首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We have previously reported that SAP97 enhancement of hKv1.5 currents requires an intact Kv1.5 N-terminus and is independent of the PDZ-binding motif at the C-terminus of the channel [J. Eldstrom, W.S. Choi, D.F. Steele, D. Fedida, SAP97 increases Kv1.5 currents through an indirect N-terminal mechanism, FEBS Lett. 547 (2003) 205-211]. Here, we report that an interaction between the two proteins can be detected under certain conditions but their interaction is irrelevant to the enhancement of channel expression. Instead, a threonine residue at position 15 in the hKv1.5 N-terminus is critically important. Mutation of this residue, which lies within a consensus site for phosphorylation by protein kinase C, to an alanine, completely abrogated the effect of SAP97 on channel expression. Although we were unable to detect phosphorylation of this residue, specific inhibition of kinase C by Calphostin C eliminated the increase in wild-type hKv1.5 currents associated with SAP97 overexpression suggesting a role for this kinase in the response.  相似文献   

2.
Membrane- associated guanylate kinase proteins (MAGUKs) are important determinants of localization and organization of ion channels into specific plasma membrane domains. However, their exact role in channel function and cardiac excitability is not known. We examined the effect of synapse-associated protein 97 (SAP97), a MAGUK abundantly expressed in the heart, on the function and localization of Kv1.5 subunits in cardiac myocytes. Recombinant SAP97 or Kv1.5 subunits tagged with green fluorescent protein (GFP) were overexpressed in rat neonatal cardiac myocytes and in Chinese hamster ovary (CHO) cells from adenoviral or plasmidic vectors. Immunocytochemistry, fluorescence recovery after photobleaching, and patch-clamp techniques were used to study the effects of SAP97 on the localization, mobility, and function of Kv1.5 subunits. Adenovirus-mediated SAP97 overexpression in cardiac myocytes resulted in the clustering of endogenous Kv1.5 subunits at myocyte-myocyte contacts and an increase in both the maintained component of the outward K(+) current, I(Kur) (5.64 +/- 0.57 pA/pF in SAP97 myocytes vs. 3.23 +/- 0.43 pA/pF in controls) and the number of 4-aminopyridine-sensitive potassium channels in cell-attached membrane patches. In live myocytes, GFP-Kv1.5 subunits were mobile and organized in clusters at the basal plasma membrane, whereas SAP97 overexpression reduced their mobility. In CHO cells, Kv1.5 channels were diffusely distributed throughout the cell body and freely mobile. When coexpressed with SAP97, Kv subunits were organized in plaquelike clusters and poorly mobile. In conclusion, SAP97 regulates the K(+) current in cardiac myocytes by retaining and immobilizing Kv1.5 subunits in the plasma membrane. This new regulatory mechanism may contribute to the targeting of Kv channels in cardiac myocytes.  相似文献   

3.
4.
The targeting of ion channels to particular membrane microdomains and their organization in macromolecular complexes allow excitable cells to respond efficiently to extracellular signals. In this study, we describe the formation of a complex that contains two scaffolding proteins: caveolin-3 (Cav-3) and a membrane-associated guanylate kinase (MAGUK), SAP97. Complex formation involves the association of Cav-3 with a segment of SAP97 localized between its PDZ2 and PDZ3 domains. In heterologous expression systems, this scaffolding complex can recruit Kv1.5 to form a tripartite complex in which each of the three components interacts with the other two. These interactions regulate the expression of currents encoded by a glycosylation-deficient mutant of Kv1.5. We conclude that the association of Cav-3 with SAP97 may constitute the nucleation site for the assembly of macromolecular complexes containing potassium channels.  相似文献   

