首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have demonstrated that interferon-alpha2-recombinant (IFNalpha) at growth inhibitory concentrations enhances the expression and signalling activity of the epidermal growth factor receptor (EGF-R) in human epidermoid carcinoma KB cells. Here we report that KB cells exposed to IFNalpha underwent apoptotic cell death and this effect was antagonized by EGF. We have also found that IFNalpha enhanced the expression of heat shock proteins (HSP) HSP-70, HSP-90 and HSP-27 and activated the NH2-terminal Jun kinase-1 (JNK-1) and p38 mitogen activated protein kinase, the target enzymes of a stress-dependent intracellular transduction pathway. Moreover, the overexpression of the wild-type JNK-1, obtained through plasmid transfection of KB cells, induced apoptosis which was potentiated by the exposure of wild-type JNK-1 (JNK-1wt)-transfected cells to IFNalpha. All these effects were neutralized by the addition of EGF to parental and JNK-1wt-transfected KB cells exposed to IFNalpha. In conclusion, EGF has a protective effect on KB cells from apoptosis while antagonizing a stress response elicited by IFNalpha and targeted on the stress pathway terminal kinases.  相似文献   

2.
The mechanisms of tumor cell resistance to interferon-alpha (IFNalpha) are at present mostly unsolved. We have previously demonstrated that IFNalpha induces apoptosis on epidermoid cancer cells and EGF antagonizes this effect. We have also found that IFNalpha-induced apoptosis depends upon activation of the NH(2)-terminal Jun kinase-1 (Jnk-1) and p(38) mitogen-activated protein kinase, and that these effects are also antagonized by EGF. At the same time, IFNalpha increases the expression and function of the epidermal growth factor receptor (EGF-R). Here we report that the apoptosis induced by IFNalpha occurs together with activation of caspases 3, 6 and 8 and that EGF also antagonizes this effect. On the basis of these results, we have hypothesized that the increased EGF-R expression and function could represent an inducible survival response that might protect tumor cells from apoptosis caused by IFNalpha via extracellular signal regulated kinase 1 and 2 (Erk-1/2) cascades. We have found an increased activity of Ras and Raf-1 in IFNalpha-treated cells. Moreover, IFNalpha induces a 50% increase of the phosphorylated isoforms and enzymatic activity of Erk-1/2. We have also demonstrated that the inhibition of Ras activity induced by the transfection of the dominant negative Ras plasmid RASN17 and the inhibition of Mek-1 with PD098059 strongly potentiates the apoptosis induced by IFNalpha. Moreover, the selective inhibition of this pathway abrogates the counteracting effect of EGF on the IFNalpha-induced apoptosis. All these findings suggest that epidermoid tumor cells counteract the IFNalpha-induced apoptosis through a survival pathway that involves the hyperactivation of the EGF-dependent Ras->Erk signalling. The selective targeting of this pathway appears to be a promising approach in order to enhance the antitumor activity of IFNalpha.  相似文献   

3.
Interferon-alpha (IFNalpha) can induce apoptosis, a process regulated by a complex network of cell factors. Among these, eukaryotic initiation factor-5A (eIF-5A) is peculiar because its activity is modulated by the post-translational formation of the amino acid hypusine. Here we report the effects of IFNalpha and epidermal growth factor (EGF) on apoptosis and eIF-5A activity in human epidermoid oropharyngeal KB and lung H1355 cancer cells. We found that 48-h exposure to 1000 and 2000 IU/ml IFNalpha induced about 50% growth inhibition and apoptosis in H1355 and KB cells, respectively, and the addition of EGF completely antagonized this effect. When IFNalpha induced apoptosis, a hyperactivation of MEK-1 and ERK signalling and a decrease of the hypusine-containing form and, thus, of eIF-5A activity were recorded. The latter effect was again antagonized by the addition of EGF to IFNalpha-pretreated cells, probably through the activation of the EGF-->ERK-dependent pathway, since the addition of the specific MEK-1 inhibitor PD098059 abrogated the recovery of intracellular hypusine content induced by EGF in IFNalpha-pretreated cancer cells. Subsequently, we evaluated if the hypusine synthesis inhibitor (and eIF-5A inactivator) N1-guanyl-1,7-diaminoheptane (GC7) synergized with IFNalpha in the induction of cell growth inhibition and apoptosis. The analysis of the isobologram of IFNalpha and GC7 demonstrated a strong synergism between the two drugs in inducing cell growth inhibition. We also found that GC7 and IFNalpha had a synergistic effect on apoptosis. These data suggest that the apoptosis induced by IFNalpha could be regulated by eIF-5A that, therefore, could represent a useful target for the potentiation of IFNalpha antitumor activity.  相似文献   

