首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forty-eight-hour experimental manipulations of zooplankton biomass were performed to examine the potential effects of zooplankton on nutrient availability and phytoplankton biomass (as measured by seston concentration) and C : N : P stoichiometry in eutrophic nearshore waters of Lake Biwa, Japan. Increasing zooplankton, both mixed-species communities and Daphnia alone, consistently reduced seston concentration, indicating that nearshore phytoplankton were generally edible. The zooplankton clearance rates of inshore phytoplankton were similar to rates measured previously for offshore phytoplankton. Increased zooplankton biomass led to increased concentrations of nutrients (NH4-N, soluble reactive phosphorus [SRP]). Net release rates were higher than those found in previous measurements made offshore, reflecting the nutrient-rich nature of inshore seston. Zooplankton nutrient recycling consistently decreased TIN : SRP ratios (TIN = NH4 + NO3 + NO2). This effect probably resulted from the low N : P ratios of nearshore seston, which were lower than those commonly found in crustacean zooplankton and thus resulted in low retention efficiency of P (relative to N) by the zooplankton. Thus, zooplankton grazing inshore may ameliorate algal blooms due to direct consumption but tends to create nutrient supply conditions with low N : P, potentially favoring cyanobacteria. In comparison with previous findings for offshore, it appears that potential zooplankton effects on phytoplankton and nutrient dynamics differ qualitatively in inshore and offshore regions of Lake Biwa. Received: September 4, 2000 / Accepted: January 23, 2001  相似文献   

2.
Changes in the ecological stoichiometry of C, N, and P in the pelagic zone are reported from a whole-lake manipulation of the food web of Lake 227, an experimentally eutrophied lake at the Experimental Lakes Area, Canada. Addition of northern pike eliminated populations of planktivorous minnows by the third year (1995) after pike introduction, and in the fourth year after pike addition (1996), a massive increase in the abundance of the large-bodied cladoceran Daphnia pulicaria occurred. Accompanying this increase in Daphnia abundance, zooplankton community N:P declined, seston concentration and C:P ratio decreased, and dissolved N and P pools increased. During peak abundance, zooplankton biomass comprised a significant proportion of total epilimnetic phosphorus (greater than 30%). During the period of increased Daphnia abundance, concentrations of dissolved inorganic nitrogen (TIN) increased more strongly than dissolved phosphorus (TDP), and thus TIN:TDP ratios were elevated. Sedimentation data indicated that increased grazing led to greatly reduced residence times of C, N, and especially P in the water column during 1996. Finally, previously dominant N-fixing cyanobacteria were absent during 1996. Our results show that strong effects of food-web structure can occur in eutrophic lakes and that stoichiometric mechanisms play a potentially important role in generating these effects.  相似文献   

3.
We report here the results of an experimental study designed to compare algal responses to short-term manipulations of zooplankton in three California lakes which encompass a broad range of productivity (ultra-oligotrophic Lake Tahoe, mesotrophic Castle Lake, and strongly eutrophic Clear Lake). To assess the potential strength of grazing in each lake, we evaluated algal responses to a 16-fold range of zooplankton biomass. To better compare algal responses among lakes, we determined algal responses to grazing by a common grazer (Daphnia sp.) over a range ofDaphnia densities from 1 to 16 animals per liter. Effects of both ambient grazers andDaphnia were strong in Castle Lake. However, neither ambient zooplankton norDaphnia had much impact on phytoplankton in Clear Lake. In Lake Tahoe, no grazing impacts could be demonstrated for the ambient zooplankton butDaphnia grazing had dramatic effects. These results indicate weak coupling between phytoplankton and zooplankton in Clear Lake and Lake Tahoe, two lakes which lie near opposite extremes of lake trophic status for most lakes. These observations, along with work reported by other researchers, suggest that linkages between zooplankton and phytoplankton may be weak in lakes with either extremely low or high productivity. Biomanipulation approaches to recover hypereutrophic lakes which aim only to alter zooplankton size structure may be less effective if algal communities are dominated by large, inedible phytoplankton taxa.  相似文献   

