首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To enhance therapeutic potential of murine monoclonal antibody, humanization by CDR grafting is usually used to reduce immunogenic mouse residues. Most humanized antibodies still have mouse residues critical for antigen binding, but the mouse residues may evoke immune responses in humans. Previously, we constructed a new humanized version (AKA) of mouse CC49 antibody specific for tumor-associated glycoprotein, TAG-72. In this study, to select a completely human antibody light chain against TAG-72, guided selection strategy using phage display was used. The heavy chain variable region (VH) of AKA was used to guide the selection of a human TAG-72-specific light chain variable region (VL) from a human VL repertoire constructed from human PBL. Most of the selected VLs were identified to be originated from the members of the human germline VK1 family, whereas the VL of AKA is more homologous to the VK4 family. Competition binding assay of the selected Fabs with mouse CC49 suggested that the epitopes of the Fabs overlap with that of CC49. In addition, they showed better antigen-binding affinity compared to parental AKA. The selected human VLs may be used to guide the selection of human VHs to get completely human anti-TAG72 antibody.  相似文献   

2.
Murine antibody 10H10 raised against human tissue factor is unique in that it blocks the signaling pathway, and thus inhibits angiogenesis and tumor growth without interfering with coagulation. As a potential therapeutic, the antibody was humanized in a two-step procedure. Antigen-binding loops were grafted onto selected human frameworks and the resulting chimeric antibody was subjected to affinity maturation by using phage display libraries. The results of humanization were analyzed from the structural perspective through comparison of the structure of a humanized variant with the parental mouse antibody. This analysis revealed several hot spots in the framework region that appear to affect antigen binding, and therefore should be considered in human germline selection. In addition, some positions in the Vernier zone, e.g., residue 71 in the heavy chain, that are traditionally thought to be crucial appear to tolerate amino acid substitutions without any effect on binding. Several humanized variants were produced using both short and long forms of complementarity-determining region (CDR) H2 following the difference in the Kabat and Martin definitions. Comparison of such pairs indicated consistently higher thermostability of the variants with short CDR H2. Analysis of the binding data in relation to the structures singled out the ImMunoGeneTics information system® germline IGHV1-2*01 as dubious owing to two potentially destabilizing mutations as compared to the other alleles of the same germline and to other human germlines.  相似文献   

3.
This article reviews recent advances achieved during recent years on various aspects of antibody humanization theories and techniques. Common methods for producing humanized antibodies including framework-homology-based humanization, germline humanization, complementary determining regions (CDR)-homology-based humanization and specificity determining residues (SDR) grafting, as well as advantages and disadvantages of each of these methods and their applications are discussed.  相似文献   

4.
Rabbit antibodies have been widely used in research and diagnostics due to their high antigen specificity and affinity. Though these properties are also highly desirable for therapeutic applications, rabbit antibodies have remained untapped for human disease therapy. To evaluate the therapeutic potential of rabbit monoclonal antibodies (RabMAbs), we generated a panel of neutralizing RabMAbs against human vascular endothelial growth factor-A (VEGF). These neutralizing RabMAbs are specific to VEGF and do not cross-react to other members of the VEGF protein family. Guided by sequence and lineage analysis of a panel of neutralizing RabMAbs, we humanized the lead candidate by substituting non-critical residues with human residues within both the frameworks and the CDR regions. We showed that the humanized RabMAb retained its parental biological properties and showed potent inhibition of the growth of H460 lung carcinoma and A673 rhabdomyosarcoma xenografts in mice. These studies provide proof of principle for the feasibility of developing humanized RabMAbs as therapeutics.  相似文献   

5.
No universal strategy exists for humanizing mouse antibodies, and most approaches are based on primary sequence alignment and grafting. Although this strategy theoretically decreases the immunogenicity of mouse antibodies, it neither addresses conformational changes nor steric clashes that arise due to grafting of human germline frameworks to accommodate mouse CDR regions. To address these issues, we created and tested a structure-based biologic design approach using a de novo homology model to aid in the humanization of 17 unique mouse antibodies. Our approach included building a structure-based de novo homology model from the primary mouse antibody sequence, mutation of the mouse framework residues to the closest human germline sequence and energy minimization by simulated annealing on the humanized homology model. Certain residues displayed force field errors and revealed steric clashes upon closer examination. Therefore, further mutations were introduced to rationally correct these errors. In conclusion, use of de novo antibody homology modeling together with simulated annealing improved the ability to predict conformational and steric clashes that may arise due to conversion of a mouse antibody into the humanized form and would prevent its neutralization when administered in vivo. This design provides a robust path towards the development of a universal strategy for humanization of mouse antibodies using computationally derived antibody homologous structures.  相似文献   