4.
Role of thymidine phosphorylase in Fas-induced apoptosis   总被引:2,自引:0,他引:2  
Mori S  Takao S  Ikeda R  Noma H  Mataki Y  Wang X  Akiyama S  Aiko T 《Human cell》2001,14(4):323-330
Thymidine phosphorylase (TP) has chemotactic and angiogenic activity in vitro, and it promotes tumor growth and inhibits apoptosis in vivo. It plays a key role in the invasiveness and metastasis of TP-expressing solid tumors. KB/TP cells transfected with a TP cDNA have been shown to be resistant to hypoxia-induced apoptosis, suggesting that TP has effects on tumor growth and cell death independent of its effects on angiogenesis. However, the mechanisms of cell death inhibition by TP are unknown. In the present study, we demonstrate that caspase-8 is cleaved in control transfectant KB cells early on during Fas-induced apoptosis. Caspase-8 activation leads to the loss of mitochondrial membrane potential, followed by the release of cytochrome c, the activation of caspase-3, and apoptosis. In contrast, Fas-induced caspase-8 cleavage is inhibited in KB/TP cells, which lead to inhibition of the downstream apoptotic cascade and inhibition of apoptosis. These findings indicate that TP plays an important role in intracellular apoptotic signal transduction in the Fas-induced apoptotic pathway. Therefore, inhibition of TP may suppress the progression of TP-overexpressing solid tumors by inducing apoptosis.  相似文献   

5.
Thymidine phosphorylase (TP) has chemotactic and angiogenic activities resulting from its enzymatic activity in vitro, and it also promotes tumor growth and inhibits apoptosis in vivo. Recently, we have reported that TP plays an important role in Fas-induced apoptosis. Caspase-8 cleavage, subsequent cytochrome c release, and caspase-3 cleavage were prevented in KB cells transfected with a TP cDNA (KB/TP cells). In this study, treatment with thymidine phosphorylase inhibitor (TPI) or thymidine did not affect cell survival of KB/TP cells during Fas-induced apoptosis. Moreover, treatment with thymine or 2-deoxy-D-ribose (degradation products of thymidine generated by TP) also did not affect cell survival of control transfectant (KB/CV) cells during Fas-induced apoptosis. These findings indicate that TP suppresses Fas-induced apoptotic signal transduction independent of its enzymatic activity.  相似文献   

6.
MicroRNA (miRNA) is a small noncoding RNA molecule, 19–25 nucleotides in length, which regulates several pathways including cell development, cell proliferation, carcinogenesis, apoptosis, etc. In this study, the over-expression of microRNA-205 (miR-205) increased the number of apoptotic cells by at least 4 times compared to the control. In addition, over-expressed miRNA in KB oral cancer cells triggered apoptosis via the caspase cascade, including the cleavage of caspase-9, caspase-7, caspase-3, and PARP. Flow cytometry showed that apoptotic cell death was increased significantly by 35.33 % in KB oral cancer cells with over-expressed miR-205 compared to the control. The microarray data showed that axis inhibitor protein 2 (Axin2) was down-regulated in KB oral cancer cells transfected with miR-205. In addition, Axin2 was down-regulated by approximately 50 % by over-expressed miR-205 at both the mRNA and protein levels. Interestingly, Axin2 was up-regulated in KB oral cancer compared to human normal oral keratinocytes. Furthermore, the cell cytotoxicity and apoptotic population of KB oral cancer cells were increased significantly after Axin2 siRNA transfection. These results suggest that Axin2 is might be as potential oncogene in KB oral cancer cells. The luciferase assay showed that over-expressed miR-205 in KB oral cancer cells suppressed AXIN2 expression through an interaction with its own binding site at AXIN2 3′UTR (64–92). These results suggest that miR-205 is a novel anti-oncogenic miRNA in KB oral cancer cells, and may have potential applications in oral cancer therapy.  相似文献   