4.
SUMMARY 1. Negative effects of zooplankton on the availability of phosphorus (P) for phytoplankton as a result of the retention of nutrients in zooplankton biomass and the sedimentation of exoskeletal remains after moulting, have been recently proposed. 2. In a mesocosm study, the relative importance of these mechanisms was tested for the freshwater cladoceran Daphnia hyalina×galeata. A total of 13 mesocosm bags was suspended in a mesotrophic German lake during summer 2000 and fertilised with inorganic P in order to obtain a total nitrogen to total P ratio closer to the Redfield ratio. D. hyalina×galeata was then added at a logarithmically scaled density gradient of up to 40 ind. L?1. Zooplankton densities, dissolved inorganic, particulate organic (seston <100 μm), as well as total nutrient concentrations were monitored. Additionally, nutrient concentrations of sediment water removed from the bottom of the mesocosm bags via a manual pump were determined. 3. Seston carbon (C), seston P and total P were significantly negatively correlated with Daphnia densities. The amount of particulate P (~5–6 μg P L?1) sequestered from the seston compartment by Daphnia corresponded roughly to the increase of zooplankton biomass (population growth). Soluble reactive phosphorous (SRP) was at all times high (~25–35 μg P L?1) and possibly unavailable to phytoplankton as a result of P adsorption to calcite during a calcite precipitation event (whiting). P concentrations determined in sediment water were generally <60 μg P m?2 and thus never exceeded 1% of the total amount of P bound in particulate matter of the overlying water column. 4. Seston C : P ratios followed a polynomial second‐order function: At Daphnia densities <40 ind. L?1 a positive linear relationship was evident, which is explained by the stronger reduction of P compared with C in seston, and transfer of seston P to zooplankton. Highest seston C : P ratios of ~300 : 1 were observed at Daphnia densities of ~30–50 ind. L?1, which is in agreement with proposed threshold values limiting Daphnia reproductive growth. At Daphnia densities >40–50 ind. L?1 C : P ratios were decreased because of the strong reduction of seston C at close to constantly low seston P‐values of ~3–4 μg P L?1. 5. At least for Daphnia, it may be concluded that – unlike population growth – the sedimentation of faecal pellets and carapaces after moulting seem negligible processes in pelagic phosphorus dynamics.  相似文献   

5.
A whole-lake manipulation of food-web structure (introduction of a top predator, northern pike, to a minnow-dominated lake) was performed in a Canadian Shield lake (L110) to examine the stoichiometric consequences of changes in planktonic community structure generated by altered food-web structure. Minnow abundance, zooplankton biomass and community composition, microconsumer abundance, and concentration and carbon–phosphorus (C:P) ratio of suspended particulate matter were monitored in L110 and unmanipulated L240 before (1992) and after (1993–95) pike introduction. Algal biomass in L110 determined from microscopic examination for postmanipulation and premanipulation periods was also compared with dynamics in a suite of unmanipulated reference lakes from long-term monitoring records. Pike were added in spring in 1993 and 1994 in sufficient quantity to raise pike biomass to levels of around 22 kg ha 1 by 1994. Minnow populations in L110 responded dramatically, decreasing to levels 30% (1993), 10% (1994), and less than 1% (1995) of premanipulation values. However, most components lower in the food web did not respond in a manner consistent with predictions of existing food-web theory, such as the idea of cascading trophic interactions (CTI). While Daphnia biomass increased in L110 in the first year following manipulation, consistent with CTI, this effect was temporary and Daphnia collapsed in 1995, the year of lowest minnow abundance. Total zooplankton biomass in both lakes declined during the study period and, contrary to CTI, this decline appeared somewhat stronger in L110 than in L240. Dominant microconsumers (heterotrophic microflagellates) did not differ among years in either lake and did not appear to respond to food-web manipulation. At the bottom of the food web, no changes in bacterial biomass occurred in either lake. However, total concentrations of particulate matter appeared to increase in L110 after manipulation (contrary to expectations based on the theory of CTI) while algal biomass did not change in the manipulated lake relative to reference systems. Finally, particulate C:P increased in both L110 and L240 during the study period. The lack of strong response of Daphnia, the lack of response of the microbial food web, decreases in zooplankton biomass and increases in particulate biomass following reduction of minnow populations after piscivore introduction are at odds with expectations from existing food-web theory, such as the idea of CTI as currently formulated. However, the extremely high C:P ratios in particulate matter at the base of the food webs in these lakes, the coincidence of zooplankton declines and increases in particulate C:P ratios, and the results of small-scale mesocosm food-quality experiments are consistent with a hypothesis of a stoichiometric constraint operating on food-web dynamics in this and similar ecosystems. Received 22 April 1997; accepted 8 July 1997.  相似文献   