5.
Yang XF  Yang Y  Lian YT  Wang ZH  Li XW  Cheng LX  Liu JP  Wang YF  Gao X  Liao YH  Wang M  Zeng QT  Liu K 《PloS one》2012,7(4):e36379
Selective blockade of Kv1.3 channels in effector memory T (T(EM)) cells was validated to ameliorate autoimmune or autoimmune-associated diseases. We generated the antibody directed against one peptide of human Kv1.3 (hKv1.3) extracellular loop as a novel and possible Kv1.3 blocker. One peptide of hKv1.3 extracellular loop E3 containing 14 amino acids (E314) was chosen as an antigenic determinant to generate the E314 antibody. The E314 antibody specifically recognized 63.8KD protein stably expressed in hKv1.3-HEK 293 cell lines, whereas it did not recognize or cross-react to human Kv1.1(hKv1.1), Kv1.2(hKv1.2), Kv1.4(hKv1.4), Kv1.5(hKv1.5), KCa3.1(hKCa3.1), HERG, hKCNQ1/hKCNE1, Nav1.5 and Cav1.2 proteins stably expressed in HEK 293 cell lines or in human atrial or ventricular myocytes by Western blotting analysis and immunostaining detection. By the technique of whole-cell patch clamp, the E314 antibody was shown to have a directly inhibitory effect on hKv1.3 currents expressed in HEK 293 or Jurkat T cells and the inhibition showed a concentration-dependence. However, it exerted no significant difference on hKv1.1, hKv1.2, hKv1.4, hKv1.5, hKCa3.1, HERG, hKCNQ1/hKCNE1, L-type Ca(2+) or voltage-gated Na(+) currents. The present study demonstrates that the antibody targeting the E314 peptide of hKv1.3 pore region could be a novel, potent and specific hKv1.3 blocker without affecting a variety of closely related K(v)1 channels, KCa3.1 channels and functional cardiac ion channels underlying central nervous system (CNS) disorders or drug-acquired arrhythmias, which is required as a safe clinic-promising channel blocker.  相似文献   

6.
Mechanisms of ion channel clustering by cytoplasmic membrane-associated guanylate kinases such as postsynaptic density 95 (PSD-95) and synapse-associated protein 97 (SAP97) are poorly understood. Here, we investigated the interaction of PSD-95 and SAP97 with voltage-gated or Kv K(+) channels. Using Kv channels with different surface expression properties, we found that clustering by PSD-95 depended on channel cell surface expression. Moreover, PSD-95-induced clusters of Kv1 K(+) channels were present on the cell surface. This was most dramatically demonstrated for Kv1.2 K(+) channels, where surface expression and clustering by PSD-95 were coincidentally promoted by coexpression with cytoplasmic Kvbeta subunits. Consistent with a mechanism of plasma membrane channel-PSD-95 binding, coexpression with PSD-95 did not affect the intrinsic surface expression characteristics of the different Kv channels. In contrast, the interaction of Kv1 channels with SAP97 was independent of Kv1 surface expression, occurred intracellularly, and prevented further biosynthetic trafficking of Kv1 channels. As such, SAP97 binding caused an intracellular accumulation of each Kv1 channel tested, through the accretion of SAP97 channel clusters in large (3-5 microm) ER-derived intracellular membrane vesicles. Together, these data show that ion channel clustering by PSD-95 and SAP97 occurs by distinct mechanisms, and suggests that these channel-clustering proteins may play diverse roles in regulating the abundance and distribution of channels at synapses and other neuronal membrane specializations.  相似文献   