7.
Apoptosis, or programmed cell death, occurs because of the activation of a protease cascade amplification circuit that includes the critical effector caspase-3. Previously, we identified the widely expressed actin modulatory protein gelsolin as a prominent substrate of caspase-3 and demonstrated that the N-terminal gelsolin cleavage product promotes apoptosis. Here we show that phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3, 4-bisphosphate in pure micelles or mixed vesicles prevent caspase-3 cleavage of gelsolin. Moreover, phosphatidylinositol 4, 5-bisphosphate-gelsolin strongly inhibits caspase-3 and -9 activity through the formation of a stable phosphatidylinositol 4, 5-bisphosphate-gelsolin-caspase complex. In addition, phosphatidylinositol 4,5-bisphosphate-gelsolin prevents apoptotic progression mediated by caspase-3 in a cell-free system, and phosphatidylinositol 4,5-bisphosphate-gelsolin-caspase-9 and phosphatidylinositol 4,5-bisphosphate-gelsolin-caspase-3 complexes form in mouse embryonic fibroblasts during apoptosis induction when stimulated with fibronectin, to delay cell death. The results suggest that gelsolin can act as both an effector and an inhibitor of caspase-3, the latter in concert with phosphatidylinositol 4, 5-bisphosphate, and other membrane phospholipids to regulate the onset and progression of apoptosis.  相似文献   

8.
Pierisin-1, a 98-kDa protein that induces apoptosis in mammalian cell lines, is capable of being incorporated into cells where it ADP-ribosylates guanine residues in DNA. To investigate the apoptotic pathway induced by this unique protein, the bcl-2 gene was transfected into HeLa cells. Cy2-fluorescent pierisin-1 was incorporated into the resultant cells expressing Bcl-2 protein and ADP-ribosylated dG was detected to almost the same extent as in parent cells. However, bcl-2-transfected HeLa cells did not display apoptotic morphological changes, PARP cleavage, and DNA fragmentation, indicating acquisition of resistance. In parent HeLa cells, activation of caspase-9 and release of cytochrome c were observed after 8h treatment with 0.5ng/ml pierisin-1. Caspase substrate assays revealed further cleavage of Ac-DEVD-pNA, Ac-VDVAD-pNA, and Ac-VEID-pNA, suggesting activation of caspase-2, -3, and -6 in pierisin-1-treated HeLa cells. The caspase-3 inhibitor, Ac-DEVD-CHO, was also found to inhibit apoptosis. In contrast, this caspase activation was not observed in bcl-2-transfected HeLa cells. Our results thus indicate that pierisin-1-induced apoptosis is mediated primarily via a mitochondrial pathway involving Bcl-2 and caspases.  相似文献   