6.
1. According to stoichiometric theory, zooplankters have a species‐specific elemental composition. Daphniids have a relatively high phosphorus concentration in their tissues and copepods high nitrogen. Daphniids should, therefore, be more sensitive to phosphorus limitation and copepods more sensitive to nitrogen. A 2‐year study of a shallow marl lake in the west of Ireland investigated whether population fluctuations of the two dominant taxa, Daphnia spp. and the calanoid Eudiaptomus gracilis, were associated with the availability of phosphorus and nitrogen. 2. In accordance with stoichiometric predictions, Daphnia and Eudiaptomus reproduction had contrasting relationships with dietary phosphorus and nitrogen availability. Egg production by Daphnia was negatively associated with the ratio of dissolved inorganic nitrogen (DIN) : total phosphorus (TP) and the ratio of light to TP which was used as an indirect index for seston carbon (C) : phosphorus (P). Conversely calanoid egg production had a positive relationship with the DIN : TP ratio and was unrelated to the estimated C : P (light : TP) ratio. 3. Daphnia biomass was not, however, correlated with phosphorus availability, and neither was calanoid biomass correlated with nitrogen. The high ratio of DIN : TP when Daphnia dominated the zooplankton biomass and the low ratio when calanoids dominated, is consistent with Daphnia acting as a sink for phosphorus and calanoids as a sink for nitrogen and suggests consumer‐driven nutrient recycling.  相似文献   

7.
Ecosystem development in different types of littoral enclosures   总被引:2,自引:2,他引:0  
Vermaat  J. E.  Hootsmans  M. J. M.  van Dijk  G. M. 《Hydrobiologia》1990,200(1):391-398
Macrophyte growth was studied in two enclosure types (gauze and polythene) in a homogeneousPotamogeton pectinatus bed in Lake Veluwe (The Netherlands). The gauze was expected to allow for sufficient exchange with the lake to maintain similar seston densities, the polythene was expected to exclude fish activity and most water exchange. Polythene enclosures held higher totalP. pectinatus biomass (ash-free dry weight, AFDW) than the lake, gauze enclosures were intermediate. The enclosures had a higher abundance of other macrophyte species (Chara sp.,Potamogeton pusillus) than the lake. Seston ash content was not but seston AFDW, periphyton ash content and AFDW were lower in polythene than in gauze enclosures. The difference in plant biomass between gauze and polythene may be attributed to a difference in periphyton density and in seston AFDW due to zooplankton grazing (Rotatoria andDaphnia densities were higher in polythene enclosures). Since seston and periphyton AFDW and ash content were similar in lake and gauze enclosures, the intermediate macrophyte biomass in the gauze enclosures may be explained by reduced wave action and mechanical stress. Alternatively, phytoplankton inhibition by allelopathic excretions from the macrophytes may have caused the high macrophyte biomass in the polythene, and an absence of sediment-disturbing fish the intermediate biomass in the gauze enclosures. Creation of sheltered areas may favour macrophyte growth through both mechanisms and we conclude that this can be an important tool in littoral biomanipulation.  相似文献   

