首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
抗菌肽(AMP)是生物体内先天免疫系统的一个组成部分,保护机体免受致病微生物的入侵.抗菌肽具有很强的广谱抗菌活性,可抑制革兰氏阳性菌、革兰氏阴性菌、真菌和病毒的生长.为克服微生物对抗生素耐药性的问题,目前阳离子抗菌肽已被考虑作为抗生素的潜在替代品.本文将阐述抗菌肽的作用机理、选择性抗菌肽的设计及其应用.  相似文献   

2.
抗菌肽及其临床应用研究进展   总被引:1,自引:0,他引:1  
抗菌肽是生物体在抵抗病原微生物的防御反应过程中产生的一类具有抗微生物活性的小分子多肽。抗菌肽是机体天然免疫系统的重要组成部分,具有广谱的抗革兰氏阳性、阴性菌活性,对真菌、某些有包膜的病毒、寄生虫以及肿瘤细胞也有抑制活性。抗菌肽具有不同于传统抗生素的独特抗菌机制,病原菌不宜对其产生耐药性,有可能成为一种新的抗生素替代品。介绍了抗菌肽的来源与分类、理化特性与生物学活性,并重点阐述其最新的临床应用进展。  相似文献   

3.
抗菌肽(AMPs)广泛存在于生物体内,可以协助机体抵御外源微生物的侵害,是生物体先天性防御系统中的重要组成成分。普遍认为,抗菌肽通过膜损伤机制,破坏微生物细胞膜或细胞壁的完整性,达到抑杀微生物的目的。然而,越来越多的证据表明抗菌肽还存在非膜损伤机制,作用于胞内靶位点杀伤细胞。由于其独特的作用机制及广谱抗菌活性,抗菌肽被应用于各行各业。但是,抗菌肽的推广应用也面临着诸多难题,如生物稳定性、抗菌活性的维持和微生物耐受性等。主要对抗菌肽的种类、作用机制、微生物对抗菌肽耐受性的产生机制及抗菌肽的应用和挑战进行综述。  相似文献   

4.
抗菌肽及其工业应用前景   总被引:1,自引:0,他引:1  
抗菌肽是生物体内经诱导产生的一种对抗外源性致病菌作用的防御性小分子多肽,广泛存在于动植物和微生物体内。其分子量一般在4000Da左右,带正电荷,由30~40个氨基酸组成。抗菌肽一般都具有耐热性,100℃温度下活性最长可保持30min以上。抗菌肽具广谱抗菌活性,通过破坏细胞膜等作用,可以抑制革兰氏阴性菌、革兰氏阳性菌、真菌,有些抗菌肽还具有抗原虫、病毒及抗癌功能。抗菌肽在工业应用中展示出了广阔的前景。  相似文献   

5.
刘娃  纪森林  宋玉竹 《生命科学》2013,(10):1008-1014
抗菌肽广谱、高特异、高生物活性等特点决定其具极大的临床应用潜力,然而抗菌肽的耐受是其药物开发必须重视和亟待克服的问题。从生物学的观点看,部分细菌可以产生抗菌肽,其必定存在逃避自身抗菌肽作用的机制;从进化的观点看,宿主和病原体之间是相互抑制、相互逃避、相互适应的关系,细菌在漫长的进化中会形成应对抗菌肽的特殊机制。抗菌肽对细菌存在多种作用机制,其核心是依赖于与细胞膜相互作用或进入细胞,进而改变膜完整性或干扰胞内生理生化反应导致细菌死亡;而细菌通过减弱抗菌肽结合、降低抗菌肽有效浓度等方式产生对抗菌肽的耐受。这些耐受机制也为抗菌肽类药物开发提供重要的启示。  相似文献   

6.
中国对虾PC-Ⅲ系列抗菌肽的分离纯化及活性   总被引:4,自引:0,他引:4  
以我国主要经济海产品中国对虾(Penus chinensis)为研究对象,通过Sephadex G-50、RP-HPLC等技术分离纯化到PC-Ⅲ系列中国对虾天然抗菌肽。经初步鉴定,该系列抗菌肽对革兰氏阴性和革兰氏阳性菌都表现出程度不一的抑菌活性,且不同程度地影响小白鼠离体回肠肌收缩,但无丝氨酸蛋白酶抑制剂活性。用MALDI-TOF质谱对样品进行分析,检测到分子量分别为1071Da和1311Da的两种抗菌肽。这些抗菌肽对对虾抵御微生物的侵袭具有重要的作用。  相似文献   

