首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dose– and time–mortality relationships of baculoviruses in pest insects are important for the determination of effective spraying regimes. A series of experiments with Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Spodoptera exigua MNPV (SeMNPV) against synchronized populations of S. exigua larvae in greenhouse chrysanthemum was conducted. Dose– and time–mortality relationships of different virus concentrations and S. exigua target stages were determined and the area foliage consumption was measured. Crop injury was greatly reduced when S. exigua were controlled as second or third instar larvae, whereas virus applications against fourth instar larvae could not prevent considerable crop injury, even at high concentrations. SeMNPV was approximately 10 times as infectious as AcMNPV when applied on greenhouse chrysanthemum. The relative virulence of AcMNPV and SeMNPV corresponded reasonably well with previously published laboratory bioassay data. SeMNPV killed second and fourth instar S. exigua larvae approximately 12 h faster than did AcMNPV in chrysanthemum, but no difference in speed of action was found for third instar larvae. The relative speed of action of AcMNPV and SeMNPV determined in chrysanthemum and in laboratory bioassays did not correspond for third instar S. exigua larvae; laboratory bioassay data can therefore not simply be extrapolated to the crop level.  相似文献   

2.
Chitin synthase (CHS) is an important enzymatic component, which is required for chitin formation in the cuticles and cuticular linings of other tissues in insects. CHSs have been divided into two classes, classes A and B, based on their amino acid sequence similarities and functions. Class A CHS (CHS‐A) is specifically expressed in the epidermis and related ectodermal cells such as tracheal cells, while class B CHS (CHS‐B) is expressed in gut epithelial cells that produce peritrophic matrices. In this study, we cloned the CHS‐A gene from the beet armyworm, Spodoptera exigua (SeCHS‐A). The SeCHS‐A contains an open reading frame of 4,698 nucleotides, encoding a protein of 1,565 amino acids with a predicted molecular mass of approximately 177.8 kDa. The SeCHS‐A mRNA was expressed in all developmental stages and specifically in the epidermis and tracheae tissue by quantitative real‐time‐PCR analysis. Expression of SeCHS‐A gene was suppressed by feeding double‐stranded RNA (dsCHS‐A, 400 ng/larva) in the third instar larvae of S. exigua. Suppression of the SeCHS‐A gene expression significantly increased 35% of mortality on pupation of S. exigua. Also, the third instar larvae fed with dsCHS‐A significantly increased susceptibility to entomopathogenic fungi, Beauveria bassiana ANU1 at 3 days after treatment. These results suggest that the SeCHS‐A gene plays an important role in development of S. exigua and RNA interference may apply to effective pest control with B. bassiana.  相似文献   

3.
《Journal of Asia》2007,10(2):151-155
The susceptibility of Spodoptera litura to SlMNPV infection was markedly affected by phyto-chemicals ingested during the acquisition of viral inoculum on foliage of tomato and cauliflower. The LD50 values computed for second, third and fourth instar larvae assayed on tomato leaves were 254, 819 and 23395 PIBs/larva, respectively whereas, it was 326, 1719 and 43843 PIBs/larva for respective instars when assayed on cauliflower leaves. Thus LD50 values for second, third and fourth instar larvae were 1.28-, 2.09- and 1.87- fold lower, respectively in tomato leaves. Similarly, LT50 values for second, third and fourth instar larvae assayed on tomato leaves were 7.1 and 7.5 days, respectively at inoculum dose of 2.7×104 PIBs/larva whereas, it was 7.7 and 8.0 days for respective instars when assayed on cauliflower leaves at same inoculum. This result also showed that the S. litura were more susceptible on tomato leaves in comparison to cauliflower leaves as the time required for mortality was lower in tomato leaves. The possible biochemical bases for differential level of mortality of S. litura larvae on tomato and cauliflower crops needs to be investigated.  相似文献   