8.
1. The relative importance of zooplankton grazing and nutrient limitation in regulating the phytoplankton community in the non-stratified Lake Kvie, Denmark, were measured nine times during the growing season.
2. Natural phytoplankton assemblage bioassays showed increasing importance of nutrient limitation during summer. Growth rates at ambient nutrient concentrations were continually below 0.12 per day, while co-enrichment with nitrogen (N) and phosphorus (P) to above concentration-saturated conditions enhanced growth rates from May to the end of July.
3. Stoichiometric ratios of important elements in seston (C : N, C : P, N : P), in lake water (TN : TP), in external loading (TN : TP) and in internal loading (DIN : DIP) were measured to determine whether N or P could be the limiting nutrient. TN : TP molar ratio of both lake water, benthic fluxes and external loading suggested P limitation throughout the growing season. However, seston molar ratios suggested moderate P-deficiency only during mid-summer.
4. Abundance and community structure of the zooplankton varied considerably through the season and proved to be important in determining the responses of algal assemblages to grazing. High abundance of cladocerans and rotifers resulted in significant grazing impact, while cyclopoid copepods had no significant effect on the phytoplankton biomass.
5. Regeneration of ammonium and phosphate by zooplankton were periodically important for phytoplankton growth. A comparison of nutrient regeneration by zooplankton with nutrient inputs from sediment and external sources indicated that zooplankton may contribute significantly in supplying N and P for the growth of phytoplankton.  相似文献   

9.
De Lange  H.J.  Arts  M.T. 《Aquatic Ecology》1999,33(4):387-398
A field survey was conducted to study the relationships amongst the composition of the seston, the nutritional value of the seston for herbivorous zooplankton (Daphnia), and selected water clarity parameters. Sixteen ponds in a wetland area and seven larger lakes, all located in south central Saskatchewan, Canada, were sampled for seston. The phytoplankton species were identified, and various biochemical seston variables were measured. A biotest using the zooplankter Daphnia magna, was employed to assess the nutritional value of the seston. The best seston variable to explain Daphnia growth was the phospholipid content (simple linear regression analysis: R 2 adj = 0.50). The water absorbance ratio A250/A365 was a good predictor of lipid content of the seston. Both the absorbance ratio A250/A365 and the dissolved organic carbon (DOC) concentration were negatively correlated with Daphnia growth. We hypothesize that the penetration of visible and ultraviolet radiation is an important determinant of seston quality, especially the phospholipid content, and that this has important implications for determining ultimate growth rates of herbivorous zooplankton.  相似文献   

10.
1. North Halfmoon Lake and Lofty Lake (Alberta, Canada) were chosen for whole-lake liming experiments as a new restoration technology to enhance calcite precipitation and reduce eutrophication. During a 3-year study (1991–93) the relationships between zooplankton and phytoplankton were assessed, together with the effects of lime additions. 2. Zooplankton communities were numerically dominated by rotifers, while the major contribution to biomass was due to large filter-feeding Daphnia during the first half of the summer season. In Lofty Lake, cladocerans made up to 93% of biomass, whereas in North Halfmoon Lake both cladocerans and calanoids were strongly represented. 3. Total zooplankton and cladoceran biomasses were inversely correlated with chlorophyll a (chl a). The same relationship was found between large Daphnia (≥ 1 mm) and chl a. These relationships suggest that the decline in Daphnia may have been caused by an increase in cyanobacteria biomass during bloom events. 4. There were minor changes in rotifer populations after liming; however, these changes have been caused by natural year-to-year variation rather than liming. In general, cladocerans showed an increase in body size and population biomass when pre and post-treatment data were compared by means of ANCOVA. Statistical analysis showed that there were more cladocerans per unit of chl a after liming; however, further research is needed to relate these patterns unambiguously to the application of lime as a restoration technology.  相似文献   

