microzooplankton were numerically dominated byaloricate ciliates and dinoflagellates (Protoperidinium sp.,Amphisoleta sp. and Gymnodinium sp.). Instantaneous growth ratesof nanophytoplankton (<20 µm) varied between 0.019and 0.080 day–1, equivalent to between 0.03 and 0.12 chlorophylldoublings day–1. Instantaneous grazing rates of microzooplanktonon nanophytoplankton varied from 0.012 to 0.052 day–1.This corresponds to a nanophytoplankton daily loss of between1.3 and 7.0% (mean = 3.76%) of the initial standing stock, andbetween 45 and 97% (mean = 70.37%) of the daily potential production.Growth rates of microphytoplankton (>20 µm) were lower,varying between 0.011 and 0.070 day–1, equivalent to 0.015–0.097chlorophyll doublings day–1. At only three of the 10 stationsdid grazing by microzooplankton result in a decrease in microphytoplanktonconcentration. At these stations instantaneous grazing ratesof microzooplankton on microphytoplankton ranged between 0.009and 0.015 day–1, equivalent to a daily loss of <1.56%(mean = 1.11%) of initial standing stock and <40% (mean =28.55%) of the potential production. Time series grazing experimentsconducted at 6 h intervals did not show any diel patterns ofgrazing by microzooplankton. Our data show that microzooplanktongrazing at the ice edge were not sufficient to prevent chlorophylla accumulation in regions dominated by rnicrophytoplankton.Here, the major biological routes for the uptake of carbon thereforeappear to be grazing by metazoans or the sedimentation of phytoplanktoncells. Under these conditions, the biological pump will be relativelyefficient in the drawdown of atmospheric CO2.  相似文献   

12.
Primary production, and bacterial production as measured byincorporation of [3H-methyl]thymidineinto ice cold TCA insolublematerial were investigated during 1984 in Lake Kvernavatnet,west Norway. Primary production averaged 222 mg C m–2day–1 and bacterial production averaged 163 mg C m–2day–1. The bacterial production in the euphotic pelagiczonecontributed -60% of the total pelagic bacterial production.The zooplankton was dominated byDaphnia longispina. From growthexperiments with animals fed only natural food in coarse filteredlake water, the population daily growth increments were calculated.The average production of D.longispina was 151 mg C m–2day–1 during the period investigated. The estimated primaryproduction was too low to sustain both the bacterial productionand the zooplankton food requirements. These results imply thatthe carbon cycle of the lake is dependent on the supply of allochtonousmaterial, or that the current methods for measuring productionrates in aquatic environments are systematical erratic.  相似文献   

13.
The response of phytoplankton to variations in the light regimewas studied during the VULCAN and ACDA cruises in the Antarctic.Unenriched batch cultures of 12–19 days' duration reachedchl concentrations of 10–50 µg–1 and exhibitedexponential growth rates, with the maximal rate being 0.41 doubl,day–1. Ice edge algae exhibited maximum growth rates atphoton flux densities (PFD) of 30–100 µE m–2S–1and the growth rate was reduced by about 30% at 500–1000µE m–2S–1 The chl/C ratio ranged between 0.004and 0.018, with the lowest ratios at PFDs above 500 µEm–2S–1 chl/C ratios were also below maximum at PFDsbelow 40–50 µE m–2S–1 The C:N:P ratioswere close to the Redfield ratios; the Si/C ratio averaged 0.16(atoms), and the ATP/C ratio averaged from 0.0024 to 0.0050in different culture senes. When thawed after having been frozenfor 10 days, shade-adapted cultures were in a much better conditionthan sun-adapted ones. P versus I data showed that the maximumassimilation number varied from 0.75 to 4.4 µg C (µgchl)–1h–1. It varied inversely with the chl/C ratio;therefore the maximum carbon turnover rate varied little betweensamples (0.024/0.035 h–1). Low biomass communities exhibitedrelatively high values for (the initial slope of P versus Icurves), low values for 1sat (160–330 µE m–2S–1),and they were susceptible to photoinhibition. In contrast, communitiesdominated by Odontella weissflogii exhibited low values for, a high value for Isat (560 µE m–2S–1 andthey tolerated high PFDs. The photo-adaptational status of thephytoplankton in natural water samples is discussed relativeto the profile of water column stability and mixing processes.  相似文献   