4.
Otto Nielsen 《BioControl》2003,48(4):431-446
Isolates of different Steinernema species (S. affine, S. bicornutum, S. feltiae and Steinernema C1) were used in mortality assays with third instar larvae of Delia radicum (L.) (Diptera: Anthomyiidae). The nematode isolates had been obtained by baiting soil regularly grown with cabbage. One isolate (S. feltiae) was the result of a natural infection of a D. radicum puparium. The highest mortality (77%) was obtained with an isolate of S. feltiae (DK1). The isolate DK1 was also used in tests with all larval stages of D. radicum. Mortality around 60% was observed for second and third instar larvae, while first instar larvae showed very low or no susceptibility. Maximum mortality of second and third instar larvae was reached applying only 25 nematodes per larva. Observations of larvae that pupated revealed that some of these puparia contained nematodes. Experiments with hatching puparia showed that a high proportion was infected by nematodes if the flies were prevented from leaving nematode-containing soil. In addition to mortality, the ability of the nematodes to successfully reproduce in the insects was studied. It was found that the species S. feltiae and S. bicornutum reproduced in D. radicum larvae and adults with S. feltiae being the most successful.  相似文献   

5.
Spodoptera exigua nuclear polyhedrosis virus was produced in late fourth instar S. exigua larvae, reared on semi-artificial diet. A maximum amount of virus, 1–2 × 109 polyhedra/larva, was produced in individually-reared larvae after 7 days of incubation, with an inoculum of 7–5 × 104 polyhedra/cm2 diet surface. Virus yield was slightly reduced to 9 × 108 polyhedra/larva when production was carried out in groups of 400 and 600 larvae per container. Biological activity of virus harvested from living larvae and from dead cadavers was similar. Microbial contaminants, predominantly bacteria, in the virus product numbered 1–6% of the number of polyhedra. Tests for the presence of vertebrate-pathogenic bacteria in the virus product were all negative.  相似文献   

6.
Black nightshade (Solanum nigrum, S. nigrum L.) and red nightshade ( Solanum villosum, S. villosum Mill.) are medicinal plants from the Solanaceae family that synthesize glycoalkaloids and other secondary metabolites. To recognize the potential insecticide activity of these compounds, leaf extracts (containing glycoalkaloid and methanol fractions) were tested for enzyme inhibition, antifeedant activity and toxicity. For in‐vitro glutathione S‐transferase (GST) inhibition activity, we used insecticide‐resistant Colorado potato beetle, Leptinotarsa decemlineata ( L. decemlineata; Say) midgut and fat‐body homogenate. In‐vivo toxicity and the antifeedant activity were performed using larval bioassays. The methanol extracts had greater GST inhibitory activity compared to the glycoalkaloids, as well as greater 2nd instar larvae mortality and antifeedant activity. Furthermore, the green leaf volatile compound, cis‐hex‐3‐enyl acetate, at the concentration of 5 ppm, caused 50% mortality of 2nd instar larvae. Our findings suggest the potential usefulness of S. nigrum and S. villosum extracts to control L. decemlineata.  相似文献   

7.
The contact toxicities of methanol extracts from the nine plant species Hedera helix, Artemisia vulgaris, Xanthium strumarium, Humulus lupulus, Sambucus nigra, Chenopodium album, Salvia officinalis, Lolium temulentum and Verbascum songaricum were tested on the developmental stages of Colorado potato beetle (CPB) (Leptinotarsa decemlineata). About 2 mL of plant extract, 40% (w/w), was applied to the first instar to fourth instar larvae and adult beetles using a Potter spray tower. Most of the tested plant extracts caused relatively low mortality in all the beetle instars. Among the plant extracts, H. lupulus extract was the most toxic to all stages of the insect, except for the adult beetles. Larval mortality ranged from 40% in the fourth instars to 84% in the third instars. In a second series of experiments, dose–response bioassays using H. lupulus extract produced lethal concentration 50 (LC50) values ranging from 10%, 12%, 17% to 46% (w/w) active ingredient (plant material) for instars 1–4, respectively. This increasing mortality trend, however, did not extend to the adult stage where even the maximum dose of 40% plant material did not provide sufficient mortality to allow estimation of a LC50. These results demonstrated that the extract from H. lupulus has potential as an active ingredient in biological pesticides developed to manage larval instars of the CPB. The potential uses of this plant extract may be in conventional and organic pest management or as part of a mixture of plant extracts or conventional insecticides. Before extracts can be considered as biological control agents, their impact on natural enemies should be assessed.  相似文献   