11.
1. Grazer and nutrient controls of phytoplankton biomass were tested on two reservoirs of different productivity to assess the potential for zooplankton grazing to affect chlorophyll/phosphorus regression models under Australian conditions. Experiments with zooplankton and nutrients manipulated in enclosures, laboratory feeding trials, and the analysis of in-lake plankton time series were performed. 2. Enclosures with water from the more productive Lake Hume (chlorophyll a = 3–17.5 μg l–1), revealed significant zooplankton effects on chlorophyll a in 3/6, phosphorus limitation in 4/6 and nitrogen limitation in 1/6 of experiments conducted throughout the year. Enclosures with water from the less productive Lake Dartmouth (chlorophyll a = 0.8–3.5 μg l–1), revealed significant zooplankton effects in 5/6, phosphorus limitation in 5/6 and nitrogen limitation in 2/6 of experiments. 3. While Lake Hume enclosure manipulations of the biomass of cladocerans (Daphnia and Diaphanosoma) and large copepods (Boeckella) had negative effects, small copepods (Mesocyclops and Calamoecia) could have positive effects on chlorophyll a. 4. In Lake Hume, total phytoplankton biovolume was negatively correlated with cladoceran biomass, positively with copepod biomass and was uncorrelated with total crustacean biomass. In Lake Dartmouth, total phytoplankton biovolume was negatively correlated with cladoceran biomass, copepod biomass and total crustacean biomass. 5. In both reservoirs, temporal variation in the biomass of Daphnia carinata alone could explain more than 50% of the observed variance in total phytoplankton biovolume. 6. During a period of low phytoplankton biovolume in Lake Hume in spring–summer 1993–94, a conservative estimate of cladoceran community grazing reached a maximum of 0.80 day–1, suggesting that Cladocera made an important contribution to the development of the observed clear-water phase. 7. Enclosure experiments predicted significant grazing when the Cladocera/Phytoplankton biomass ratio was greater than 0.1; this threshold was consistently exceeded during clear water phase in Lake Hume. 8. Crustacean length had a significant effect on individual grazing rates in bottle experiments, with large Daphnia having highest rates. In both reservoirs, mean crustacean length was negatively correlated with phytoplankton biovolume. The observed upper limit of its variation was nearly twice as high compared to other world lakes.  相似文献   

12.
Bergström  A.-K.  Deininger  A.  Jonsson  A.  Karlsson  J.  Vrede  T. 《Hydrobiologia》2021,848(21):4991-5010

We used data from whole-lake studies to assess how changes in food quantity (phytoplankton biomass) and quality (phytoplankton community composition, seston C:P and N:P) with N fertilization affect zooplankton biomass, community composition and C:N:P stoichiometry, and their N:P recycling ratio along a gradient in lake DOC concentrations. We found that despite major differences in phytoplankton biomass with DOC (unimodal distributions, especially with N fertilization), no major differences in zooplankton biomass were detectable. Instead, phytoplankton to zooplankton biomass ratios were high, especially at intermediate DOC and after N fertilization, implying low trophic transfer efficiencies. An explanation for the observed low phytoplankton resource use, and biomass responses in zooplankton, was dominance of colony forming chlorophytes of reduced edibility at intermediate lake DOC, combined with reduced phytoplankton mineral quality (enhanced seston N:P) with N fertilization. N fertilization, however, increased zooplankton N:P recycling ratios, with largest impact at low DOC where phytoplankton benefitted from light sufficiently to cause enhanced seston N:P. Our results suggest that although N enrichment and increased phytoplankton biomass do not necessarily increase zooplankton biomass, bottom-up effects may still impact zooplankton and their N:P recycling ratio through promotion of phytoplankton species of low edibility and altered mineral quality.