7.
Kv1.5 potassium channel represents a promising target for atrial fibrillation (AF) therapy. During AF, the renin–angiotensin system is markedly activated. Recent evidence indicates that angiotensin II (Ang II) can upregulate Kv1.5 channel, but the mechanism remains unknown. In this study, we report that Ang II-mediated transforming growth factor-beta1 (TGF-β1)/Smad2/3 and extracellular signal-regulated kinase (ERK) 1/2 signalings are involved in atrial Kv1.5 expression. In neonatal rat atrial myocytes, quantitative PCR and Western blotting revealed that Ang II upregulated TGF-β1, synapse-associated protein 97 (SAP97) and Kv1.5 expression in a time- and concentration-dependent manner. The Ang II-induced upregulation of Kv1.5, SAP97 and phosphorylated Smad2/3 (P-Smad2/3) were reversed by the Ang II type 1 (AT1) receptor antagonist losartan, an anti-TGF-β1 antibody and the ERK 1/2 inhibitor PD98059 but not by the AT2 receptor antagonist PD123319. mRNA knockdown of either Smad2 or Smad3 blocked Ang II-induced expression of Kv1.5 and SAP97. These data suggest that AT1 receptor/TGF-β1/P-Smad2/3 and ERK 1/2 signalings are involved in Ang II-induced Kv1.5 and SAP97 expression. Flow cytometry and Western blotting revealed that losartan and the anti-TGF-β1 antibody diminished Ang II-induced reactive oxygen species (ROS) generation and that the antioxidants diphenyleneiodonium and N-acetyl cysteine inhibited Ang II-induced expression of P-Smad2/3, phosphorylated ERK (P-ERK) 1/2, Kv1.5, SAP97, suggesting that ROS participate in Kv1.5 and SAP97 regulation by modulating Ang II-induced P-Smad2/3 and P-ERK 1/2 expression. In conclusion, we demonstrate that ROS-dependent Ang II/AT1 receptor/TGF-β1/P-Smad2/3 and Ang II/ERK 1/2 signalings are involved in atrial Kv1.5 and SAP97 expression. Antioxidants would be beneficial for AF treatment through inhibiting atrial Kv1.5 expression.  相似文献   

8.
The pore-forming alpha-subunit Kv4.2 is a key constituent of the A-type channel and critically involved in the regulation of dendritic excitability and plasticity. Here we show that Kv4.2 is enriched in the postsynaptic density (PSD) fraction and specifically interacts with synapse-associated protein 97 (SAP97). This interaction requires an intact C terminus of Kv4.2 and occurs via the PDZ domains of SAP97. Pharmacologically induced translocation of SAP97 to spines also drives Kv4.2 to the PSD, whereas SAP97 lentivirally based RNA interference reduces Kv4.2 in the PSD. In addition, calcium/calmodulin-dependent protein kinase II (CaMKII)-dependent SAP97 phosphorylation regulates the subcellular localization of Kv4.2. These results show that SAP97-CaMKII pathway plays an important role for the trafficking of Kv4.2 to dendrites and spines.  相似文献   

9.
Voltage-gated potassium (Kv) channel subtypes localize to the plasma membrane of a number of cell types, and the sarcolemma in myocytes. Because many signaling molecules concentrate in subdomains of the plasma membrane, the localization of Kv channels to these sites may have important implications for channel function and regulation. In this study, the association of the voltage-gated potassium channel Kv1.5 with a specific subtype of lipid rafts, caveolae, in rat and canine cardiac myocytes has been investigated. Interactions between caveolin-3 and beta-dystroglycan or eNOS, as well as between Kv1.5 and alpha-actinin were readily detected in co-immunoprecipitation experiments, whereas no association between Kv1.5 and caveolin-3 was evident. Wide-field microscopy and deconvolution techniques revealed that the percent co-localization of Kv1.5 with caveolin-3 was extremely low in atrial myocytes from rat and canine hearts (8+/-1% and 12.2+/-2%, respectively), and limited in ventricular myocytes (11+/-4% and 20+/-3% in rat and canine, respectively). Immunoelectron microscopic imaging of rat atrial and ventricular tissues showed that Kv1.5 and caveolin-3 labeling generally did not overlap. In HEK293 cells stably expressing the channel, Kv1.5 did not target to the low buoyant density raft fraction along with flotillin but instead fractionated along with the non-raft associated transferrin receptor. Taken together, these results suggest that Kv1.5 is not present in caveolae of rat and canine heart.  相似文献   