8.
Abstract

Contact and residual toxicities of 30 plant extracts were investigated on third instar larvae of Colorado potato beetle, Leptinotarsa decemlineata. The plant samples were collected during the spring and summer of 2002 and were dried and ground. The plant samples were treated with methanol and the residue was eluted with distilled water containing 10% acetone, resulting in plant extracts. In contact bioassays, the beetle larvae were treated with 40% (w/w) plant extract using a Potter Spray Tower. The insects were incubated at 28±2°C under a 16 h: 8 h photo regime and the mortality was recorded at 24 h intervals for 7 days. The plant extracts exhibited varying toxicity to the larvae ranging from 0 – 91% after 24 h incubation and Artemisia vulgaris, Hedera helix, Humulus lupulus, Lolium temulentum, Rubia tinctoria, Salvia officinalis, Sambucus nigra, Urtica dioica, Verbascum songaricum, and Xanthium strumarium extracts resulted in significantly higher mortality than the control. Generally, prolonged incubation time did not result in an increase in mortality. After 48 h of incubation, 10 plant extracts yielded a significant mortality and H. lupulus extract, the most toxic extract among those tested, caused 99% mortality which is similar the mortality caused by the chemical standard, imidacloprid. In residual assays, potato leaflets were treated with 20% (w/w) plant-extract concentrations using a Potter Spray Tower. Third instar larvae were added to a glass jar to which treated leaflets were transferred before incubation at the temperature and photo regime described above. Mortality was recorded at 24 h intervals for 7 days. Five plant extracts, H. lupulus, L. temulentum, Reseda lutea and Solanum nigrum, induced significantly higher mortalities compared with controls. Chenopodium album extract was the most toxic, killing 34.9% of exposed larvae, followed by L. temulentum, H. lupulus and S. nigrum after 72 h incubation. The results exhibited that certain plant extracts were toxic to the beetle larvae and may have potential for controlling this destructive pest under field conditions.  相似文献   

9.
Early stages (neonate to 7- or 8-day-old larvae) of Spodoptera exigua and Pseudaletia unipuncta were exposed to the entomogenous nematode, Steinernema feltiae, at concentrations of 0, 10, 25, 60, 100, or 200 nematodes per larva. Larvae of both species were susceptible to nematode infections. However, neonate larvae of S. exigua were significantly less susceptible to nematode infection than 3- or 8-day-old larvae at or above 50 nematodes per larva. Mortalities of neonate larvae exposed to 50 or more nematodes ranged from 68 to 74% while mortalities of 3- and 8-day-old larvae ranged from 91 to 100%. The results with P. unipuncta showed similar trends as described for S. exigua, albeit at a lower mortality level and usually with no statistical differences. Mortalities of neonate larvae exposed to 50 or more nematodes ranged from 34 to 44% while mortalities of 7-day-old larvae ranged from 32 to 91%.  相似文献   

10.
The solitary endoparasitoid, Microplitis rufiventris, attacks and can develop in earlier instars of Spodoptera littoralis larvae with preference to third‐instar larvae. We used the last stadium (sixth instar), a stage which is not naturally parasitized. The newly moulted larvae (0–3 h old) of this stadium were more acceptable for parasitization by the wasp females than the older ones (24 h old). Parasitization by M. rufiventris wasp of last instar S. littoralis larvae leads to dose (no. of eggs + parasitoid factors)‐dependent effects which were more pronounced at 20°C than at 27°C. A single oviposition into a sixth instar host larva resulted in normal development of the host. However, superparasitization increased the proportions of developmentally arrested hosts and number of live wasp larvae. Development of supernumerary individuals of the parasitoid in the host larva leads to dose‐related adverse effects on host growth and development. The present study may provide interesting opportunities for studying the physiological bases of host–parasitoid interactions and parasitoid intra‐specific competition in the biological system considered.  相似文献   