  相似文献   

13.
14.
武汉东湖颗粒悬浮物的结构与元素组成   总被引:9,自引:0,他引:9  
谢平 《水生生物学报》1996,20(3):197-205
本研究于1989-1990对武汉东湖营养水平不同的二个湖区的颗粒悬浮物的干物质结构和元素组成进行了分析。综合平均值表明,浮游动物的现存量约为浮游植物的1/4,浮游动物群落以小型的原生动物和轮虫占优势。从年平均值来看,浮游生物的干重占颗粒悬浮物干物质的2.5-7.6%,浮游生物碳量占颗粒悬浮物碳量的4.0-9.8%;颗粒悬浮物的碳/氮比与一般浮游植物的比值相似,但明显大于多数浮游动物;颗粒悬浮物的碳与干物重之比约为一般浮游生物的3/4;颗粒悬浮物的灰分含量约为45%,显着高于除硅藻以外的其它浮游生物。从数量上来看,有机碎屑是东湖生态系统颗粒悬浮物最重要的组成部分,而活体浮游生物只占颗粒悬浮物很小的一部分(<10%);这意味着在东湖来自以浮游植物为核心的食物网的有机碎屑的形成速率显着大于有机碎屑的矿化速率。    相似文献   

15.
To gain better insight into the importance of predator and resourcecontrol in New Zealand lakes we surveyed the late summer trophicstructure of 25 shallow South Island lakes with contrastingnutrient levels (6–603 µg TP l–1) and fishdensities. Total catch of fish per net (CPUE) in multi-meshgillnets placed in the open water and the littoral zones waspositively related with the nutrient level. Trout CPUE was negativelycorrelated with total phosphorus (TP) and total nitrogen (TN).Zooplankton seemed largely influenced by fish, as high fishCPUE coincided with low zooplankton and Daphnia biomass, lowaverage weight of cladocerans, low contribution of Daphnia tototal cladoceran biomass, low ratio of calanoids to total copepodbiomass and low ratio of zooplankton biomass to phytoplanktonbiomass. However, chlorophyll a was only slightly negativelyrelated to Daphnia biomass and not to zooplankton biomass ina multiple regression that included TN and TP. Ciliate abundancewas positively related to chlorophyll a and negatively to Daphniabiomass, but not to total zooplankton biomass, while no relationshipswere found between heterotrophic nanoflagellates and zooplankton.The relationships between fish abundance and nutrients and fishabundance and zooplankton:phytoplankton ratio and between chlorophylla and TP largely followed the pattern obtained for 42 northtemperate Danish lakes. We conclude that fish, including trout,have a major effect on the zooplankton community structure andbiomass in the pelagial of the shallow oligotrophic to slightlyeutrophic New Zealand lakes, but that the cascading effectson phytoplankton and protist are apparently modest.  相似文献   

16.
To assess nutritional consequences associated with lake oligotrophication for aquatic consumers, we analyzed the elemental and biochemical composition of natural seston and concomitantly conducted laboratory growth experiments in which the freshwater key herbivore Daphnia was raised on natural seston of the nowadays (2008) oligotrophic Lake Constance throughout an annual cycle. Food quality mediated constraints on Daphnia performance were assessed by comparing somatic growth rates with seston characteristics (multiple regression analysis) and by manipulating the elemental and biochemical composition of natural seston experimentally (nutrient supplementation). Results were compared to similar experiments carried out previously (1997) during a mesotrophic phase of the lake. In the oligotrophic phase, particulate carbon and phosphorus concentrations were lower, fatty acid concentrations were higher, and the taxonomic composition of phytoplankton was less diverse, with a more diatom‐ and cryptophytes‐dominated community, compared to the previous mesotrophic phase. Multiple regression analysis indicated a shift from a simultaneous limitation by food quantity (in terms of carbon) and quality (i.e. α‐linolenic acid) during the mesotrophic phase to a complex multiple nutrient limitation mediated by food quantity, phosphorus, and omega‐3 fatty acids in the following oligotrophic phase. The concomitant supplementation experiments also revealed seasonal changes in multiple resource limitations, i.e. the prevalent limitation by food quantity was accompanied by a simultaneous limitation by either phosphorus or omega‐3 fatty acids, and thus confirmed and complemented the multiple regression approach. Our results indicate that seasonal and annual changes in nutrient availabilities can create complex co‐limitation scenarios consumers have to cope with, which consequently may also affect the efficiency of energy transfer in food webs.  相似文献   

