首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
V Srajer  P M Champion 《Biochemistry》1991,30(30):7390-7402
We present the results of an extensive investigation of the optical line shapes of deoxymyoglobin (Mb), the ligand-bound form (MbCO), and the low-temperature photoproduct (Mb*). The thermal properties and the pH dependence of the Soret band and the near infrared band III (approximately 760 nm) are analyzed, taking into account the underlying vibrational properties of the absorption bands. The strong temperature dependence associated with the Soret band of MbCO and band III of Mb indicates significant coupling to low-frequency modes that may not be directly observed in the resonance Raman spectra. On the basis of analogous line-shape studies in a variety of heme systems, we assign the low-frequency coupling in MbCO to torsional motions of the CO molecule. The low-frequency mode coupled to band III (approximately 70 cm-1) is found to lie quite close to the value for the heme-doming motion (approximately 50 cm-1) calculated by using the kinetically determined value of the force constant (17 N/m). Significant inhomogeneous broadening in the Soret region of Mb and Mb* is found to be due to a "nonkinetic" coordinate that we associate with the orientation of the proximal histidine. A "kinetic" coordinate, associated with the equilibrium displacement of the iron atom from the porphyrin plane (a) is found to contribute to the inhomogeneous broadening of both the Soret band and band III. The relaxation of the heme as the system evolves from from Mb* to Mb is followed optically as a function of temperature, and a sharp transition temperature is found at 185 K. The blue shifts of the Soret band and band III as Mb* evolves to Mb are found to be nearly identical (delta v*ABS approximately 140 cm-1) and attributed to changes in the mean value of a between Mb* (a*0) and Mb (a0 = 0.45 A). A simple quadratic model for the coordinate coupling that simultaneously accounts for the observed shift, delta v*ABS, the low-temperature kinetics and the kinetic hole burning predicts a*0 = 0.2 +/- 0.05 A and EA = 16 +/- 2 kJ/mol for the room temperature Arrhenius barrier height at the heme. A simple quantitative method for the analysis of kinetic hole-burning experiments is also developed and applied to recent studies involving quaternary and subunit-specific hemoglobin structures.  相似文献   

2.
The thermal behavior of the Soret band relative to the carbonmonoxy derivatives of some β-chain mutant hemoglobins is studied in the temperature range 300–10 K and compared to that of wild-type carbonmonoxy hemoglobin. The band profile at various temperatures is modeled as a Voigt function that accounts for homogeneous broadening and for the coupling with high- and low-frequency vibrational modes, while inhomogeneous broadening is taken into account with a gaussian distribution of purely electronic transition frequencies. The various contributions to the overall bandwidth are singled out With this analysis and their temperature dependence, in turn, gives information on structural and dynamic properties of the system studied. In the wildtype and mutant hemoglobins, the values of homogeneous bandwidth and of the coupling constants to high-frequency vibrational modes are not modified with respect to natural human hemoglobin, thus indicating that the local electronic and vibrational properties of the heme–CO complex are not altered by the recombinant procedures. On the contrary, differences in the protein dynamic behavior are observed. The most relevant are those relative to the “polar isosteric” βVal-67(Ell) →Thr substitution, localized in the heme pocket, which results in decreased coupling with low-frequency modes and increased anharmonic motions. Mutations involving residue βLys-144(HC1) at the C-terminal and residue βCys-112(G14) at the α1β1 interface have a smaller effect consisting in an increased coupling with low-frequency modes. Mutations at the β-N-terminal and at the α1β2 interface have no effect on the dynamic properties of the heme pocket. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Band III is a near-infrared electronic transition at ~13,000 cm(-1) in heme proteins that has been studied extensively as a marker of protein conformational relaxation after photodissociation of the heme-bound ligand. To examine the influence of the heme pocket structure and ligand dynamics on band III, we have studied carbon monoxide recombination in a variety of myoglobin mutants after photolysis at 3 K using Fourier transform infrared temperature-derivative spectroscopy with monitoring in three spectral ranges, (1) band III, the mid-infrared region of (2) the heme-bound CO, and (3) the photodissociated CO. Here we present data on mutant myoglobins V68F and L29W, which both exhibit pronounced ligand movements at low temperature. From spectral and kinetic analyses in the mid-infrared, a small number of photoproduct populations can be distinguished, differing in their distal heme pocket conformations and/or CO locations. We have decomposed band III into its individual photoproduct contributions. Each photoproduct state exhibits a different "kinetic hole-burning" (KHB) effect, a coupling of the activation enthalpy for rebinding to the position of band III. The analysis reveals that the heme pocket structure and the photodissociated CO markedly affect the band III transition. A strong kinetic hole-burning effect results only when the CO ligand resides in the docking site on top of the heme group. Migration of CO away from the heme group leads to an overall blue shift of band III. Consequently, band III can be used as a sensitive tool to study ligand dynamics after photodissociation in heme proteins.  相似文献   