11.
Studies of the effects of a novel insect growth regulator (tebufenozide, RH 5992) in pest lepidopterans are extended to its influence on pre- and post-diapause larvae of the pine-tree lappet, Dendrolimus pini (L.) (Lep., Lasiocampidae). Larval diapause was induced under experimental conditions. The relation between the width of head capsule and each larval instar of the experimental populations is presented. The toxicity of tebufenozide applied topically and per os (orally), and its effects on feeding activity were examined. High doses and concentrations (≥100 ng/larva and ≥0.001%) of tebufenozide were toxic and reduced the feeding intensity in larvae of D. pini , however, post-diapause larvae were less sensitive to oral treatment with tebufenozide then pre-diapause insects. In pre-diapausing insects of the fourth instar a greater than four-fold fall in mortality was observed among the insects treated with low doses/ concentrations (0.1–10 ng/larva and 0.00001%–0.001%, respectively). A remarkable stimulatory effect on feeding behaviour was observed in pre-diapausing IV instar larvae when treated with tebufenozide topically, in a dose of 10 ng/larva. A possible ecdysteroid mimicking effect of tebufenozide onto feeding and mortality among diapause-destined D. pini is discussed.  相似文献   

12.
Yu J  Pang Y  Tang M  Xie R  Tan L  Zeng S  Yuan M  Liu J 《Current microbiology》2001,43(2):112-119
The chromosome of the Bacillus thuringiensis strain S184 that was toxic against the third instar larvae of Spodoptera litura with the LC50 of 9.74 μg/ml was successfully integrated into two genes of cyt1Aa and cry11Aa using the transposon Tn917, yielding the primary engineered strain TnX. The strain TnX was highly toxic to the third instar larvae of Culex pipiens fatigans with the LC50 of 5.12 ng/ml which was 1.82-fold higher than that of B. thuringiensis subsp. israelensis, but lowly toxic to lepidopterous larvae. By the protoplast fusion of the strain TnX and the strain S184-Tetr (resistance to tetracycline), the target engineered strain TnY was obtained. Against the third instar larvae of S. litura, the strain TnY LC50 was of 4.68 μ g/ml and increased by 2.08-fold in comparison with the parent strain S184. Against the third instar larvae of C. pipiens fatigans, the strain TnY LC50 was of 103.20 ng/ml. The two target genes of cyt1Aa and cry11Aa integrated into the chromosome were extremely stable and had little possibility of a second transposition. It was unclear whether some factors existing in the parent strain, S184, contributed to the high toxicity of the strains TnX and TnY. Received: 30 November 2000 / Accepted: 10 January 2001  相似文献   

13.
An effective constant dose (55 μg) of precocene II (PII) was topically tested against the last three instars of Spodoptera littoralis (Boisd.) larvae. Application of PII induced morphogenetic abnormalities typical of juvenile hormone (JH) excess. The resultant imperfect insects included larval‐pupal mosaic and partial or severe cases of untanned pupae. The sixth‐instar larvae were more sensitive to PII administration than the two preceding instars. However, sensitivity of the last larval instar to PII varied with the timing of dose application relative to the developmental status of the larvae. Whereas the newly ecdysed (0‐day old) larvae were more sensitive, the older larvae of the same sixth‐instar showed sharp decrease in their sensitivity to PII with a concomitant increase of their age. Application of a single dose (5 μg) of JH I to PII pre‐treated larvae significantly (P < 0.001) reduced the production of imperfect insects where many PH‐treated larvae developed successfully to apparent normal pupae. Although a single dose of PII was more effective on S. littoralis larvae than repeated daily doses, the effectiveness of JHI‐therapy to PH pre‐treated larvae by repeated doses was less effective in producing perfect insects than JH‐therapy to PII pre‐treated larvae by single doses. The reversal of any of these by applied JHI is quite interesting but the mechanisms remain to be unraveled.  相似文献   