14.
Centropages abdominalis is a neritic, omnivorous, temporallyabundant copepod present throughout the subarctic Pacific andits marginal seas. The two main objectives of this study wereto determine how temperature influences the development of C.abdominalis and whether growth rates of in situ populationsmay be limited by available food. At 6.9°C, median developmenttime from eggs laid to 50% adults was 42 days and the averageweight-specific somatic growth rate was 0.17 day–1. At4.6°C, median development time to adult was 59 days (projected)and growth rate averaged 0.08 day–1, suggesting that 4.6°Cmay be approaching the lower temperature for development andgrowth in this species. The functional relationship betweendevelopment time and temperature was established over the temperaturerange in which this species occurs. The in situ adult growthrates between 10 and 13°C averaged 0.14 day–1 andwere generally lower than the laboratory-reared juvenile growthrates, which may indicate that adult C. abdominalis are foodlimited in the field during summer and autumn.  相似文献   

15.
Feeding and metabolism of the siphonophore Sphaeronectes gracilis   总被引:1,自引:0,他引:1  
The in situ predation rate of the siphonophore Sphaeronectesgracilis was estimated from gut content analysis of hand-collectedsiphonophores and from laboratory data on digestion rates ofprey organisms. At daytime prey densities of 0.25 copepods 1–1,S. gracilis was estimated to consume 8.1 – 15.4 prey day–1siphonophore–1. From data on abundances of siphonophoresand copepods, S. gracilis was estimated to consume 2–4%of the copepods daily. In laboratory experiments, ingestionrates averaged 13.8 prey day–1 siphonophore–1 atprey densities of 5 copepods 1–1 and 36.9 at 20 copeods1–1. This was equivalent to a specific ingestion rate(for both carbon and nitrogen) of –17% day–1 and45% day–1, respectively, while specific ingestion in situwas only 2% day–1. Ammonium excretion averaged 0.095 µg-atsiphonophore–1 day–1 at 5 prey 1–1, and 0.162at 20 prey 1–1. The specific respiration (carbon) andspecific excretion (nitrogen as ammonium) were calculated tobe 3% day–1 at the lower experimental food level, and5% day–1 at the higher food level. 1Contribution from the Catalina Marine Science Center No. 66. 2Present address: Dept. of Biology, University of Victoria,Victoria, B.C., Canada V8W 2Y2.  相似文献   

16.
In a mesocosm experiment providing a gradient of semi-continuousaddition of mineral nutrient, production rates and mortalityof phytoplankton were estimated. Heterotrophic bacterial biomassand production rates and their responses to the mineral nutrientsadditions were also estimated. The purpose of the experimentwas to establish responses of the major biological factors asa function of nutrient amendments. Initial primary productionwas 0.47 µg C L–1 day–1. In the most fertilizedmesocosm, phytoplankton biomass increased at a specific rateof 0.4 day–1 during the first week of the experiment,and on day 9 primary production reached a peak at 1027 µgC L–1 day–1. The responses in the other fertilizedmesocosms were intermediate, and in an unfertilized controlthe variables measured stayed almost constant throughout theexperiment. The termination of the blooms in the fertilizedmesocosms was a consequence of nitrogen limitation, and nitrogenlimitation subsequently induced storage of intracellular organicmaterial in the phytoplankton. In the mesocosm receiving thehighest daily dose of nutrients, strong post-bloom nutrientlimitation resulted in high phytoplankton mortality, and releaseof organic material from the algae supported the gradient’shighest heterotrophic bacterial production.  相似文献   

17.
Grazing and ingestion rates of laboratory-born Thalia democraticaaggregates and Dolioletta gegenbauri gonozooids, phorozooidsand oozooids were determined while fed Isochrysis galbana (4–5µm diameter) alone or in combination with Peridinium trochoideum(16–18 µm diameter) at concentrations of 0.15–0.70mm3 x 1–1. Grazing rates (ml x zooid–1 x 24 h –1)ranged from 10 to 355, and at zooid weights greater than 5 µgcarbon were in order oozooid > gonozooid > aggregate.Grazing rates increased exponentially with increasing zooidweight. Weight-specific grazing rates (ml x µgC–1x 24 h–1) were independent of the four-fold initial foodconcentration. Mean weight-specific grazing rates increasedlinearly with increasing zooid weight for the aggregates andoozooids, but gonozooid mean rates were independent of zooidweight. Aggregate and gonozooid ingestion rates (106 µm3x zooid–1 x 24 h–1) ranged from 4 to 134 while oozooidrates ranged from 3 to 67. All ingestion rates were independentof the initial food concentration but increased linearly withincreasing zooid weight at similar rates. All mean weight-specificingestion rates (ml x µgC–1 x 24 h–1) wereindependent of zooid weight. The mean aggregate daily ration(µgC ingested x µg body C–1) was 59% and themean doliolid ration was 132%. Field studies indicate that normalconcentrations of D. gegenbauri in the Georgia Bight clear theirresident water volume (1 m3) in about 4 months, but that highlyconcentrated, swarm populations which occur along thermohalinefronts clear their resident water volume in less than 1 day. 1Current address: MacLaren Plansearch Ltd., P.O.Box 13250, sta.A.,St.John's, Nfld. A1B 4A5  相似文献   