4.
In this work we study the temperature dependence of the Soret band lineshape of deoxymyoglobin and deoxyhemoglobin, in the range 300–20 K. To fit the measured spectra we use an approach originally proposed by Champion and coworkers (Srajer et al. 1986; Srajer and Champion 1991). The band profile is modelled as a Voigt function that accounts for the coupling with low frequency vibrational modes, whereas the coupling with high frequency modes is responsible for the vibronic structure of the spectra. Moreover, owing to the position of the iron atom out of the mean heme plane, inhomogeneous broadening brings about a non-Gaussian distribution of 0–0 electronic transition frequencies. The reported analysis enables us to isolate the various contributions to the overall bandwidth, and their temperature dependence points out the relevance of low frequency vibrations and of large scale anharmonic motions starting at temperatures higher than 170 K. Information on the mean iron-heme plane distance and on its temperature dependence, as well as on the heme pocket conformational disorder, is also obtained.Abbreviations Cc Carbon monoxide - Hb Human deoxyhemoglobin A - HbCO human carbonmonoxyhemoglobin A - SWMb spermwhale deoxymyoglobin - SWMbCO spermwhale carbonmonoxymyoglobin - HbO2 human oxyhemoglobin A - SWMb3+-H2O spermwhale aquometmyoglobin  相似文献   

5.
The study of the thermal evolution of the Soret band in heme proteins has proved to be a useful tool to understand their stereodynamic properties; moreover, it enables one to relate protein matrix fluctuations and functional behavior when carried out in combination with kinetic experiments on carbon monoxide rebinding after flash photolysis. In this work, we report the thermal evolution of the Soret band of deoxy, carbonmonoxy, and nitric oxide derivatives of the cooperative homodimeric Scapharca inaequivalvis hemoglobin in the temperature range 10-300 K and the carbon monoxide rebinding kinetics after flash photolysis in the temperature range 60-200 K. The two sets of results indicate that Scapharca hemoglobin has a very rigid protein structure compared with other hemeproteins. This feature is brought out i) by the absence of nonharmonic contributions to the soft modes coupled to the Soret band in the liganded derivatives, and ii) by the almost "in plane" position of the iron atom in the photoproduct obtained approximately 10(-8) s after dissociating the bound carbon monoxide molecule at 15 K.  相似文献   

6.
In this short review we show how suitable analysis of the temperature dependence of the optical absorption spectra of metalloproteins can give insight into their stereodynamic properties in the region of the chromophore. To this end, the theory of coupling between an intense allowed electronic transition of a chromophore and Franck-Condon active vibrations of the nearby atoms is applied to the Soret band of hemeproteins to obtain an analytical expression suitable for fitting the spectral profile at various temperatures. The reported approach enables one to separate the various contributions to the overall bandwidth together with the parameters that characterize the vibrational coupling. The thermal behavior of these quantities gives information on the dynamic properties of the active site and on their dependence upon protein structure and ligation state. The Soret band of hemeproteins appears to be coupled to high frequency vibrational modes of the heme group (as already shown by resonance Raman spectroscopy) and to a bath of low frequency modes most likely deriving from the bulk of the protein. For the deoxy derivatives inhomogeneous broadening arising from conformational heterogeneity appears to contribute substantially to the linewidth. The data indicate the onset; at temperatures near 180 K, of large scale anharmonic motions that can be attributed to jumping among different conformational substates of the protein.Abbreviations MbCO Carbonmonoxy-myoglobin - Mb Deoxymyoglobin - Mb3+ Aquomet-myoglobin - SWMbCO Spermwhale carbonmonoxy-myoglobin - SWMb Spermwhale deoxy-myoglobin Correspondence to: A. Cupane  相似文献   

