首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
In Euglena gracilis, the cytoplasmic large subunit (LSU) rRNA is composed of 14 discrete small RNA species that must somehow interact in the functional ribosome. We have isolated native complexes of Euglena rRNA and show here that the largest of these complexes contains eight of the 14 LSU rRNA species. Several of these small rRNA species are able to associate in vitro to reform an isolated domain of LSU rRNA structure.  相似文献   

2.
3.
The specific binding in vitro of the Qβ RNA polymerase to Qβ RNA has been detected by the formation of an enzyme-Qβ RNA complex that did not exchange bound RNA molecules and was not dissociated by 0.8 m NaCl. Formation of this nondissociating complex required GTP and two host protein factors, but not ATP, CTP, UTP, or Mg2+ ions. GDP, GMP, dGTP, ITP, and β,γ-methylene GTP did not replace GTP in the reaction. Complex formation at 0 °C was not observed, and the rates of the reaction at 30 °C and 25 °C were 41% and 23%, respectively, of the rate at 37 °C. The reaction occurred with intact Qβ RNA and with polycytidylic acid template but not with bacterial or other bacteriophage RNA. With limiting amounts of enzyme, the amount of Qβ RNA bound in the nondissociating complex was the same as the amount of [γ-32P]GTP incorporated into nascent RNA chains, indicating a close relationship between complex formation and the initiation of RNA synthesis. The two reactions appear to be separate, however, because in the absence of Mg2+ ions, when complex formation occurred readily, no RNA synthesis could be detected either by incorporation of labeled substrate into acid-insoluble material or by formation of short RNA chains still attached to the enzyme. In the presence of factor protein and GTP, a maximum of one active enzyme molecule was bound per molecule of Qβ RNA template, as determined by a liquid polymer phase-separation procedure. These results suggest that formation of the nondissociating complex measures recognition by the Qβ RNA polymerase of a single Qβ RNA site utilized for the initiation of synthesis.  相似文献   

4.
5.
The ability of short RNAs (21-27 nucleotides) to silence genes containing homologous nucleotide sequences is related to RNA silencing. The pathways of short RNAs (siRNA and microRNA) biogenesis from their precursors, double stranded and hairpin RNAs respectively, are briefly reviewed. The functioning of specific RNA binding domains found for the first time in the proteins operating in RNA interference (RNAi) is considered. The interactions of these domains with the earlier well known RNA binding modules in RNAi proteins are described.  相似文献   

6.

The primordial RNA world is a hypothetical era prior to the appearance of protein and DNA, when RNA molecules were the sole building blocks for early forms of life on Earth. A critical concern with the RNA-world hypothesis is the instability of the cytosine nucleobase compared to the other three bases (adenine, guanine, and uracil). The author proposes that cytosine residues could have stably existed in the primordial world in the RNA i-motif, a four-stranded quadruplex structure formed by base-pairing of protonated and unprotonated cytosine residues under acidic conditions. The i-motif structure not only increases the lifetime of cytosine residues by slowing their deamination rate, but could also allow RNA polymers to bind to certain ligands (e.g., anions) to perform critical functions. Future studies focused on determining the rate of cytosine deamination in RNA i-motifs over a range of pH, temperature, and pressure conditions, and on interrogating the interactions between ligands and RNA i-motifs, could uncover new evidence of the origin of life on Earth.

  相似文献   

7.
Giardia lamblia, a parasitic protozoan, can contain a double-stranded RNA (dsRNA) virus, GLV (1). We have identified an RNA polymerase activity present specifically in cultures of GLV infected cells. This RNA polymerase activity is present in crude whole cell lysates as well as in lysates from GLV particles purified from the culture medium. The RNA polymerase has many characteristics common to other RNA polymerases (e.g. it requires divalent cations and all four ribonucleoside triphosphates), yet it is not inhibited by RNA polymerase inhibitors such as alpha-amanitin or rifampicin. The RNA polymerase activity synthesizes RNAs corresponding to one strand of the GLV genome, although under the present experimental conditions, the RNA products of the reaction are not full length viral RNAs. The in vitro products of the RNA polymerase reaction co-sediment through sucrose gradients with viral particles; and purified GLV viral particles have RNA polymerase activity. The RNA polymerase activities within and outside of infected cells closely parallel the amount of virus present during the course of viral infection. The similarities between the RNA polymerase of GLV and the polymerase associated with the dsRNA virus system of yeast are discussed.  相似文献   