17.
  • 1 Planktivorous fish were hypothesised to influence the abundance of algal biomass in lakes by changing zooplankton grazing, affecting zooplankton nutrient recycling and by direct recycling of nutrients to phytoplankton. The relative roles of direct fish effects vs. zooplankton grazing were tested in mesocosm experiments by adding to natural communities large grazing zooplankton (Daphnia carinata) and small planktivorous fish (mosquitofish or juveniles of Australian golden perch).
  • 2 The addition of Daphnia to natural communities reduced the numbers of all phytoplankton less than 30 µm in size, but did not affect total biomass of phytoplankton as large Volvox colonies predominated.
  • 3 The addition of Daphnia also reduced the abundance of some small (Moina, Bosmina, Keratella) and large (adult Boeckella) zooplankton, suggesting competitive interactions within zooplankton.
  • 4 The addition of mosquitofish to communities containing Daphnia further reduced the abundance of some small zooplankton (Moina, Keratella), but increased the numbers of Daphnia and adult Boeckella. In spite of the likely increase in grazing due to Daphnia, the abundance of total phytoplankton and dominant alga Volvox did not decline in the presence of mosquitofish but was maintained at a significantly higher level than in control.
  • 5 The addition of juveniles of golden perch to communities containing Daphnia reduced the abundance of small zooplankton (Moina), increased the abundance of large zooplankton (adult Boeckella) but had no significant effect on Daphnia and total phytoplankton abundance.
  • 6 The results of the present study suggest that some planktivorous fish can promote the growth of phytoplankton in a direct way, probably by recycling nutrients, and even in the presence of large grazers. However, the manifestation of the direct effect of fish can vary with fish species.
  相似文献   

18.
Determinants of seston C : P-ratio in lakes   总被引:1,自引:0,他引:1  
1. The ratio of carbon to phosphorus (C : P) in seston is a major determinant of energy transfer in aquatic food webs and may vary more than an order of magnitude owing to various extrinsic and intrinsic factors. In this study, the determinants of C : P‐ratios in lake particulate matter (seston) was assessed in 112 Norwegian lakes, covering a C : P (atomic ratio) from 24 to 1842 (mean 250). 2. No overall effects of lake area, season or latitude on C : P was detected. Particulate P, but not particulate C, correlated with C : P. Multivariate analysis including a range of lake properties revealed total dissolved P, as the major determinant of sestonic C : P, with the fraction of detritus in total seston, chlorophyll or Secchi depth and lake colour as significant contributors. Together these parameters explained 30% of observed variance if using dissolved P and 81% if using total P as input variable to the multivariate model. 3. Chlorophyll and Secchi depth were highly correlated and substitutable in the analysis. Phytoplankton community composition did not affect seston C : P, probably reflecting the fact that live phytoplankton generally contributed <25% of the seston pool. 4. Total P correlated positively with C : P and is the key determinant of phytoplankton biomass and thus Secchi depth; the latter parameters contributed negatively to seston C : P, probably owing to increased light attenuation. These lake data thus support the light : nutrient ratio hypothesis, i.e. that high light and low P cause skewed uptake ratios of C to P. 5. Zooplankton biomass in general and Daphnia biomass in particular, was negatively correlated with C : P, probably reflecting a negative impact of poor seston quality at high C : P. Zooplankton grazing and nutrient recycling may also have contributed to a negative correlation between zooplankton biomass and sestonic C : P.  相似文献   