14.
The larvae of the pine processionary moth (PPM), Thaumetopoea pityocampa, feed on the needles of pine and cedar. The urticating hairs of older instars pose a threat to human and animal health. Strains of the entomopathogenic fungi, Metarhizium brunneum (V275, ARSEF 4556) and Beauveria bassiana (KTU-24), were assayed against first to fourth instar T. pityocampa using doses ranging from 1?×?105 to 1?×?108 conidia mL?1. The three strains differed slightly in their virulence but caused 100% mortality of all instars at the highest dose. The newly emerged or first instar larvae were extremely susceptible with 100% mortality being achieved 2–4 days post inoculation with V275 at all but the lowest dose. The fourth instar larvae appeared to be less susceptible than earlier instars. There was good horizontal transmission of conidia from treated to un-inoculated larvae. However, mortality was higher in third and fourth instars and where the ratio of inoculated versus untreated larvae was high. This we presume is due to spores being more readily trapped by the urticating hairs found on third and older instar larvae. Injection of the nests offers a simple and environmentally friendly way of controlling the pest with reduced risk to operators.  相似文献   

15.
We examined mortality and feeding inhibition response of Lymantria dispar L. (Lepidoptera: Lymantriidae) larvae to ingested doses of Bacillus thuringiensis subsp. kurstaki as a function of dose, instar and temperature. We developed generalized (logistic) linear mixed models and a mixture survival model, commonly used in medical statistics, to analyze the complex data set. We conducted bioassays of Foray 48B with larvae from the NJSS laboratory stock, using droplet imbibing or force-feeding to ensure dose ingestion. The dose causing mortality in 50% of the test population (LD50) under standard test conditions (22 °C) ranged from 0.019 International Units (IU)/larva for first instar larvae (L1) to 1.6 IU/larva for L4. Temperature affected larval mortality in two ways. Mortality occurred sooner and progressed more rapidly with increasing temperature (13-25 °C) at each dose level and instar, while the maximum level of mortality attained by each instar decreased with increasing rearing temperature. The mechanisms underlying this effect are being investigated. Larvae that survived exposure to B. thuringiensis resumed feeding after a period that was dependent on instar, dose, and temperature. The equations describing observed mortality and feeding recovery responses were used to construct a simulation model, which was able to predict both processes, and which forms the basis for a process-oriented model that can be used as a decision support tool in aerial sprays.  相似文献   

16.
The survival of a braconid parasitoid Habrobracon hebetor was investigated on nucleopolyhedrovirus (NPV)-infected Spodoptera exigua larvae. The second-instar larvae were exposed to 30, 51.4 and 180 PIB/mm2 of Mamestra brassicae NPV (MbMNPV) as under-LD50, LD50 and over-LD50 values, respectively. They were accessible to be parasitized by H. hebetor after 24, 48 and 72 h post-treatment. Infection of the larvae with MbNPV was deleterious to the survival and parasitism of H. hebetor. The survival of H. hebetor in MbNPV-infected S. exigua larvae was dependent on the interval between viral infection and parasitization, as well as on the treatment dose of MbMNPV; very few adults of parasitoid emerged from infected hosts when host larvae were exposed to 180 PIB/mm2 of MbNPV on 72-h interval treatment. The inoculation dose of MbNPV and the timing of parasitoid release had significant effect on the development of H. hebetor on virus-infected hosts. Field applications of virus for biocontrol of S. exigua may lead to substantial mortality of immature parasitoids.  相似文献   

17.
Repellent, antifeedant and toxic effect of crude hexane extract of Ageratum conyzoides were investigated against Helicoverpa armigera. In orientation bioassay, the extract exhibited dose-dependent repellency against neonates. Extract significantly increased the mortality and decreased growth of different larval stages when administrated orally in artificial diet. EC50 value was at 0.11% for larval growth inhibition. Toxicity of the extract was manifested by high mortality of first instar larvae after 7 days of feeding on diet containing 0.05–0.4% of extract with LC50 of 0.17%. Under choice bioassay, extract showed strong antifeedant activity against fifth instar larvae with DI50 of 0.21%. In nutritional bioassay, extract significantly reduced RCR, RGR, ECI and ECD of fifth instar larvae with increased AD. When RGR were plotted against RCR, the growth efficiency of larvae fed on treated diet was significantly lower than the control fed larvae suggesting the antifeedant and toxic effect of extract.  相似文献   