6.
Despite their favorable pharmacokinetic properties, single-chain Fv antibody fragments (scFvs) are not commonly used as therapeutics, mainly due to generally low stabilities and poor production yields. In this work, we describe the identification and optimization of a human scFv scaffold, termed FW1.4, which is suitable for humanization and stabilization of a broad variety of rabbit antibody variable domains. A motif consisting of five structurally relevant framework residues that are highly conserved in rabbit variable domains was introduced into FW1.4 to generate a generically applicable scFv scaffold, termed FW1.4gen. Grafting of complementarity determining regions (CDRs) from 15 different rabbit monoclonal antibodies onto FW1.4 and their derivatives resulted in humanized scFvs with binding affinities in the range from 4.7 × 10−9 to 1.5 × 10−11 m. Interestingly, minimalistic grafting of CDRs onto FW1.4gen, without any substitutions in the framework regions, resulted in affinities ranging from 5.7 × 10−10 to <1.8 × 10−12 m. When compared with progenitor rabbit scFvs, affinities of most humanized scFvs were similar. Moreover, in contrast to progenitor scFvs, which were difficult to produce, biophysical properties of the humanized scFvs were significantly improved, as exemplified by generally good production yields in a generic refolding process and by apparent melting temperatures between 53 and 86 °C. Thus, minimalistic grafting of rabbit CDRs on the FW1.4gen scaffold presents a simple and reproducible approach to humanize and stabilize rabbit variable domains.  相似文献   

7.
The 6.7 murine monoclonal antibody (mAb) recognizes the human CD18 antigen and is therefore of interest as an anti-inflammatory agent. The 6.7 heavy variable chain (VH) was humanized using the closest human germline sequence as the template on to which to graft the murine complementary determining regions (CDRs). Two versions were proposed, one in which the residue proline 45 of the murine form was maintained and another in which this framework residue was changed to the leucine found in the human sequence. These VH humanized versions were expressed in the yeast Pichia pastoris as hemi-humanized single-chain Fv (scFvs), with the VL from the murine antibody. The scFv from the murine antibody was also expressed. The binding activities of the murine and both hemi-humanized scFvs were determined by flow cytometry analysis. All the constructions were able to recognize human lymphocytes harboring CD18, indicating successful humanization with transfer of the original binding capability. Some differences between the two hemi-humanized versions were observed. The method used was simple and straightforward, with no need for refined structural analyses and could be used for the humanization of other antibodies.  相似文献   

8.
Hou S  Li B  Wang L  Qian W  Zhang D  Hong X  Wang H  Guo Y 《Journal of biochemistry》2008,144(1):115-120
4C8 is a new mouse anti-human CD34 monoclonal antibody (mAb), which recognizes class II CD34 epitopes and can be used for clinical hematopoietic stem/progenitor cell selection. In an attempt to improve its safety profiles, we have developed a humanized antibody of 4C8 by complementarity-determining region (CDR) grafting method in this study. Using a molecular model of 4C8 built by computer-assisted homology modelling, framework region (FR) residues of potential importance to the antigen binding were identified. A humanized version of 4C8, denoted as h4C8, was generated by transferring these key murine FR residues onto a human antibody framework that was selected based on homology to the mouse antibody framework, together with the mouse CDR residues. The resultant humanized antibody was shown to possess antigen-binding affinity and specificity similar to that of the original murine antibody, suggesting that it might be an alternative to mouse anti-CD34 antibodies routinely used clinically.  相似文献   

9.
SDR grafting--a new approach to antibody humanization   总被引:6,自引:0,他引:6  
A major impediment to the clinical utility of the murine monoclonal antibodies is their potential to elicit human anti-murine antibody (HAMA) response in patients. To circumvent this problem, murine antibodies have been genetically manipulated to progressively replace their murine content with the amino acid residues present in their human counterparts. To that end, murine antibodies have been humanized by grafting their complementarity determining regions (CDRs) onto the variable light (V(L)) and variable heavy (V(H)) frameworks of human immunoglobulin molecules, while retaining those murine framework residues deemed essential for the integrity of the antigen-combining site. However, the xenogeneic CDRs of the humanized antibodies may evoke anti-idiotypic (anti-Id) response in patients. To minimize the anti-Id response, a procedure to humanize xenogeneic antibodies has been described that is based on grafting, onto the human frameworks, only the specificity determining residues (SDRs), the CDR residues that are most crucial in the antibody-ligand interaction. The SDRs are identified through the help of the database of the three-dimensional structures of the antigen-antibody complexes of known structures or by mutational analysis of the antibody-combining site. An alternative approach to humanization, which involves retention of more CDR residues, is based on grafting of the 'abbreviated' CDRs, the stretches of CDR residues that include all the SDRs. A procedure to assess the reactivity of the humanized antibody to sera from patients who had been administered the murine antibody has also been described.  相似文献   