19.
The stoichiometry of N and P in the pelagic zone of Castle Lake, California   总被引:2,自引:0,他引:2  
We measured the concentrations, as well as lake-wide amounts,of nitrogen (N) and phosphorus (P) in dissolved, seston andzooplankton pools throughout the water column of Castle Lake,California, during summer, 1991. This allowed us to determinethe stoichiometric ratios of important elements in each pool(C:N, C:P, N:P) as well as for the entire lake. Dissolved andseston pools were the predominant storage compartments for bothN and P; zooplankton never contained >5% of N or 10% of Plake wide. However, by late summer, the concentrations of Pin seston and in zooplankton were similar in the upper portionsof the water column, suggesting that changes in food web structurethat alter zooplankton biomass and community composition (andhence elemental storage in the zooplankton) may produce significantshifts in nutrient storage among pelagic pools. Lake-wide levelsof dissolved N were largely constant over the study period;however, lake-wide dissolved P increased. These dynamics suggestedthat the majority of nutrients stored in dissolved pools wereunavailable for phytoplankton growth. N:P and C:P ratios indicatedthat Castle Lake phytoplankton became severely deficient inP during the course of our observations. These ratios also greatlyexceeded recently reported threshold values for elemental constraintson growth and reproduction for several species of zooplankton.The ratio of N to P in the zooplankton pool was relatively constantand consistently lower than that in the sestion. As a result,the predicted N:P ratio of zooplankton-regenerated nutrientsexceeded the N:P ratio of the seston, implying that zooplanktonnutrient regeneration further skewed N and P supply ratios,and potentially enhanced P limitation of phytoplankton in CastleLake. 1Present address: Department of Biology, Box 19498, Universityof Texas at Arlington, Arlington, TX 76019, USA  相似文献   

20.
1. Analyses of zooplankton fatty acid (FA) composition in laboratory experiments and samples collected from lakes in New Zealand spanning a wide gradient of productivity were used to assess the extent to which FAs might infer their diet. We used the cladocerans, Daphnia and Ceriodaphnia, and the calanoid copepod, Boeckella, as test organisms, and monocultures of cryptophytes, chlorophytes and cyanobacteria as food. Based on reproductive success, cryptophytes were the highest food quality, chlorophytes were intermediate and cyanobacteria the poorest. 2. Several FA groups were highly correlated between zooplankton and their diets. They were monounsaturated fatty acids (MUFAs), and ω3 and ω6 polyunsaturated fatty acids (PUFAs) for cladocerans, and saturated fatty acids (SAFAs) and ω3 PUFAs for copepods. Several FAs varied significantly less in the zooplankton than in their monoculture diets, e.g. MUFAs in Daphnia, and ω3 and ω6 PUFAs in Ceriodaphnia, despite clear dietary dependency for these FAs. 3. Zooplankton collected from lakes in New Zealand had more eicosapentaenoic acid (EPA) (Daphnia), more highly unsaturated ω3 and ω6 FAs (C20, C22; Daphnia, Ceriodaphnia, Boeckella) and less ω3 C18 PUFAs (Daphnia, Ceriodaphnia, Boeckella) and ω6 C18 PUFAs (Daphnia, Ceriodaphnia) than measured in the same species reared on phytoplankton in the laboratory. 4. Analyses of FA composition of seston and freshwater zooplankton globally showed that, in general, zooplankton had a significantly higher proportion of arachidonic acid and EPA than seston, and copepods also had a higher percentage of docosahexaenoic acid than seston. 5. These results suggest that zooplankton selectively incorporate the most physiologically important FAs. This could be a consequence of preferential assimilation, selective feeding on more nutritious cells or locating and feeding within higher food quality food patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号