9.
Activation of initiator and effector caspases and Bid cleavage are apoptotic characteristic features. They are associated with cell alkalization or acidification in some models of apoptosis. The alteration of culture conditions such as extracellular pH value and the overexpression of Bid plasmids may induce cell apoptosis. In present report, we used fluorescence confocal imaging and fluorescence resonance energy transfer (FRET) techniques based on green fluorescent proteins (GFPs) to monitor the spatio-temporal dynamics of Bid translocation and caspase-3 activation in real time in living human lung adenocarcinoma (ASTC-a-1) cells under neutral (pH 7.4) and alkaline (pH 8.0) conditions. The cells transfected with Bid-CFP plasmid did not show apoptotic characteristics for 96 hours under an atmosphere of 95% air, 5% CO(2) at pH 7.4 and 37 degrees C, implying that the overexpression of Bid-CFP plasmid does not induce cell apoptosis. However, all the cells underwent apoptosis after being placed in the alkaline culture (pH 8.0). The dynamic results in single living cell showed that the alkaline condition at pH of 8.0 induced Bid cleavage and tBid translocation to mitochondria at about 1.5 hour, and then induced the caspase-3 activation and cell apoptosis. These results show that the alkaline sondition (pH=8.0) induces cell apoptosis by activating caspase-8, which cleaves Bid to tBid, tBid translocation to mitochondria, and then activating the caspase-3 in the ASTC-a-1 cells.  相似文献   

10.
Intracellular signaling pathways that are involved in protection of vascular smooth muscle cells (VSMC) from apoptosis remain poorly understood. This study examines the effect of activators of cAMP/cGMP signaling on apoptosis in non-transfected VSMC and in VSMC transfected with c-myc (VSMC-MYC) or with its functional analogue, E1A-adenoviral protein (VSMC-E1A). Serum-deprived VSMC-E1A exhibited the highest apoptosis measured as the content of chromatin and low molecular weight DNA fragments, phosphatidylserine content in the outer surface of plasma membrane and caspase-3 activity (ten-, five-, four- and tenfold increase after 6 h of serum withdrawal, respectively). In VSMC-E1A, the addition of an activator of adenylate cyclase, forskolin, abolished chromatin cleavage, DNA laddering, caspase-3 activation and the appearance of morphologically-defined apoptotic cells triggered by 6 h of serum deprivation. In non-transfected VSMC and in VSMC-MYC, 6 h serum deprivation led to approximately six- and threefold activation of chromatin cleavage, respectively, that was also blocked by forskolin. In VSMC-E1A, inhibition of apoptosis was observed with other activators of cAMP signaling (cholera toxin, isoproterenol, adenosine, 8-Br-cAMP), whereas 6 h incubation with modulators of cGMP signaling (8-Br-cGMP, nitroprusside, atrial natriuretic peptide, L-NAME) did not affect the development of apoptotic machinery. The antiapoptotic effect of forskolin was abolished in 24 h of serum deprivation that was accompanied by normalization of intracellular cAMP content and protein kinase A (PKA) activity. Protection of VSMC-E1A from apoptosis by forskolin was blunted by PKA inhibitors (H-89 and KT5720), whereas transfection of cells with PKA catalytic subunit attenuated apoptosis triggered by serum withdrawal. The protection of VSMC-E1A by forskolin from apoptosis was insensitive to modulators of cytoskeleton assembly (cytochalasin B, colchicine). Neither acute (30 min) nor chronic (24 h) exposure of VSMC to forskolin modified basal and serum-induced phosphorylation of the MAP kinase ERK1/2. Thus, our results show that activation of cAMP signaling delays the development of apoptosis in serum-deprived VSMC at a site upstream of caspase-3 via activation of PKA and independently of cAMP-induced reorganization of the cytoskeleton network and the ERK1/2-terminated MAPK signaling cascade.  相似文献   

11.
Acute colitis is characterized by a large number of polymorphonuclear leukocytes (PMNLs) migrating across the columnar epithelium in response to inflammatory stimuli. Several of these inflammatory factors have been characterized as proapoptotic inducers for intestinal epithelial cells. Our aim was to elucidate the role of PMNL transmigration in the onset of intestinal epithelial cell apoptosis. We found that PMNL migration, in response to N-formyl-methionyl-leucyl-phenylalanine across monolayers of intestinal epithelial cells (T84), was associated with activation of caspase-2, -3, and -9 and poly(ADP-ribose) polymerase cleavage within epithelial cells. Moreover, dihydrocytochalasin B treatment of T84 cells induced apoptosis with similar characteristics. Although Fas and Fas ligand were expressed on T84 cells and PMNLs, treatment of epithelial cells with an antagonistic anti-Fas antibody failed to prevent apoptosis induced by migrating PMNLs. Owing to the F-actin reorganization accompanying PMNL transmigration, these findings indicate a direct relationship between PMNL migration and induction of apoptosis in epithelial cells. This apoptotic process appears to involve remodeling of the actin cytoskeleton of enterocytes independent of the Fas/Fas ligand pathway.  相似文献   