18.
Larvae of the New Zealand grass grub (Costelytra zealandica) were treated with the entomopathogenic fungus, Metarhizium anisopliae, and the bacterium, Serratia entomophila, singly and in combination. The mortality of second instar larvae up to 41 days in treatments with both pathogens together was significantly greater than the additive mortalities of single pathogen treatments, and therefore synergistic. Treatment of third instar larvae with both pathogens did not increase mortality compared with the fungus alone. Second instar larvae were more resistant to M. anisopliae than third instar larvae. S. entomophila causes a chronic disease and bacterial treatments alone resulted in disease, but little mortality for either instar within 5 weeks. In both fungus alone and fungus/bacteria treatments, less than half the cadavers supported fungal sporulation. The use of a dual pathogen system for control of grass grub larvae is discussed.  相似文献   

19.
Both allatotropic and allatostatic activities were found in crude extracts of brain from adult and larval Eri silkworm, Samia cynthia ricini, but it seems that allatotropic activity dominates in each stage. There was a high level of allatotropic activity in the crude extract of brain from newly emerged female adults, but allatostatic activity appeared in the bioassay when excessive amounts of crude extracts of brain were added. Crude extracts of brain from premoulting fourth‐instar larvae and from newly ecdysed fifth‐instar larvae exhibited allatotropic activities, whereas extracts of brain from the second and third day of the fifth‐instar larvae inhibited juvenile hormone (JH) release slightly. Allatotropic activity from the brains of adults and larvae stimulated both adult and larval corpora allata (CA) to synthesize JH. Manduca sexta allatotropin (AT) (Mas‐AT) and M. sexta allatostatin (AST) (Mas‐AST) also stimulated and inhibited both adult and larval S. cynthia ricini CA to synthesize JH, respectively. Higher concentrations of Mas‐AT (10?4 or 10?3 M) showed an inhibitory effect on adult CA. CA from newly emerged female adults were the most sensitive to inhibition by Mas‐AST, whereas CA from female pharate adults at about 6 h before adult emergence were the most sensitive to stimulation by Mas‐AT and S. cynthia ricini brain allatotropic activity. An extract of brain and Mas‐AT induced some of the non‐active female pharate adult CA at 12 h before emergence to synthesize a small amount of JH.  相似文献   

20.
A preliminary study was conducted to investigate the effects of the extracts of 112 medicinal plant species, collected from the southern part of Thailand, on Aedes aegypti. Studies on larvicidal properties of plant extracts against the fourth instar larvae revealed that extracts of 14 species showed evidence of larvicidal activity. Eight out of the 14 plant species showed 100% mosquito larvae mortality. The LC50 values were less than 100μg/mL (4.1μg/ mL-89.4μg/mL). Six plant species were comparatively more effective against the fourth instar larvae at very low concentrations. These extracts demonstrated no or very low toxicity to guppy fish (Poecilia reticulata), which was selected to represent most common non-target organism found in habitats ofAe. aegypti, at concentrations active to mosquito larvae. Three medicinal plants with promising larvicidal activity, having LC50 and LC50 values being 4.1 and 16.4 μg/mL for Mammea siamensis, 20.2 and 34.7 μg/mL forAnethum graveolens and 67.4 and 110.3μg/mL forAnnona muricata, respectively, were used to study the impact of the extracts on the life cycle ofAe. aegypti. These plants affected pupal and adult mortality and also affected the reproductive potential of surviving adults by reducing the number of eggs laid and the percentage of egg hatchability. When each larval stage was treated with successive extracts at the LC50 value, the first instar larvae were found to be very susceptible to A. muricata and the second instar larvae were found to be susceptible to A. graveolens, while the third and fourth instar larvae were found to be susceptible to M. siamensis. These extracts delayed larval development and inhibited adult emergence and had no adverse effects on P. reticulata at LC50 and LC50 values, except for the M. siamensis extract at its LC50 value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号