8.
9.
How life emerged on this planet is one of the most important and fundamental questions of science. Although nearly all details concerning our origins have been lost in the depths of time, there is compelling evidence to suggest that the earliest life might have exploited the catalytic and self-recognition properties of RNA to survive. If an RNA based replicating system could be constructed in the laboratory, it would be much easier to understand the challenges associated with the very earliest steps in evolution and provide important insight into the establishment of the complex metabolic systems that now dominate this planet. Recent progress into the selection and characterization of ribozymes that promote nucleotide synthesis and RNA polymerization are discussed and outstanding problems in the field of RNA-mediated RNA replication are summarized.Cell division is a fundamental biological process in which genetic information is duplicated and shared between daughter cells. In extant cellular life, DNA serves as the repository of genetic information, but its replication is complicated by the daunting size and complex structural organization of modern genomes. For this reason, multiple enzymes are required to ensure faithful genomic replication in all higher life forms. Notably, simpler replicating systems such as viruses, have smaller genomes and tend to use correspondingly more error-prone replicative machinery (Kunkel and Bebenek 2000; Gago, Elena et al. 2009). Presumably, if the initial organisms on this planet also had small genomes, then the earliest genomic replication could have been a relatively simple and error-prone process compared with the complex replicative strategies of modern life.  相似文献   

10.
It is shown that the DNA-dependent RNA polymerase of Escherichia coli can synthesize complementary RNA (cRNA) directly on rRNA and mRNA templates. Synthesis occurred preferentially in the presence of Mn2+ and at relatively high substrate and enzyme concentrations. No primer was required, and addition of oligo-U to a mRNA-dependent reaction gave no marked stimulation. Sedimentation analysis of cRNA made on different templates indicated that the products were mainly 2-4 S, but a fraction of the product was larger. Fingerprints of 32P-labelled cRNA made on 5 S rRNA and 18 S rRNA indicated that the complexity of the cRNAs was related to the size of the template, suggesting that a substantial portion of the templates were copied. This reaction provides a simple method for preparing cRNA of high specific activity for use in hybridisation studies, and possibly in sequence analysis. 32P-labelled cRNA made on 18 S and 28 S rRNA was a sensitive hybridisation probe for detection of the specific fragments of mouse DNA containing the rRNA genes.  相似文献   

11.
The manifestation of RNA interference (RNAi)-based therapeutics lies in safe and successful delivery of small interfering RNAs (siRNAs), the molecular entity that triggers and guides sequence-specific degradation of target mRNAs. Optimizing the chemistry and structure of siRNAs to achieve maximum efficacy is an important parameter in the development of siRNA therapeutics. The RNAi protein machinery can tolerate a variety of non-canonical modifications made to siRNAs, each of which imparts advantageous properties. Here, we review these modifications to siRNAs in pre-clinical and clinical studies.  相似文献   

12.
Interaction of the sex-lethal RNA binding domains with RNA.   总被引:6,自引:2,他引:4       下载免费PDF全文
R Kanaar  A L Lee  D Z Rudner  D E Wemmer    D C Rio 《The EMBO journal》1995,14(18):4530-4539
Sex determination and X chromosome dosage compensation in Drosophila melanogaster are directed by the Sex-lethal (Sxl) protein. In part, Sxl functions by regulating the splicing of the transformer pre-mRNA by binding to a 3' splice site polypyrimidine tract. Polypyrimidine tracts are essential for splicing of metazoan pre-mRNAs. To unravel the mechanism of splicing regulation at polypyrimidine tracts we analyzed the interaction of Sxl with RNA. The RNA binding activity of Sxl was mapped to the two ribonucleoprotein consensus sequence domains of the protein. Quantitation of binding showed that both RNA binding domains (RBDs) were required in cis for site-specific RNA binding. Individual RBDs interacted with RNA more weakly and had lost the ability to discriminate between wild-type and mutant transformer polypyrimidine tracts. Structural elements in one of the RBDs that are likely to interact with a polypyrimidine tract were identified using nuclear magnetic resonance techniques. In addition, our data suggest that multiple imino protons of the transformer polypyrimidine tract were involved in hydrogen bonding. Interestingly, in vitro Sxl bound with equal affinity to polypyrimidine tracts of pre-mRNAs that it does not regulate in vivo. We discuss the implications of this finding for the mechanism through which Sxl may gain selectivity for particular polypyrimidine tracts in vivo.  相似文献   