12.
Drug-induced interphasic apoptosis in human leukemia cells is mediated through intracellular signaling pathways, of which the most proximal (initiating) event remains unclear. Indeed, both early ceramide generation and procaspase-8 cleavage have been individually identified as the initial apoptotic signaling events which precede the mitochondrial control of the apoptotic execution phase in Type II cells. In order to evaluate whether or not procaspase-8 cleavage is requisite for initial ceramide generation and rapid interphasic apoptosis, we investigated the chronological ordering of early ceramide generation and caspase-8 cleavage induced by daunorubicin (DNR) and 1-beta-D-arabinofuranosylcytosine (Ara-C) in U937 cells. We further evaluated the impact of these two drugs on initial ceramide generation and apoptosis in wild-type Jurkat cells and Jurkat clones mutated for caspase-8 and Fas-associated death domain. We show that while both DNR and Ara-C similarly induced early ceramide generation (within 5-20 min) and interphasic apoptosis in all cell models, caspase-8 cleavage was only observed farther downstream (4.5 h) and only in DNR-treated cells. Furthermore, neither DNR or Ara-C induced caspase-8 activation. These results demonstrate that caspase-8 cleavage is not requisite for the drug-induced activation of the ceramide-mediated interphasic apoptotic pathway in human Type II leukemic cells.  相似文献   

13.
Members of the caspase family have been implicated as key mediators of apoptosis in mammalian cells. However, few of their substrates are known to have physiological significance in the apoptotic process. We focused our screening for caspase substrates on cytoskeletal proteins. We found that an actin binding protein, filamin, was cleaved from 280 kDa to 170, 150, and 120 kDa major N-terminal fragments, and 135, 120, and 110 kDa major C-terminal fragments when apoptosis was induced by etoposide in both the human monoblastic leukemia cell line U937, and the human T lymphoblastic cell line Jurkat. The cleavage of filamin was blocked by a cell permeable inhibitor of caspase-3-like protease, Ac-DEVD-cho, but not by an inhibitor of caspase-1-like protease, Ac-YVAD-cho. These results suggest that filamin is cleaved by a caspase-3-like protease. To examine whether caspase-3 cleaves filamin in vitro, we prepared a recombinant active form of caspase-3 directly using a Pichia pastoris overexpression system. When we applied recombinant active caspase-3 to the cell lysate of U937 and Jurkat cells, filamin was cleaved into the same fragments seen in apoptosis-induced cells in vivo. Platelet filamin was also cleaved directly from 280 kDa to 170, 150, and 120 kDa N-terminal fragments, and the cleavage pattern was the same as observed in apoptotic human cells in vivo. These results suggest that filamin is an in vivo substrate of caspase-3.  相似文献   