18.
The distinct patterns of stratification in the North Channeland stratified region of the western Irish Sea influence theseasonal abundance of phytoplankton. The 3–4 month productionseason in the stratified region was characterized by productionand biomass peaks in the spring (up to 2378 mg C m2 day–1and 178.4 mg chlorophyll m–2) and autumn (up to 1280 mgC m–2 day–1 and 101.9 mg chlorophyll m–2).Phytoplankton in the North Channel exhibited a short, late productionseason with a single summer (June/July) peak in production (4483mg Cm–2 day–1) and biomass (–160.6 mg chlorophyllm–2). These differences have little influence on copepoddynamics. Both regions supported recurrent annual cycles ofcopepod abundance with similar seasonal maxima (182.8–241.8103ind. m–2) and dominant species (Pseudocalanus elongatusand Acartia clausi). Specific rates of population increase inthe spring were 0.071 and 0.048 day1 for the North Channel andstratified region, respectively. Increased copepod abundancein the stratified region coincided with the spring bloom, andwas significantly correlated with chlorophyll standing stock.Increased copepod abundance preceded the summer production peakin the North Channel. This increase was not correlated withchlorophyll standing crop, suggesting that a food resource otherthan phytoplankton may be responsible for the onset of copepodproduction prior to the spring bloom. Hetero-trophic microplanktonas an alternative food source, and advection of copepods fromthe stratified region, are proposed as possible explanationsfor copepod abundance increasing in advance of the summer peakin primary production.  相似文献   

19.
Spatial and seasonal egg production rates (Er) and egg hatchingsuccess in the copepods Calanus finmarchicus and Calanus helgolandicuswere measured in the North Sea from March to September. Foodavailability was monitored by chlorophyll and protist concentrationsand three size fractions of seston fatty acids. Seasonal andspatial distribution and production differed between the species.Calanus finmarchicus was found only offshore of the 50-m isobath,with decreasing Er (37–28 eggs female–1 day–1)from March to July. Calanus helgolandicus had two abundancepeaks, in spring and autumn, with a low in May during whichtime the highest Er were observed (38 eggs female–1 day–1).At other times, Er in C. helgolandicus remained lower than inC. finmarchicus (  相似文献   

20.
The in situ growth of the dominating pelagic organisms at severaltrophic levels was investigated during a spring bloom characterizedby well-mixed cold water. The study includes primary productionand the carbon flow through the nano-, micro- and mesozooplanktonpopulations based on population dynamics and specific growthrates. The phytoplankton biomass and production were totallydominated by small algae <20 µm. of which {small tilde}5%were <3µm. potentially a food source for the nano-and microzooplankton. The mean carbon-specific primary productionwas 0.15 day–1 and was regulated solely by light. Themean volume-based specific growth rate of bacterioplankton wasmodest. 0.1 day–1. and probably controlled by the lowtemperature. The volume-based specific growth rates of heterotrophicnanoflagellates. ciliates. rotifers and copepods were 0.35.0.13. 0.16 and 0.03 day–1, respectively. The observedgrowth of the heterotrophic plankton was generally not foodlimited, but was controlled by temperature. The stable temperatureduring the experiment therefore allows a cross-taxonomic comparisonof specific growth rates. The b exponent in the allometric relationship(G = aVth) between volume-specific growth rate (G) and individualbody size (V) was –0.15 ± 0.03 for all filtratingzooplankton. indicating an in situ scaling not far from thephysiological principles onginally demonstrated for laboratorypopulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号