10.
We previously constructed a humanized antibody, HuS10, by grafting the complementarity-determining regions (CDRs) of a parental murine monoclonal antibody into the homologous human antibody sequences. This process is termed CDR grafting. Some residues that were thought to affect the CDR loops and stabilize the structure of the variable regions were retained in the framework region. HuS10 exhibited in vivo virus-neutralizing activity, but its murine content had the potential to elicit immune responses in patients. In this study, to minimize the immunogenic potential of HuS10, we replaced 17 mouse residues in HuS10 with the comparable human residues using specificity-determining residue (SDR)-grafting and de-immunization methods. The resultant humanized antibody, HzS-III, had the same affinity and epitope specificity as HuS10 and had reduced immunogenic potential, as assessed by T-cell epitope analysis. Thus, SDR grafting in combination with de-immunization may be a useful strategy for minimizing the immunogenicity of humanized antibodies. In addition, HzS-III may be a good candidate for immunoprophylaxis of HBV infection.  相似文献   

11.
Optimal protein function often depends on co-operative interactions between amino acid residues distant in the protein primary sequence yet spatially near one another following protein folding. For example, antibody affinity is influenced by interactions of framework residues with complementarity-determining region (CDR) residues. However, despite the abundance of antibody structural information and computational tools the humanization of rodent antibodies for clinical use often results in a significant loss of affinity. To date, antibody engineering efforts have focused either on optimizing CDR residues involved in antigen binding or on optimizing antibody framework residues that serve critical roles in preserving the conformation of CDRs. In the present study a new approach which permits the rapid identification of co-operatively interacting framework and CDR residues was used to simultaneously humanize and optimize a murine antibody directed against CD40. Specifically, a combinatorial library that examined eight potentially important framework positions concomitantly with focused CDR libraries consisting of variants containing random single amino acid mutations in the third CDR of the heavy and light chains was expressed. Multiple anti-CD40 Fab variants containing as few as one murine framework residue and displaying up to approximately 500-fold higher affinity than the initial chimeric Fab were identified. The higher affinity humanized variants demonstrated a co-operative interaction between light chain framework residue Y49 and heavy chain CDR3 residue R/K101 (coupling energy, DeltaGI=0.9 kcal/mol). Screening of combinatorial framework-CDR libraries permits identification of monoclonal antibodies (mAb) with structures optimized for function, including instances in which the antigen induces conformational changes in the mAb. Moreover, the enhanced humanized variants contain fewer murine framework residues and could not be identified by sequential in vitro humanization and affinity muturation strategies. This approach to identifying co-operatively interacting residues is not restricted to antibody-antigen interactions and consequently, may be used broadly to gain insight into protein structure-function relationships, including proteins that serve as catalysts.  相似文献   

12.
Antibodies are an important class of biotherapeutics that offer specificity to their antigen, long half-life, effector function interaction and good manufacturability. The immunogenicity of non-human-derived antibodies, which can be a major limitation to development, has been partially overcome by humanization through complementarity-determining region (CDR) grafting onto human acceptor frameworks. The retention of foreign content in the CDR regions, however, is still a potential immunogenic liability. Here, we describe the humanization of an anti-myostatin antibody utilizing a 2-step process of traditional CDR-grafting onto a human acceptor framework, followed by a structure-guided approach to further reduce the murine content of CDR-grafted antibodies. To accomplish this, we solved the co-crystal structures of myostatin with the chimeric (Protein Databank (PDB) id 5F3B) and CDR-grafted anti-myostatin antibody (PDB id 5F3H), allowing us to computationally predict the structurally important CDR residues as well as those making significant contacts with the antigen. Structure-based rational design enabled further germlining of the CDR-grafted antibody, reducing the murine content of the antibody without affecting antigen binding. The overall “humanness” was increased for both the light and heavy chain variable regions.  相似文献   