10.
Cholesterol-metabolism-associated molecules, including scavenger receptor class A (SR-A), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), CD36, ACAT1, ABCA1, ABCG1, and scavenger receptor class B type I, can modulate cholesterol metabolism in the transformation from macrophages to foam cells. Voltage-gated potassium channel Kv1.3 has increasingly been demonstrated to play an important role in the modulation of macrophage function. Here, we investigate the role of Kv1.3 in modulating cholesterol-metabolism-associated molecules in human acute monocytic leukemia cell-derived macrophages (THP-1 macrophages) and human monocyte-derived macrophages exposed to oxidized LDL (ox-LDL). Human Kv1.3 and Kv1.5 channels (hKv1.3 and hKv1.5) are expressed in macrophages and form a heteromultimeric channel. The hKv1.3-E314 antibody that we had generated as a specific hKv1.3 blocker inhibited outward delayed rectifier potassium currents, whereas the hKv1.5-E313 antibody that we had generated as a specific hKv1.5 blocker failed. Accordingly, the hKv1.3-E314 antibody reduced percentage of cholesterol ester and enhanced apoA-I-mediated cholesterol efflux in THP-1 macrophages and human monocyte-derived macrophages exposed to ox-LDL. The hKv1.3-E314 antibody downregulated SR-A, LOX-1, and ACAT1 expression and upregulated ABCA1 expression in THP-1 macrophages and human monocyte-derived macrophages. Our results reveal that specific Kv1.3 blockade represents a novel strategy modulating cholesterol metabolism in macrophages, which benefits the treatment of atherosclerotic lesions.  相似文献   

11.
Because structural remodeling of several proteins, including ion channels, may underlie the abnormal action potentials of Purkinje cells (PCs) that survive in the 48 hr infarcted zone of the canine heart (IZPCs), we sought to determine the subcellular structure and function of the KV1.5 (KCNA5) protein in single IZPCs. Clustering of the Kv1.5 subunit in axons is regulated by a synapse-associated protein, SAP97, and is linked to an actin-binding protein, cortactin, and an intercellular adhesion molecule, N-cadherin. To understand the functional remodeling of the Kv1.5 channel and its regulation in IZPCs, Kv1.5 currents in PCs were measured as the currents blocked by 10 µM RSD1379 using patch-clamp techniques. Immunocytochemistry and confocal imaging were used for both single and aggregated IZPCs vs normal PCs (NZPCs) to determine the relationship of Kv1.5 with SAP-97, cortactin and N-cadherin. In IZPCs, both the sarcolemma (SL) and intercalated disk (ID) Kv1.5 protein are abundant, and the amount of cytosolic Kv1.5 protein is greatly increased. SAP-97 is also increased at IDs and has notable cytosolic localization suggesting that SAP-97 may regulate the functional expression and stabilization of Kv1.5 channels in IZPCs. Cortactin, which is located with N-cadherin at IDs in NZPCs, remains at IDs but begins to dissociate from N-cadherin, often forming ring structures and colocalizing with Kv1.5 within IZPCs. At the same time, cortactin/Kv1.5 colocalization is increased at the ID, suggesting an ongoing active process of membrane trafficking of the channel protein. Finally, the Kv1.5 current, measured as the RSD1379-sensitive current, at +40 mV did not differ between NZPCs (0.81±0.24 pA/pF, n = 14) and IZPCs (0.83±0.21 pA/pF, n = 13, NS). In conclusion, the subcellular structural remodeling of Kv1.5, SAP97 and cortactin maintained and normalized the function of the Kv1.5 channel in Purkinje cells that survived myocardial infarction.  相似文献   

12.
We have investigated the interactions of prototypical PDZ domains with both the C- and N-termini of Kv1.5 and other Kv channels. A combination of in vitro binding and yeast two-hybrid assays unexpectedly showed that PDZ domains derived from PSD95 bind both the C- and N-termini of the channels with comparable avidity. From doubly transfected HEK293 cells, Kv1.5 was found to co-immunoprecipitate with the PDZ protein, irrespective of the presence of the canonical C-terminal PDZ-binding motif in Kv1.5. Imaging analysis of the same HEK cell lines demonstrated that co-localization of Kv1.5 with PSD95 at the cell surface is similarly independent of the canonical PDZ-binding motif. Deletion analysis localized the N-terminal PDZ-binding site in Kv1.5 to the T1 region of the channel. Co-expression of PSD95 with Kv1.5 N- and C-terminal deletions in HEK cells had contrasting effects on the magnitudes of the potassium currents across the membranes of these cells. These findings may have important implications for the regulation of channel expression and function by PDZ proteins like PSD95.  相似文献   