7.
The dynamics of the ferric CN complexes of the heme proteins Myoglobin and Hemoglobin I from the clam Lucina pectinata upon Soret band excitation is monitored using infrared and broad band visible pump-probe spectroscopy. The transient response in the UV-vis spectral region does not depend on the heme pocket environment and is very similar to that known for ferrous proteins. The main feature is an instantaneous, broad, short-lived absorption signal that develops into a narrower red-shifted Soret band. Significant transient absorption is also observed in the 360-390 nm range. At all probe wavelengths the signal decays to zero with a longest time constant of 3.6 ps. The infrared data on MbCN reveal a bleaching of the C triple bond N stretch vibration of the heme-bound ligand, and the formation of a five-times weaker transient absorption band, 28 cm(-1) lower in energy, within the time resolution of the experiment. The MbC triple bond N stretch vibration provides a direct measure for the return of population to the ligated electronic (and vibrational) ground state with a 3-4 ps time constant. In addition, the CN-stretch frequency is sensitive to the excitation of low frequency heme modes, and yields independent information about vibrational cooling, which occurs on the same timescale.  相似文献   

8.
In this work the temperature dependence of the Soret band line shape in carbon-monoxy myoglobin is re-analyzed by using both the full correlator approach in the time domain and the frequency domain approach. The new analyses exploit the full density of vibrational states of carbon-monoxy myoglobin available from normal modes analysis, and avoid the artificial division of the entire set of vibrational modes coupled to the Soret transition into "high-frequency" and "low-frequency" subsets; the frequency domain analysis, however, makes use of the so-called short-times approximation, while the time domain one avoids it. Time domain and frequency domain analyses give very similar results, thus supporting the applicability of the short-times approximation to the analysis of hemeprotein spectra; in particular, they clearly indicate the presence of spectral heterogeneity in the Soret band of carbon-monoxy myoglobin. The analyses also show that a temperature dependence of the Gaussian width parameter steeper than the hyperbolic cotangent law predicted by the Einstein harmonic oscillator and/or a temperature dependence of inhomogeneous broadening are not sufficient to obtain quantitative information on the magnitude of an-harmonic contributions to the iron-heme plane motion. However, the dependence of the previous two quantities may be used to obtain semiquantitative information on the overall coupling of the Soret transition to the low-frequency modes and therefore on the dynamic properties of the heme pocket in different states of the protein.  相似文献   

9.
This work compares the effect of photogenerated singlet oxygen (O(2)((1)Delta(g))) (type II mechanism) and free radicals (type I mechanism) on cytochrome c structure and reactivity. Both reactive species were obtained by photoexcitation of methylene blue (MB(+)) in the monomer and dimer forms, respectively. The monomer form is predominant at low dye concentrations (up to 8 microm) or in the presence of an excess of SDS micelles, while dimers are predominant at 0.7 mm SDS. Over a pH range in which cytochrome c is in the native form, O(2) ((1)Delta(g)) and free radicals induced a Soret band blue shift (from 409 to 405 nm), predominantly. EPR measurements revealed that the blue shift of the Soret band was compatible with conversion of the heme iron from its native low spin state to a high spin state with axial symmetry (g approximately 6.0). Soret band bleaching, due to direct attack on the heme group, was only detected under conditions that favored free radical production (MB(+) dimer in SDS micelles) or in the presence of a less structured form of the protein (above pH 9.3). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry of the heme group and the polypeptide chain of cytochrome c with Soret band at 405 nm (cytc405) revealed no alterations in the mass of the cytc405 heme group but oxidative modifications on methionine (Met(65) and Met(80)) and tyrosine (Tyr(74)) residues. Damage of cytc405 tyrosine residue impaired its reduction by diphenylacetaldehyde, but not by beta-mercaptoethanol, which was able to reduce cytc405, generating cytochrome c Fe(II) in the high spin state (spin 2).  相似文献   