13.
A method for simultaneous humanization and affinity maturation of monoclonal antibodies has been developed using heavy chain complementarity-determining region (CDR) 3 grafting combined with somatic hypermutation in vitro. To minimize the amount of murine antibody-derived antibody sequence used during humanization, only the CDR3 region from a murine antibody that recognizes the cytokine hβNGF was grafted into a nonhomologous human germ line V region. The resulting CDR3-grafted HC was paired with a CDR-grafted light chain, displayed on the surface of HEK293 cells, and matured using in vitro somatic hypermutation. A high affinity humanized antibody was derived that was considerably more potent than the parental antibody, possessed a low pm dissociation constant, and demonstrated potent inhibition of hβNGF activity in vitro. The resulting antibody contained half the heavy chain murine donor sequence compared with the same antibody humanized using traditional methods.  相似文献   

14.
Antibody humanization describes the procedure of grafting a non-human antibody's complementarity-determining regions, i.e., the variable loop regions that mediate specific interactions with the antigen, onto a β-sheet framework that is representative of the human variable region germline repertoire, thus reducing the number of potentially antigenic epitopes that might trigger an anti-antibody response. The selection criterion for the so-called acceptor frameworks (one for the heavy and one for the light chain variable region) is traditionally based on sequence similarity. Here, we propose a novel approach that selects acceptor frameworks such that the relative orientation of the 2 variable domains in 3D space, and thereby the geometry of the antigen-binding site, is conserved throughout the process of humanization. The methodology relies on a machine learning-based predictor of antibody variable domain orientation that has recently been shown to improve the quality of antibody homology models. Using data from 3 humanization campaigns, we demonstrate that preselecting humanization variants based on the predicted difference in variable domain orientation with regard to the original antibody leads to subsets of variants with a significant improvement in binding affinity.  相似文献   

15.
Generation of high-affinity monoclonal antibodies by immunization of chickens is a valuable strategy, particularly for obtaining antibodies directed against epitopes that are conserved in mammals. A generic procedure is established for the humanization of chicken-derived antibodies. To this end, high-affinity binders of the epidermal growth factor receptor extracellular domain are isolated from immunized chickens using yeast surface display. Complementarity determining regions (CDRs) of two high-affinity binders are grafted onto a human acceptor framework. Simultaneously, Vernier zone residues, responsible for spatial CDR arrangement, are partially randomized. A yeast surface display library comprising ≈300 000 variants is screened for high-affinity binders in the scFv and Fab formats. Next-generation sequencing discloses humanized antibody variants with restored affinity and improved protein characteristics compared to the parental chicken antibodies. Furthermore, the sequencing data give new insights into the importance of antibody format, used during the humanization process. Starting from the antibody repertoire of immunized chickens, this work features an effective and fast high-throughput approach for the generation of multiple humanized antibodies with potential therapeutic relevance.  相似文献   

16.
《MABS-AUSTIN》2013,5(3):256-265
Monoclonal antibodies represent an attractive therapeutic tool as they are highly specific for their targets, convey effector functions and enjoy robust manufacturing procedures. Humanization of murine monoclonal antibodies has vastly improved their in vivo tolerability. Humanization, the replacement of mouse constant regions and V framework regions for human sequences, results in a significantly less immunogenic product. However, some humanized and even fully human sequence-derived antibody molecules still carry immunological risk. To more fully understand the immunologic potential of humanized and human antibodies, we analyzed CD4+ helper T cell epitopes in a set of eight humanized antibodies. The antibodies studied represented a number of different VH and VL family members carrying unique CDR regions. In spite of these differences, CD4+ T cell epitopes were found only in CDR-sequence containing regions. We were able to incorporate up to two amino acid modifications in a single epitope that reduced the immunogenic potential while retaining full biologic function. We propose that immunogenicity will always be present in some antibody molecules due to the nature of the antigen-specific combining sites. A consequence of this result is modifications to reduce immunogenicity will be centered on the affinity-determining regions. Modifications to CDR regions can be designed that reduce the immunogenic potential while maintaining the bioactivity of the antibody molecule.  相似文献   

17.
Monoclonal antibodies represent an attractive therapeutic tool as they are highly specific for their targets, convey effector functions and enjoy robust manufacturing procedures. Humanization of murine monoclonal antibodies has vastly improved their in vivo tolerability. Humanization, the replacement of mouse constant regions and V framework regions for human sequences, results in a significantly less immunogenic product. However, some humanized and even fully human sequence-derived antibody molecules still carry immunological risk. to more fully understand the immunologic potential of humanized and human antibodies, we analyzed CD4+ helper T cell epitopes in a set of eight humanized antibodies. the antibodies studied represented a number of different VH and VL family members carrying unique CDR regions. In spite of these differences, CD4+ T cell epitopes were found only in CDR-sequence containing regions. We were able to incorporate up to two amino acid modifications in a single epitope that reduced the immunogenic potential while retaining full biologic function. We propose that immunogenicity will always be present in some antibody molecules due to the nature of the antigen-specific combining sites. A consequence of this result is modifications to reduce immunogenicity will be centered on the affinity-determining regions. Modifications to CDR regions can be designed that reduce the immunogenic potential while maintaining the bioactivity of the antibody molecule.Key words: therapeutic, antibody, immunogenicity, deimmunizing, epitope  相似文献   