7.
昆虫是地球上种类最为繁多的生物,其抗菌肽的种类和应用范围也远多于其他生物产生的抗菌肽。随着越来越多昆虫抗菌肽的发现及对其深入的研究,昆虫抗菌肽的结构和作用机制也被逐一阐明,并广泛应用于畜牧、食品工业及医药等领域。然而,由于某些限制因素,昆虫抗菌肽还未应用于临床。为了加快昆虫抗菌肽在临床中的应用,本文将从昆虫抗菌肽的结构分类、潜在的医学应用以及昆虫抗菌肽的生产研究现状等方面作一综述,以期为昆虫抗菌肽在抗细菌、抗病毒、抗肿瘤及抗寄生虫药物等方面的医用研发提供文献支持。  相似文献   

8.
Cathelicidins是一类具有广谱抗微生物活性的多功能抗菌肽。迄今为止,在几乎所有种类的脊椎动物体内均有发现,在动物先天免疫系统中发挥极其重要的作用。Cathelicidins不仅对普通革兰氏阳性菌、革兰氏阴性菌、真菌以及病毒具有非常强的抗性,而且对许多临床分离耐药菌株同样具有作用。Cathelicidins具有特殊的杀菌机理,不易产生耐药性。此外,cathelicidins结构简单,溶血活性和细胞毒性小,因此极具开发潜力。该文主要对cathelicidins的结构与分类、生物活性与功能、作用特点与机制及其在医药领域中的应用前景和存在问题进行了综述。  相似文献   

9.
生物法获取乙醇与丁醇过程中有机溶剂的毒性是生产菌重要环境胁迫因素之一,且当有机溶剂超过一定浓度时便会抑制微生物的生长,甚至引起微生物的死亡,因此提高工业微生物的有机溶剂耐受性对工业生产具有重要的意义。对微生物乙醇及丁醇耐受机制的研究可为选育具有较强溶剂耐受菌提供理论基础。本文系统介绍了微生物耐受乙醇与丁醇的机制,并对其在生物燃料生产及生物转化中面临的机遇与挑战等问题进行简要的评述。  相似文献   

10.
汪庆  张瑞芬  王亚楠  朱宝利  曾斌 《微生物学报》2022,62(11):4353-4366
抗菌肽是一类广泛存在于生物体内的小分子肽,参与构成生物体先天免疫,可以有效抵抗病原微生物的入侵。抗菌肽具有广谱抗菌活性,且不易产生耐药性等特点,在治疗感染性疾病方面具有独特的优势,有望成为理想的抗感染药物。然而,由于部分抗菌肽尚存在稳定性差、毒性高等问题,限制了抗菌肽的广泛应用。由于人工智能算法能有效合成具有高稳定性、低毒性的抗菌肽,在探索天然抗菌肽中展现了巨大的潜力,因此本文简述了抗菌肽的抗菌机制、结构改造以及利用机器学习和深度学习等人工智能算法进行新型抗菌肽研发的优化策略,以期为抗菌肽结构优化及研发提供新思路。  相似文献   

11.
Y Li  Q Xiang  Q Zhang  Y Huang  Z Su 《Peptides》2012,37(2):207-215
Antimicrobial peptides (AMPs), which are produced by several species including insects, other animals, micro-organisms and synthesis, are a critical component of the natural defense system. With the growing problem of pathogenic organisms resistant to conventional antibiotics, especially with the emergence of NDM-1, there is increased interest in the pharmacological application of AMPs. They can protect against a broad array of infectious agents, such as bacteria, fungi, parasite, virus and cancer cells. AMPs have a very good future in the application in pharmaceuticals industry and food additive. This review focuses on the AMPs from different origins in these recent years, and discusses their various functions and relative mechanisms of action. It will provide some detailed files for clinical research of pharmaceuticals industry and food additive in application.  相似文献   