10.
A normal-mode analysis of carbon monoxymyoglobin (MbCO) and deoxymyoglobin (Mb) with 170 water molecules is performed for (54)Fe and (57)Fe. A projection is defined that extracts iron out-of-plane vibrational modes and is used to calculate spectra that can be compared with those from resonance Raman scattering. The calculated spectra and the isotopic shift (57)Fe versus (54)Fe agree with the experimental data. At low temperatures the average mean square fluctuations (MSFs) of the protein backbone atoms agree with molecular dynamics simulation. Below 180 K the MSFs of the heme iron agree with the data from Mossbauer spectroscopy. The MSFs of the iron atom relative to the heme are an order of magnitude smaller than the total MSFs of the iron atom. They agree with the data from optical absorption spectroscopy. Thus the MSFs of the iron atom as measured by Mossbauer spectroscopy can be used to probe the overall motion of the heme within the protein matrix, whereas the Gaussian thermal line broadening of the Soret band and the resonance Raman bands can be used to detect local intramolecular iron-porphyrin motions.  相似文献   

11.
We report the Soret absorption band, down to cryogenic temperature, of native and molten-globule-like state of horse heart cytochrome c. The band profile is analyzed in terms of vibronic coupling of the heme normal modes to the electronic transition in the framework of the Franck-Condon approximation. From the temperature dependence of the Gaussian broadening and of the peak position, we obtain information on the 'bath' of low frequency harmonic motions of the heme group within the heme pocket. The reported data indicate that, compared to the native state, the less rigid tertiary structure of the molten globule is reflected in a higher flexibility of the heme pocket and in greater conformational disorder, allowing the transduction of large-amplitude motion of the protein to the dynamics of the heme pocket.  相似文献   

12.
In this work we report the thermal behavior (10-300 K) of the Soret band lineshape of deoxy and carbonmonoxy derivatives of Asian elephant (Elephas maximus) and horse myoglobins together with their carbon monoxide recombination kinetics after flash photolysis; the results are compared to analogous data relative to sperm whale myoglobin. The Soret band profile is modeled as a Voigt function that accounts for the coupling with high and low frequency vibrational modes, while inhomogeneous broadening is taken into account with suitable distributions of purely electronic transition frequencies. This analysis makes it possible to isolate the various contributions to the overall lineshape that; in turn, give information on structural and dynamic properties of the systems studied. The optical spectroscopy data point out sizable differences between elephant myoglobin on one hand and horse and sperm whale myoglobins on the other. These differences, more pronounced in deoxy derivatives, involve both the structure and dynamics of the heme pocket; in particular, elephant myoglobin appears to be characterized by larger anharmonic contributions to soft modes than the other two proteins. Flash photolysis data are analyzed as sums of kinetic processes with temperature-dependent fractional amplitudes, characterized by discrete pre-exponentials and either discrete or distributed activation enthalpies. In the whole temperature range investigated the behavior of elephant myoglobin appears to be more complex than that of horse and sperm whale myoglobins, which is in agreement with the increased anharmonic contributions to soft modes found in the former protein. Thus, to satisfactorily fit the time courses for CO recombination to elephant myoglobin five distinct processes are needed, only one of which is populated over the whole temperature range investigated. The remarkable convergence and complementarity between optical spectroscopy and flash photolysis data confirms the utility of combining these two experimental techniques in order to gain new and deeper insights into the functional relevance of protein fluctuations.  相似文献   