13.
Synapse-associated protein-97 (SAP97) is a membrane-associated guanylate kinase scaffolding protein expressed in cardiomyocytes. SAP97 has been shown to associate and modulate voltage-gated potassium (Kv) channel function. In contrast to Kv channels, little information is available on interactions involving SAP97 and inward rectifier potassium (Kir2.x) channels that underlie the classical inward rectifier current, IK1. To investigate the functional effects of silencing SAP97 on IK1 in adult rat ventricular myocytes, SAP97 was silenced using an adenoviral short hairpin RNA vector. Western blot analysis showed that SAP97 was silenced by ∼85% on day 3 post-infection. Immunostaining showed that Kir2.1 and Kir2.2 co-localize with SAP97. Co-immunoprecipitation (co-IP) results demonstrated that Kir2.x channels associate with SAP97. Voltage clamp experiments showed that silencing SAP97 reduced IK1 whole cell density by ∼55%. IK1 density at −100 mV was −1.45 ± 0.15 pA/picofarads (n = 6) in SAP97-silenced cells as compared with −3.03 ± 0.37 pA/picofarads (n = 5) in control cells. Unitary conductance properties of IK1 were unaffected by SAP97 silencing. The major mechanism for the reduction of IK1 density appears to be a decrease in Kir2.x channel abundance. Furthermore, SAP97 silencing impaired IK1 regulation by β1-adrenergic receptor (β1-AR) stimulation. In control, isoproterenol reduced IK1 amplitude by ∼75%, an effect that was blunted following SAP97 silencing. Our co-IP data show that β1-AR associates with SAP97 and Kir2.1 and also that Kir2.1 co-IPs with protein kinase A and β1-AR. SAP97 immunolocalizes with protein kinase A and β1-AR in the cardiac myocytes. Our results suggest that in cardiac myocytes SAP97 regulates surface expression of channels underlying IK1, as well as assembles a signaling complex involved in β1-AR regulation of IK1.  相似文献   

14.
The Kv7 family (Kv7.1–7.5) of voltage-activated potassium channels contributes to the maintenance of resting membrane potential in excitable cells. Previously, we provided pharmacological and electrophysiological evidence that Kv7.4 and Kv7.5 form predominantly heteromeric channels and that Kv7 activity is regulated by protein kinase C (PKC) in response to vasoconstrictors in vascular smooth muscle cells. Direct evidence for Kv7.4/7.5 heteromer formation, however, is lacking. Furthermore, it remains to be determined whether both subunits are regulated by PKC. Utilizing proximity ligation assays to visualize single molecule interactions, we now show that Kv7.4/Kv.7.5 heteromers are endogenously expressed in vascular smooth muscle cells. Introduction of dominant-negative Kv7.4 and Kv7.5 subunits in mesenteric artery myocytes reduced endogenous Kv7 currents by 84 and 76%, respectively. Expression of an inducible protein kinase Cα (PKCα) translocation system revealed that PKCα activation is sufficient to suppress endogenous Kv7 currents in A7r5 rat aortic and mesenteric artery smooth muscle cells. Arginine vasopressin (100 and 500 pm) and the PKC activator phorbol 12-myristate 13-acetate (1 nm) each inhibited human (h) Kv7.5 and hKv7.4/7.5, but not hKv7.4 channels expressed in A7r5 cells. A decrease in hKv7.5 and hKv7.4/7.5 current densities was associated with an increase in PKC-dependent phosphorylation of the channel proteins. These findings provide further evidence for a differential regulation of Kv7.4 and Kv7.5 channel subunits by PKC-dependent phosphorylation and new mechanistic insights into the role of heteromeric subunit assembly for regulation of vascular Kv7 channels.  相似文献   