12.
Antimicrobial peptides (AMPs), as evolutionarily conserved components of innate immune system, protect against pathogens including bacteria, fungi, viruses, and parasites. In general, AMPs are relatively small peptides (<10 kDa) with cationic nature and amphipathic structure and have modes of action different from traditional antibiotics. Up to now, there are more than 19 000 AMPs that have been reported, including those isolated from nature sources or by synthesis. They have been considered to be promising substitutes of conventional antibiotics in the quest to address the increasing occurrence of antibiotic resistance. However, most AMPs have modest direct antimicrobial activity, and their mechanisms of action, as well as their structure–activity relationships, are still poorly understood. Computational strategies are invaluable assets to provide insight into the activity of AMPs and thus exploit their potential as a new generation of antimicrobials. This article reviews the advances of AMP databases and computational tools for the prediction and design of new active AMPs. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Zhang S  Guo H  Shi F  Wang H  Li L  Jiao X  Wang Y  Yu H 《Peptides》2012,33(2):251-257
Antimicrobial peptides (AMPs) secreted by amphibian skin represent an important innate immune defense strategy. There are more than 340 species in the family of Ranidae worldwidely, and from which nearly 100 families of AMPs comprising between 8 and 48 amino acid (aa) residues have been characterized. In current work, two novel AMPs were purified from the skin secretion of Hainan cascade-frog, Amolops hainanensis, and 31 cDNA sequences encoding 10 novel AMPs belonging to 4 families were cloned from the constructed skin cDNA library of A. hainanensis. Among these 10 AMPs, 5 peptides represent the prototypes of a novel amphibian AMP family. According to the generic name of the species of origin, they were designated as hainanenin-1-5. Each of them consists of 21 aa residues with a C-terminal disulphide loop of 7 residues between Cys(15) and Cys(21). Two of them (hainanenin-1 and 5) were then synthesized and their in vitro activities were screened, including antimicrobial, hemolytic and antioxidant activities. The results showed that hainanenin-1 and 5 possessed strong and broad-spectrum antimicrobial activities against Gram-positive, Gram-negative bacteria and fungi, including a large number of clinically isolated drug-resistant pathogenic microorganisms, and slight antioxidant activity. Undesirably, hainanenin-1 and 5 exhibited strong hemolytic activity on human erythrocytes. The discovery of hainanenins and their great antimicrobial potency provides new templates for anti-infective agent design.  相似文献   

14.
Cationic antimicrobial peptides(AMPs) are considered as important candidate therapeutic agents, which exert potent microbicidal properties against bacteria, fungi and some viruses. Based on our previous findings king cobra cathelicidin(OH-CATH) is a 34-amino acid peptide that exerts strong antibacterial and weak hemolytic activity. The aim of this research is to evaluate the efficacy of both OH-CATH30 and its analog D-OH-CATH30 against clinical isolates comparing with routinely utilized antibiotics in vitro.In this study, 584 clinical isolates were tested(spanning 2013-2016) and the efficacy of the candidate peptides and antibiotics were determined by a broth microdilution method according to the CLSI guidelines. Among the 584 clinical isolates, 85% were susceptible to OH-CATH30 and its analogs. Both L-and D-OH-CATH30 showed higher efficacy against(toward) Gram-positive bacteria and stronger antibacterial activity against nearly all Gram-negative bacteria tested compare with antibiotics. The highest bactericidal activity was detected against Acinetobacter spp., including multi-drug-resistant Acinetobacter baumannii(MRAB)and methicillin-resistant Staphylococcus aureus(MRSA). The overall efficacy of OH-CATH30 and its analogs was higher than that of the 9 routinely used antibiotics. OH-CATH30 is a promising candidate drug for the treatment of a wide variety of bacterial infections which are resistant to many routinely used antimicrobial agents.  相似文献   

15.
Antimicrobial peptides (AMPs) are small molecules with a broad spectrum of antibiotic activities against bacteria, yeasts, fungi, and viruses and cytotoxic activity on cancer cells, in addition to anti-inflammatory and immunomodulatory activities. Therefore, AMPs have garnered interest as novel therapeutic agents. Because of the rapid increase in drug-resistant pathogenic microorganisms, AMPs from synthetic and natural sources have been developed using alternative antimicrobial strategies. This article presents a broad analysis of patents referring to the therapeutic applications of AMPs since 2009. The review focuses on the universal trends in the effective design, mechanism, and biological evolution of AMPs.  相似文献   