13.
Second derivative absorption spectra are reported for the aa3-cytochrome c oxidase from bovine cardiac mitochondria, the aa3-600 ubiquinol oxidase from Bacillus subtilis, the ba3-cytochrome c oxidase from Thermus thermophilis, and the aco-cytochrome c oxidase from Bacillus YN-2000. Together these enzymes provide a range of cofactor combinations that allow us to unequivocally identify the origin of the 450-nm absorption band of the terminal oxidases as the 6-coordinate low-spin heme, cytochrome a. The spectrum of the aco-cytochrome c oxidase further establishes that the split Soret band of cytochrome a, with features at 443 and 450 nm, is common to all forms of the enzyme containing ferrocytochrome a and does not depend on ligand occupancy at the other heme cofactor as previously suggested. To test the universality of this Soret band splitting for 6-coordinate low-spin heme A systems, we have reconstituted purified heme A with the apo forms of the heme binding proteins, hemopexin, histidine-proline-rich glycoprotein and the H64V/V68H double mutant of human myoglobin. All 3 proteins bound the heme A as a (bis)histidine complex, as judged by optical and resonance Raman spectroscopy. In the ferroheme A forms, none of these proteins displayed evidence of Soret band splitting. Heme A-(bis)imidazole in aqueous detergent solution likewise failed to display Soret band splitting. When the cyanide-inhibited mixed-valence form of the bovine enzyme was partially denatured by chemical or thermal means, the split Soret transition of cytochrome a collapsed into a single band at 443 nm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The magnetic circular dichroism spectra (MCD) recorded for the visible and near-UV regions of high-spin ferrous derivatives of myoglobin, hemoglobin, hemoglobin dimers and isolated chains as well as of horseradish peroxidase at pH 6.8 and 11.4 have been compared at the room and liquid nitrogen temperatures. The MCD of the Q00- and QV-bands have been shown to be sensitive to structural differences in the heme environment of these hemoproteins. The room temperature visible MCD of native hemoglobin differs from that of myoglobin, hemoglobin dimers and isolated chains as well as from that of model pentacoordinated complex. The MCD of hemoglobin is characterized by the greater value of the MCD intensity ratio of derivative shape A-term in the Q00-band to the A-term in the QV-band. The evidneces are presented for the existence of two pH-dependent forms of ferroperoxidase, the neutral peroxidase shows the "hemoglobin-like" MCD, while the alkaline ferroperoxidase is characterized by the "myoglobin-like" MCD spectrum in the visible region. The differences in the MCD of deoxyhemoglobin and neutral ferroperoxidase as compared with other high-spin ferrous hemoproteins are considered to result from the constraints on heme group imposed by quaternary and/or tertiary protein structure. The differences between hemoporteins which are seen at the room temperature become more pronounced at liquid nitrogen temperature. Except the peak at approximately 580 nm in the MCD of deoxymyoglobin and reduced peroxidase at pH 11.4 the visible MCD does not show appreciable temperature dependent C-terms. The nature of the temperature dependent effect at approximately 580 nm is not clear. The Soret MCD of all hemoproteins studied are similar and are predominantly composed of the derivative-shaped C-terms as revealed by the increase of the MCD peaks approximately in accordance with Boltzmann distribution. The interpretation of temperature-dependent MCD observed for the Soret band has been made in terms of porphyrin to Fe-iron charge-transfer electronic transition which may be assigned as b( pi) leads to 3d. This charge-transfer band is strongly overlapped with usual B(pi --pi*) band resulting in diffuse Soret band. Adopting that only two normal vibrations are sinphase with charge-transfer transition the extracted C-terms of the Soret MCD have been fitted by theoretical dispersion curves.  相似文献   

15.
Heme-containing catalases have been extensively studied, revealing the roles of many residues, the existence of two heme orientations, flipped 180° relative to one another along the propionate-vinyl axis, and the presence of both heme b and heme d. The focus of this report is a residue, situated adjacent to the vinyl groups of the heme at the entrance of the lateral channel, with an unusual main chain geometry that is conserved in all catalase structures so far determined. In Escherichia coli catalase HPII, the residue is Ile274, and replacing it with Gly, Ala, and Val, found at the same location in other catalases, results in a reduction in catalytic efficiency, a reduced intensity of the Soret absorbance band, and a mixture of heme orientations and species. The reduced turnover rates and higher H(2)O(2) concentrations required to attain equivalent reaction velocities are explained in terms of less efficient containment of substrate H(2)O(2) in the heme cavity arising from easier escape through the more open entrance to the lateral channel created by the smaller side chains of Gly and Ala. Inserting a Cys at position 274 resulted in the heme being covalently linked to the protein through a Cys-vinyl bond that is hypersensitive to X-ray irradiation being largely degraded within seconds of exposure to the X-ray beam. Two heme orientations, flipped along the propionate-vinyl axis, are found in the Ala, Val, and Cys variants.  相似文献   