14.
Several lines of evidence support a role for protease activation during apoptosis. Herein, we investigated the involvement of several members of the CASP (cysteine aspartic acid-specific protease; CED-3- or ICE-like protease) gene family in fodrin and actin cleavage using mouse ovarian cells and HeLa cells combined with immunoblot analysis. Hormone deprivation-induced apo-ptosis in granulosa cells of mouse antral follicles incubated for 24 h was attenuated by two specific peptide inhibitors of caspases, zVAD-FMK and zDEVD-FMK (50-500 microM), confirming that these enzymes are involved in this paradigm of cell death. Proteolysis of actin was not observed in follicles incubated in vitro while fodrin was cleaved to the 120 kDa fragment that accompanies apoptosis. Fodrin, but not actin, cleavage was also detected in HeLa cells treated with various apoptotic stimuli. These findings suggest that, in contrast to recent data, proteolysis of cytoplasmic actin may not be a component of the cell death cascade. To confirm and extend these data, total cell proteins collected from mouse ovaries or non-apoptotic HeLa cells were incubated without and with recombinant caspase-1 (ICE), caspase-2 (ICH-1) or caspase-3 (CPP32). Immunoblot analysis revealed that caspase-3, but not caspase-1 nor caspase-2, cleaved fodrin to a 120 kDa fragment, wheres both caspases-1 and -3 (but not caspase-2) cleaved actin. We conclude that CASP gene family members participate in granulosa cell apoptosis during ovarian follicular atresia, and that collapse of the granulosa cell cytoskeleton may result from caspase-3-catalyzed fodrin proteolysis. However, the discrepancy in the data obtained using intact cells (actin not cleaved) versus the cell-free extract assays (actin cleaved) raises concern over previous conclusions drawn related to the role of actin cleavage in apoptosis.  相似文献   

15.
Apoptotic breakdown of cellular structures is largely mediated by caspases. One target of degradation is a proteinaceous framework of the nucleus termed the nuclear matrix. We compared the apoptotic changes of the nuclear matrix in staurosporine-treated caspase-3-deficient MCF-7 cells transfected with intact CASP-3 gene (MCF-7c3) or an empty vector (MCF-7v) as a control. Nuclear Mitotic Apparatus protein (NuMA), lamin A/C and lamin B were used as markers for internal nuclear matrix and peripheral nuclear lamina, respectively. In both cell lines, staurosporine induced rapid cytoplasmic shrinkage and partial chromatin condensation. MCF-7c3 cells formed apoptotic bodies, whereas MCF-7v cells did not. NuMA and lamins were actively cleaved in MCF-7c3 cells following caspase-3 activation, but only minimal or no cleavage was detected in MCF-7v cells. Interestingly, lamin B but not lamin A/C was relocated into cytoplasmic granules in apoptotic MCF-7v cells. Pancaspase inhibitor, z-VAD-fmk, prevented the apoptotic changes, while caspase-3 inhibitor, z-DEVD-fmk, induced lamin B granules in both cell lines. These results show that caspase-3 is involved in the cleavage of NuMA and lamins either directly or by activating other proteases. This may be essential for disintegration of the nuclear structure during apoptosis.  相似文献   

16.
In multiple myeloma, which commonly depends on interleukin 6, IL-6, survival signaling induced by this cytokine is largely mediated by activation of STAT3. Interferon alpha (IFNalpha) treatment of cell lines derived from multiple myeloma or of myeloma tumor cells ex vivo leads to apoptosis. In this study we demonstrate that IFNalpha treatment of the two myeloma cell lines, U266-1984 and U-1958, results in the decrease of STAT3 activity as demonstrated by a diminished STAT3/3 DNA-binding activity and the shift from STAT3/3 towards STAT1/1 and STAT3/1 complexes in EMSA, leading to the down-regulation of known STAT3 target genes such as Bcl-X(L), Mcl-1 and survivin. Ectopic expression of a form of STAT3, STAT3C, rescued U266-1984 cells from IFNalpha-induced apoptosis. IFNalpha promoted sustained accumulation of tyrosine phosphorylated STAT3C in the nucleus and a prolonged DNA binding of the STAT3/3 homodimers in EMSA. The shift towards a sustained STAT3 response in IFNalpha-treated STAT3C-transfected cells led to a hyper-induction of Bcl-2 and Mcl-1 proteins. Thus our data demonstrated that IFNalpha is able to interfere with IL-6 signaling by inhibiting STAT3 activity and that the abrogation of STAT3 activity accounts for the ability of IFNalpha to induce apoptosis in myeloma cells.  相似文献   