16.
Antimicrobial peptides (AMPs) are promising candidates as alternatives to conventional antibiotics for the treatment of resistant pathogens. In the last decades, new AMPs have been found from the cleavage of intact proteins with no antibacterial activity themselves. Bovine hemoglobin hydrolysis, for instance, results in AMPs and the minimal antimicrobial peptide sequence was defined as Tyr-Arg plus a positively charged amino acid residue. The Tyr-Arg dipeptide alone, known as kyotorphin (KTP), is an endogenous analgesic neuropeptide but has no antimicrobial activity itself. In previous studies new KTP derivatives combining C-terminal amidation and Ibuprofen (Ib) - KTP-NH(2), IbKTP, IbKTP-NH(2) - were designed in order to improve KTP brain targeting. Those modifications succeeded in enhancing peptide-cell membrane affinity towards fluid anionic lipids and higher analgesic activity after systemic injection resulted therefrom. Here, we investigated if this affinity for anionic lipid membranes also translates into antimicrobial activity because bacteria have anionic membranes. Atomic force microscopy revealed that KTP derivatives perturbed Staphylococcus aureus membrane structure by inducing membrane blebbing, disruption and lysis. In addition, these peptides bind to red blood cells but are non-hemolytic. From the KTP derivatives tested, amidated KTP proves to be the most active antibacterial agent. The combination of analgesia and antibacterial activities with absence of toxicity is highly appealing from the clinical point of view and broadens the therapeutic potential and application of kyotorphin peptides.  相似文献   

17.
Antimicrobial peptides (AMPs) are naturally produced, gene encoded molecules with a direct antimicrobial activity against pathogens, often also showing other immune-related properties. Anuran skin secretions are rich in bioactive peptides, including AMPs, and we have reported a novel targeted sequencing approach to identify novel AMPs simultaneously in different frog species, from small quantities of skin tissue. Over a hundred full-length peptides were identified from specimens belonging to five different Ranidae frog species, out of which 29 were novel sequences. Six of these were selected for synthesis and testing against a panel of Gram-negative and Gram-positive bacteria. One peptide, identified in Rana arvalis, proved to be a potent and broad-spectrum antimicrobial, active against ATCC bacterial strains and a multi-drug resistant clinical isolate. CD spectroscopy suggests it has a helical conformation, while surface plasmon resonance (SPR) that it may self-aggregate/oligomerize at the membrane surface. It was found to disrupt the bacterial membrane at sub-MIC, MIC and above-MIC concentrations, as observed by flow cytometry and/or visualized by atomic force microscopy (AFM). Only a limited toxicity was observed towards peripheral blood mononuclear cells (PBMC) with a more pronounced effect observed against the MEC-1 cell line.  相似文献   

18.
Cationic Antimicrobial Peptides in Penaeid Shrimp   总被引:1,自引:0,他引:1  
Penaeid shrimp aquaculture has been consistently affected worldwide by devastating diseases that cause a severe loss in production. To fight a variety of harmful microbes in the surrounding environment, particularly at high densities (of which intensive farming represents an extreme example), shrimps have evolved and use a diverse array of antimicrobial peptides (AMPs) as part of an important first-line response of the host defense system. Cationic AMPs in penaeid shrimps composed of penaeidins, crustins, and anti-lipopolysaccharide factors are comprised of multiple classes or isoforms and possess antibacterial and antifungal activities against different strains of bacteria and fungi. Shrimp AMPs are primarily expressed in circulating hemocytes, which is the main site of the immune response, and hemocytes expressing AMPs probably migrate to infection sites to fight against pathogen invasion. Indeed, most AMPs are produced as early as the nauplii developmental stage to protect shrimp larvae from infections. In this review, we discuss the sequence diversity, expression, gene structure, and antimicrobial activities of cationic AMPs in penaeid shrimps. The information available on antimicrobial activities indicates that these shrimp AMPs have potential therapeutic applications in the control of disease problems in aquaculture.  相似文献   

19.
Penaeid shrimp aquaculture has been consistently affected worldwide by devastating diseases that cause a severe loss in production. To fight a variety of harmful microbes in the surrounding environment, particularly at high densities (of which intensive farming represents an extreme example), shrimps have evolved and use a diverse array of antimicrobial peptides (AMPs) as part of an important first-line response of the host defense system. Cationic AMPs in penaeid shrimps composed of penaeidins, crustins, and anti-lipopolysaccharide factors are comprised of multiple classes or isoforms and possess antibacterial and antifungal activities against different strains of bacteria and fungi. Shrimp AMPs are primarily expressed in circulating hemocytes, which is the main site of the immune response, and hemocytes expressing AMPs probably migrate to infection sites to fight against pathogen invasion. Indeed, most AMPs are produced as early as the nauplii developmental stage to protect shrimp larvae from infections. In this review, we discuss the sequence diversity, expression, gene structure, and antimicrobial activities of cationic AMPs in penaeid shrimps. The information available on antimicrobial activities indicates that these shrimp AMPs have potential therapeutic applications in the control of disease problems in aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号