16.
Stavrov SS 《Biopolymers》2004,74(1-2):37-40
It is shown by using the vibronic approach that the iron displacement out of the porphyrin plane in deoxyheme proteins intermixes the porphyrin pi and axial iron-histidine sigma electronic subsystems. This intermixing explains the substantial coupling of the iron-histidine vibration to the heme Soret excitation, the appearance of the iron-histidine band in the corresponding resonance Raman spectra, and a number of other experimental data, including the dependence of the iron-histidine vibrational frequency on the extent of the iron displacement out of the porphyrin plane. This dependence implies that there is an anharmonic coupling between the corresponding vibrations, which is shown to be the cause of the specific temperature dependence of the iron-histidine band. The anharmonic coupling and the dependence of the dipole transition moment of the charge transfer optical absorption band III on the iron-porphyrin distance cause the anomalous temperature and pressure dependencies of this band. It is shown that the change in both the magnitude and the distribution of the iron-porphyrin distance is expected to affect the band III intensity. Consequently, the stationarity of the band III intensity can be considered as a signature of the stationarity of the iron-porphyrin distance and its distribution in deoxyheme proteins, whereas the band III position and width could be also affected by the change in the protein electric field, caused by the protein globule dynamics.  相似文献   

17.
Circular dichroism (CD) and optical rotatory dispersion (ORD) spectra of several liganded derivatives of the monomer and polymer hemoglobin components of the marine annelid, Glycera dibranchiata were measured over the wavelength range 650--195 nm. The differences observed between the monomer and polymer components for the heme dichroic bands in the visible, Soret and ultraviolet wavelength regions seem to result from changes in the heme environment, geometry and coordination state of the central heme iron in these proteins. Within the Soret region, the liganded derivatives of the monomer hemoglobin exhibit predominantly negative circular dichroic bands. The heme band at 260 nm is also absent for the monomer hemoglobin. The ORD and CD spectra in the far-ultraviolet, peptide absorbing region suggest also differences in the alpha-helix content of the monomer and polymer hemoglobins. The values for the single-chain G. dibranchiata hemoglobin are in the expected range (about 70% alpha-helix) as predicted by the X-ray structure of this protein. The lower estimates of the alpha-helix content for the polymer hemoglobin (approx. 50%), may reflect the differences in amino acid composition, primary structure and polypeptide chain foldings. Changes in oxidation state and ligand binding appears to have no pronounced effect on the helicity of either the monomer or polymer hemoglobins. The removal of the heme moiety from the monomer hemoglobin did result in a major decrease in its helix content similar to the loss of heme from myoglobin.  相似文献   

18.
We report the visible and Soret absorption bands, down to cryogenic temperatures, of the ferrous nicotinate adducts of native and deuteroheme reconstituted horse heart myoglobin in comparison with soybean leghemoglobin-a. The band profile in the visible region is analyzed in terms of vibronic coupling of the heme normal modes to the electronic transition in the framework of the Herzberg-Teller approximation. This theoretical approach makes use of the crude Born-Oppenheimer states and therefore neglects the mixing between electronic and vibrational coordinates; however, it takes into account the vibronic nature of the visible absorption bands and allows an estimate of the vibronic side bands for both Condon and non-Condon vibrational modes. In this framework, an x-y splitting of the Q transition for native and deuteroheme reconstituted horse myoglobin is clearly assessed and attributed to electronic perturbations that, in turn, are caused by a reduction of the typical D(4h) symmetry of the system due to heme distortions of B(1g)-type symmetry and/or to an x-y asymmetric position of the nicotinate ring; in deuteroheme reconstituted horse myoglobin the asymmetric heme peripheral substituents add to the above effect(s). On the contrary, in leghemoglobin-a no spectral splitting upon nicotinate binding is observed, pointing to a planar heme configuration in which only distortions of A(1g)-type symmetry are effective and to which the nicotinate ring is bound in an x - y symmetric position. The local dynamic properties of the heme pocket of the three proteins are investigated through the temperature dependence of spectral line broadening. Leghemoglobin-a behaves as a softer matrix with respect to horse myoglobin, thus validating the hypothesis of a looser heme pocket conformation in the former protein, which allows a nondistorted heme configuration and a symmetric binding of the bulky nicotinate ligand.  相似文献   