15.
Besides their role in the generation of action potentials, voltage-gated potassium channels are implicated in cellular processes ranging from cell division to cell death. The K+ channel regulator protein (KCNRG), identified as a putative tumor suppressor, reduces K+ currents through human K+ channels hKv1.1 and hKv1.4 expressed in Xenopus oocytes. Current attenuation requires the presence of the N-terminal T1 Domain and immunoprecipitation experiments suggest association of KCNRG with the N-terminus of the channel. Our data indicates that KCNRG is an ER-associated protein, which we propose regulates Kv1 family channel proteins by retaining a fraction of channels in endomembranes.  相似文献   

16.
The number of ion channels expressed on the cell surface shapes the complex electrical response of excitable cells. Maintaining a balance between anterograde and retrograde trafficking of channel proteins is vital in regulating steady-state cell surface expression. Kv1.5 is an important voltage-gated K(+) channel in the cardiovascular system underlying the ultra-rapid rectifying potassium current (Ik(ur)), a major repolarizing current in atrial myocytes, and regulating the resting membrane potential and excitability of smooth muscle cells. Defects in the expression of Kv1.5 are associated with pathological states such as chronic atrial fibrillation and hypoxic pulmonary hypertension. There is, thus, substantial interest in understanding the mechanisms regulating cell surface channel levels. Here, we investigated the internalization and recycling of Kv1.5 in the HL-1 immortalized mouse atrial myocytes. Kinetic studies indicate that Kv1.5 is rapidly internalized to a perinuclear region where it co-localizes with the early endosomal marker, EEA1. Importantly, we identified that a population of Kv1.5, originating on the cell surface, internalized and recycled back to the plasma membrane. Notably, Kv1.5 recycling processes are driven by specific Rab-dependent endosomal compartments. Thus, co-expression of GDP-locked Rab4S22N and Rab11S25N dominant-negative mutants decreased the steady-state Kv1.5 surface levels, whereas GTPase-deficient Rab4Q67L and Rab11Q70L mutants increased steady-state Kv1.5 surface levels. These data reveal an unexpected dynamic trafficking of Kv1.5 at the myocyte plasma membrane and demonstrate a role for recycling in the maintenance of steady-state ion channel surface levels.  相似文献   

17.
Modulation by Clamping: Kv4 and KChIP Interactions   总被引:1,自引:0,他引:1  
Wang K 《Neurochemical research》2008,33(10):1964-1969
The rapidly inactivating (A-type) potassium channels regulate membrane excitability that defines the fundamental mechanism of neuronal functions such as pain signaling. Cytosolic Kv channel-interacting proteins KChIPs that belong to neuronal calcium sensor (NCS) family of calcium binding EF-hand proteins co-assemble with Kv4 (Shal) α subunits to form a native complex that encodes major components of neuronal somatodendritic A-type K+ current, ISA, in neurons and transient outward current, ITO, in cardiac myocytes. The specific binding of auxiliary KChIPs to the Kv4 N-terminus results in modulation of gating properties, surface expression and subunit assembly of Kv4 channels. Here, I attempt to emphasize the interaction between KChIPs and Kv4 based on recent progress made in understanding the structure complex in which a single KChIP1 molecule laterally clamps two neighboring Kv4.3 N-termini in a 4:4 manner. Greater insights into molecular mechanism between KChIPs and Kv4 interaction may provide therapeutic potentials of designing compounds aimed at disrupting the protein–protein interaction for treatment of membrane excitability-related disorders. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