18.
1-17-2 is a rat anti-human DEC-205 monoclonal antibody that induces internalization and delivers antigen to dendritic cells (DCs). The potentially clinical application of this antibody is limited by its murine origin. Traditional humanization method such as complementarity determining regions (CDRs) graft often leads to a decreased or even lost affinity. Here we have developed a novel antibody humanization method based on computer modeling and bioinformatics analysis. First, we used homology modeling technology to build the precise model of Fab. A novel epitope scanning algorithm was designed to identify antigenic residues in the framework regions (FRs) that need to be mutated to human counterpart in the humanization process. Then virtual mutation and molecular dynamics (MD) simulation were used to assess the conformational impact imposed by all the mutations. By comparing the root-mean-square deviations (RMSDs) of CDRs, we found five key residues whose mutations would destroy the original conformation of CDRs. These residues need to be back-mutated to rescue the antibody binding affinity. Finally we constructed the antibodies in vitro and compared their binding affinity by flow cytometry and surface plasmon resonance (SPR) assay. The binding affinity of the refined humanized antibody was similar to that of the original rat antibody. Our results have established a novel method based on epitopes scanning and MD simulation for antibody humanization.  相似文献   

19.
《MABS-AUSTIN》2013,5(6):1045-1057
Antibodies derived from non-human sources must be modified for therapeutic use so as to mitigate undesirable immune responses. While complementarity-determining region (CDR) grafting-based humanization techniques have been successfully applied in many cases, it remains challenging to maintain the desired stability and antigen binding affinity upon grafting. We developed an alternative humanization approach called CoDAH (“Computationally-Driven Antibody Humanization”) in which computational protein design methods directly select sets of amino acids to incorporate from human germline sequences to increase humanness while maintaining structural stability. Retrospective studies show that CoDAH is able to identify variants deemed beneficial according to both humanness and structural stability criteria, even for targets lacking crystal structures. Prospective application to TZ47, a murine anti-human B7H6 antibody, demonstrates the approach. Four diverse humanized variants were designed, and all possible unique VH/VL combinations were produced as full-length IgG1 antibodies. Soluble and cell surface expressed antigen binding assays showed that 75% (6 of 8) of the computationally designed VH/VL variants were successfully expressed and competed with the murine TZ47 for binding to B7H6 antigen. Furthermore, 4 of the 6 bound with an estimated KD within an order of magnitude of the original TZ47 antibody. In contrast, a traditional CDR-grafted variant could not be expressed. These results suggest that the computational protein design approach described here can be used to efficiently generate functional humanized antibodies and provide humanized templates for further affinity maturation.  相似文献   

20.
The tumor-associated glycoprotein (TAG)-72 is expressed in the majority of human adenocarcinomas but is rarely expressed in most normal tissues, which makes it a potential target for the diagnosis and therapy of a variety of human cancers. Here we describe the construction, affinity maturation, and biological characterization of an anti-TAG-72 humanized antibody with minimum potential immunogenicity. The humanized antibody was constructed by grafting only the specificity-determining residues (SDRs) within the complementarity-determining regions (CDRs) onto homologous human immunoglobulin germ line segments while retaining two mouse heavy chain framework residues that support the conformation of the CDRs. The resulting humanized antibody (AKA) showed only about 2-fold lower affinity compared with the original murine monoclonal antibody CC49 and 27-fold lower reactivity to patient serum compared with the humanized antibody HuCC49 that was constructed by CDR grafting. The affinity of AKA was improved by random mutagenesis of the heavy chain CDR3 (HCDR3). The highest affinity variant (3E8) showed 22-fold higher affinity compared with AKA and retained the original epitope specificity. Mutational analysis of the HCDR3 residues revealed that the replacement of Asn(97) by isoleucine or valine was critical for the affinity maturation. The 3E8 labeled with (125)I or (131)I showed efficient tumor targeting or therapeutic effects, respectively, in athymic mice with human colon carcinoma xenografts, suggesting that 3E8 may be beneficial for the diagnosis and therapy of tumors expressing TAG-72.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号