19.
The nature of the porphyrin pi-cation radicals in the horseradish peroxidase and bovine liver catalase (BLC) compound I species have been investigated by studying their resonance Raman spectra. A variety of laser excitation and sample interrogation procedures have been employed in order to minimize previously documented problems arising from photoinduced conversions. With Soret band excitation, the spectra obtained for both species resemble that of a compound II-like photoproduct unless the samples are excited with residence times in the microsecond regime with very low (approximately 1 milliwatt) powers. When these precautions are taken, spectra attributable to the compound I species themselves are obtained. The spectrum for horseradish peroxidase compound I is similar to that reported by Paeng and Kincaid (Paeng, K.-J., and Kincaid, J. R. (1988) Am. Chem. Soc. 110, 7913-7915) using a similar approach. Both horseradish peroxidase and BLC compound I exhibit frequency shifts relative to their compound II species that are in the direction observed for model pi-cation radicals with predominant 2A2u character. The magnitudes of these shifts are smaller than those observed for heme models that lack aromatic axial ligands, but agree well with those observed on formation of the compound I analog of N alpha-acetyl microperoxidase-8 that has His as a proximal ligand. This observation is consistent with partial delocalization of the radical density onto the proximal His-170 and Tyr-357 ligands in horseradish peroxidase and BLC, respectively. The strong ligand field provided by these ligands on the proximal side and oxo ligand on the distal side of the heme group is apparently sufficient to reverse the 2A1u radical ground state preference observed for heme-like porphyrin species (e.g. octaethylporphyrins) with weak axial fields. Enhancement of several bands assigned to the Tyr-357 ligand has also been observed for BLC compound I with 406.7-nm excitation. This is attributed either to resonance with a tyrosinate----Fe(IV) charge transfer band or to the coupling provided by radical spin delocalization onto the tyrosinate ligand.  相似文献   

20.
Resonance Raman (RR) spectra of several compounds III of lignin peroxidase (LiP) have been measured at 90 K with Soret and visible excitation wavelengths. The samples include LiPIIIa (or oxyLiP) prepared by oxygenation of the ferrous enzyme, LiPIIIb generated by reaction of the native ferric enzyme with superoxide, LiPIIIc prepared from native LiP plus H2O2 followed by removal of excess peroxide with catalase, and LiPIII* made by addition of excess H2O2 to the native enzyme. The RR spectra of these four products appear to be similar and, thus, indicate that the environments of these hexacoordinate, low-spin ferriheme species must also be very similar. Nonetheless, the Soret absorption band of LiPIII* is red-shifted by 5 nm from the 414-nm maximum common to LiPIIIa, -b, and -c [Wariishi, H., & Gold, M.H. (1990) J. Biol. Chem. 265, 2070-2077]. Analysis of the iron-porphyrin vibrational frequencies indicates that the electronic structures for the various compounds III are consistent with an FeIIIO2.-formulation. The spectral changes observed between the oxygenated complex and the ferrous heme of lignin peroxidase are similar to those between oxymyoglobin and deoxymyoglobin. The contraction in the core sizes in compound III relative to the native peroxidase is analyzed and compared with that of other heme systems. EPR spectra confirm that the high-spin ferric form of the native enzyme, with an apparent g = 5.83, is converted into the EPR-silent LiPIII* upon addition of excess H2O2. Its magnetic behavior may be explained by anti-ferromagnetic coupling between the low-spin FeIII and the superoxide ligand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号