18.
The action of cytochalasins, actin-disrupting agents on human Kv1.5 channel (hKv1.5) stably expressed in Ltk cells was investigated using the whole cell patch-clamp technique. Cytochalasin B inhibited hKv1.5 currents rapidly and reversibly at +60 mV in a concentration-dependent manner with an IC50 of 4.2 µM. Cytochalasin A, which has a structure very similar to cytochalasin B, inhibited hKv1.5 (IC50 of 1.4 µM at +60 mV). Pretreatment with other actin filament disruptors cytochalasin D and cytochalasin J, and an actin filament stabilizing agent phalloidin had no effect on the cytochalasin B-induced inhibition of hKv1.5 currents. Cytochalasin B accelerated the decay rate of inactivation for the hKv1.5 currents. Cytochalasin B-induced inhibition of the hKv1.5 channels was voltage dependent with a steep increase over the voltage range of the channel's opening. However, the inhibition exhibited voltage independence over the voltage range in which channels are fully activated. Cytochalasin B produced no significant effect on the steady-state activation or inactivation curves. The rate constants for association and dissociation of cytochalasin B were 3.7 µM/s and 7.5 s–1, respectively. Cytochalasin B produced a use-dependent inhibition of hKv1.5 current that was consistent with the slow recovery from inactivation in the presence of the drug. Cytochalasin B (10 µM) also inhibited an ultrarapid delayed rectifier K+ current (IK,ur) in human atrial myocytes. These results indicate that cytochalasin B primarily blocks activated hKv1.5 channels and endogenous IK,ur in a cytoskeleton-independent manner as an open-channel blocker. voltage-gated K+ channel; heart; open channel block  相似文献   

19.
The olfactory bulb (OB) contains the highest concentration of the insulin receptor (IR) kinase in the central nervous system; however, its functional role and modulation in this region remains poorly understood. IR kinase contains a number of proline-rich motifs, making it an excellent candidate for modulation by SH3 domain-containing adaptor proteins. Kv1.3, a voltage-gated Shaker potassium channel and tyrosine phosphorylation substrate of IR kinase, contains several proline-rich sequences and a canonical post-synaptic density 95 (PSD-95)/discs large/zO-1 domain (PDZ) recognition motif common to most Shaker family members. We sought to determine if a functional relationship existed between Kv1.3, IR kinase, and the SH3/PDZ adaptor protein PSD-95. Through patch-clamp electrophysiology, immunochemistry, and co-immunoprecipitation, we found that while Kv1.3 and PSD-95 alone interact via the canonical C-terminal PDZ recognition motif of the channel, this molecular site of interaction acts to cluster the channels but the PSD-95 SH3-guanylate kinase domain functionally modulates Kv1.3 activity via two proline-rich domains in its N- and C-terminal. Therefore, these data suggest that adaptor domains responsible for ion-channel clustering and functional modulation are not necessarily coupled. Moreover, IR kinase and Kv1.3 can only be co-immunoprecipitated in the presence of PSD-95 as the adapting linker. Functionally, insulin-dependent Kv1.3 phosphorylation that causes channel current suppression is blocked via interaction with the PSD-95 SH3-guanylate kinase domain. Because all the three proteins co-localize in multiple lamina of the OB that are known to be rich in synaptic connections, membrane excitability and synaptic transmission at critical locations in the OB have the capacity to be finely regulated.  相似文献   

20.
NIP-142 was shown to prolong atrial effective refractory period and to terminate atrial fibrillation and flutter in in vivo canine models. To obtain information on its antiarrhythmic action, we examined the effect of NIP-142 on cloned human cardiac K+ channel Kv1.5 (hKv1.5) currents stably expressed in a human cell line using whole-cell voltage clamp methods. NIP-142 inhibited the hKv1.5 current in a concentration-dependent and voltage-independent manner. The inhibition was larger at the end of depolarizing pulse than at the outward current peak. The IC50 for inhibition of the steady-state phase was 4.75 microM. A cross-over phenomenon was observed when current traces in the absence and presence of NIP-142 were superimposed. Inhibition of hKv1.5 current by NIP-142 was frequency-independent; changing the depolarizing pulse frequencies (0.1, 0.2, 1 Hz) and little effect on the degree of inhibition. NIP-142 decreased the maximal peak amplitude of kHv1.5 current at the first command pulse after 3 min rest in the presence of the drug. These results suggest that NIP-142 has inhibitory effects on the hKv 1.5 current through interaction with both open and closed states of the channel, which may underlie its antiarrhythmic activity in the atria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号