17.
Apoptotic cell death, characterized by chromatin condensation, nuclear fragmentation, cell membrane blebbing, and apoptotic body formation, is also accompanied by typical mitochondrial changes. The latter includes enhanced membrane permeability, fall in mitochondrial membrane potential (Deltapsi(m)) and release of cytochrome c into the cytosol. Gelsolin, an actin regulatory protein, has been shown to inhibit apoptosis, but when cleaved by caspase-3, a fragment that is implicated as an effector of apoptosis is generated. The mechanism by which the full-length form of gelsolin inhibits apoptosis is unclear. Here we show that the overexpression of gelsolin inhibits the loss of Deltapsi(m) and cytochrome c release from mitochondria resulting in the lack of activation of caspase-3, -8, and -9 in Jurkat cells treated with staurosporine, thapsigargin, and protoporphyrin IX. These effects were corroborated in vitro using recombinant gelsolin protein on isolated rat mitochondria stimulated with Ca(2+), atractyloside, or Bax. This protective function of gelsolin, which was not due to simple Ca(2+) sequestration, was inhibited by polyphosphoinositide binding. In addition we confirmed that gelsolin, besides its localization in the cytosol, is also present in the mitochondrial fraction of cells. Gelsolin thus acts on an early step in the apoptotic signaling at the level of mitochondria.  相似文献   

18.
Huang YC  Guh JH  Teng CM 《Life sciences》2004,75(1):35-49
Leukemias are a heterogenous group of diseases characterized by uncontrolled proliferation of abnormal blood cells of hematopoietic system. Evodiamine, a characteristic alkaloid extracted from Evodia fruits, has been reported to exhibit inhibitory effect on cell proliferation and migration in several types of cancer cells. However, there is no report elucidating the action target and anti-cancer mechanism of this potential natural compound. In this study, we have defined the anti-proliferative and apoptotic mechanisms of evodiamine in human acute leukemia CCRF-CEM cells. According to the MTT assay, the cell viability was inhibited by evodiamine in a concentration-dependent manner with an IC50 of 0.57 +/- 0.05 microM. Flow cytometry analysis showed that the apoptotic cell death proceeded by evodiamine was accompanied with a cell cycle arrest at the G2/M phase. Using Wright-Giemsa staining, we observed that evodiamine caused the cells to arrest in mitosis. It also profoundly caused an increase in polymerized tubulin levels and Bcl-2 phosphorylation on serine 70 in these cells. These data imply that the microtubular cytoskeleton appears to be one of the cellular targets in response to evodiamine. Moreover, treatment of CCRF-CEM cells with evodiamine was associated with increased levels of pro-apoptotic protein Bax, activation of caspase-3, and proteolytic cleavage of poly (ADP-ribose) polymerase, an endogenous caspase-3 substrate. Taken together, we demonstrate that evodiamine causes the mitotic arrest and a consequent apoptosis in CCRF-CEM cells through the enhancement of polymerized tubulin levels. Furthermore, several biological events including the Bcl-2 phosphorylation, Bax up-regulation and increase of caspase-3 activity could explain evodiamine-induced cell apoptosis.  相似文献   

19.
Apoptosis induction by gamma-tocotrienol in human hepatoma Hep3B cells   总被引:1,自引:0,他引:1  
We evaluated the antitumor activity of tocotrienol (T3) on human hepatoma Hep3B cells. At first, we examined the effect of T3 on the proliferation of human hepatoma Hep3B cells and found that gamma-T3 inhibited cell proliferation at lower concentrations and shorter treatment times than alpha-T3. Then, we examined the effect of gamma-T3 apoptosis induction and found that gamma-T3 induced poly (ADP-ribose) polymerase (PARP) cleavage and stimulated a rise in caspase-3 activity. In addition, gamma-T3 stimulated a rise in caspase-8 and caspase-9 activities. We also found that gamma-T3-induced apoptotic cell death was accompanied by up-regulation of Bax and a rise in the fragments of Bid and caspase-8. These data indicate that gamma-T3 induced apoptosis in Hep3B cells and that caspase-8 and caspase-9 were involved in apoptosis induction. Moreover, these results suggest that Bax and Bid regulated apoptosis induction by gamma-T3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号