13.
14.
The in vitro synthesis of RNA catalyzed by the Qβ RNA polymerase has been studied using a single-stranded 6 s RNA template. Whereas Qβ RNA replication results in the synthesis predominantly of single-stranded Qβ RNA, the predominant reaction product of 6 s RNA replication was found to be double stranded. When treated with formaldehyde to dissociate complementary base pairs, 6 s RNA exhibited a decrease in molecular weight as indicated by its slower sedimentation rate and faster electrophoretic mobility. 6 s RNA also exhibited a hyperchromic thermal transition indicative of double-stranded RNA and differing markedly from that of single-stranded RNA. The Tm of this transition increased linearly with the logarithm of ionic strength. Renaturation of 6 s RNA below the Tm occurred slowly and was also dependent upon ionic strength.  相似文献   

15.
An endogenous RNA (designated as PIVB RNA), which is capable of associating with the 4 S glucocorticoid receptor (GR) to generate the 6 S form, has been purified from AtT-20 cells (Ali, M., and Vedeckis, W. V. (1987) J. Biol. Chem., 262, 6771-6777). We describe here the physiochemical properties, GR-RNA interaction characteristics, and the chemical identification of PIVB RNA. 32P-Labeled PIVB RNA was similar to transfer RNA (tRNA) in its sedimentation coefficient (4 S) on sucrose gradients, electrophoretic mobility on formaldehyde-agarose gels, and receptor binding characteristics. The amino acid acceptor activity of PIVB RNA displayed a typical tRNA-dependent saturation curve and was 2-3-fold higher than that of homologous rabbit liver tRNA when tested using rabbit liver aminoacyl-tRNA synthetase. The purified [3H] aminoacyl-PIVB complex was also capable of binding to the 4 S GR to generate the 6 S form. The analysis of PIVB RNA on an acrylamide-urea sequencing gel revealed that it contained a major tRNA of 76 nucleotides and other minor tRNA species of 74 and 78 nucleotides. The identity of the tRNA present in the PIVB RNA was indirectly deduced by analyzing the 3H-amino acids, liberated from the [3H]aminoacyl-PIVB RNA (tRNA) complex, and subsequent analysis on an amino acid analyzer. PIVB RNA mainly contained tRNAArg (51.8%), tRNALys (17.1%), and tRNAHis (9.2%) which together accounted for 78% of the total PIVB tRNA. The remaining 22% of tRNA was contributed by threonine, valine, aspartic acid, alanine, and phenylalanine tRNAs. The GR displayed no species specificity, and tRNA samples from mouse, cow, rabbit, yeast, and Escherichia coli can bind to the mouse 4 S GR to generate the 6 S form. However, PIVB RNA did not affect the sedimentation profiles of albumin, chymotrypsinogen, and histone, indicating that PIVB RNA does not bind to all proteins. Thus, there may exist some specificity both at the level of protein (GR) and the selection of RNA (tRNA). The GR binding to PIVB RNA occurred at low (nM) receptor concentration, and PIVB RNA showed limited capacity to shift 4 S GR to the 6 S form. 22.4 X 10(-11) mol of PIVB RNA can completely shift 4.8 X 10(-13) mol of 4 S GR to 6 S. That is, PIVB RNA has to be in a 500-600-fold excess over the amounts of GR to observe a stable 6 S GR X RNA complex on sucrose gradients. These results conclusively demonstrate that the transformed GR specifically binds to endogenous tRNA.  相似文献   

16.
The West Nile virus (WNV) RNA genome harbors the characteristic methylated cap structure present at the 5' end of eukaryotic mRNAs. In the present study, we report a detailed study of the binding energetics and thermodynamic parameters involved in the interaction between RNA and the WNV RNA triphosphatase, an enzyme involved in the synthesis of the RNA cap structure. Fluorescence spectroscopy assays revealed that the initial interaction between RNA and the enzyme is characterized by a high enthalpy of association and that the minimal RNA binding site of NS3 is 13 nucleotides. In order to provide insight into the relationship between the enzyme structure and RNA binding, we also correlated the effect of RNA binding on protein structure using both circular dichroism and denaturation studies as structural indicators. Our data indicate that the protein undergoes structural modifications upon RNA binding, although the interaction does not significantly modify the stability of the protein.  相似文献   

17.
18.
19.
RNA synthesis: strategies for the use of bacteriophage RNA polymerases   总被引:14,自引:0,他引:14  
G Krupp 《Gene》1988,72(1-2):75-89
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号