首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Soil texture, chemistry and moisture have a profound effect upon the activity and persistence of entomopathogenic nematodes (EPNs). Whereas nematodes’ natural habitat is within the soil, ticks and other arthropod pests prefer to stay on the soil surface and under stones or leaf litter; they spend much of their life cycle in the humid environment of the soil upper layer, therefore consideration of the effect of the soil environment on nematode activity is a pre-requisite for the sucessful use of EPNs against arthropod pests. In the present study we investigated the effects of soil type, and humidity on various nematode strains and on their effectiveness against ticks. Many infective juveniles (IJs) of Steinernema carpocapsae and S. riobrave were found in the uppermost soil layer whereas the heterorhabditid strains were almost absent from the upper 6 cm of the soil profile. The IJs of S. feltiae, and the S. carpocapsae strain S-20, exhibited an intermediate behavior. It was found that the activity of IJs of S. carpocapsae in the soil upper layer (1 cm depth) was strongly affected by soil type: the greatest number of IJs were recorded from sandy loam soil; less were found in the lighter soils – ‘Marine sand’ and ‘Calcareous sandstone’ – and only very few were recovered from heavy soils. Strikingly, even when the soil moisture was low and the number of nematodes found in the upper layer correspondingly low, tick mortality remained high. The results demonstrate: (a) the possible use of the nematodes as an anti-tick agent; (b) the importance of knowing the exact interaction of nematodes with the immediate environment of the pest, in order to optimize the pest-control activity of the nematode.  相似文献   

2.
The infectivity, time to first emergence of infective juveniles (IJs), total number of IJs per insect and IJs body length of the entomopathogenic nematode Heterorhabditis megidis (strain NLH-E87.3) after development in larvae of two insect hosts, Galleria mellonella (greater wax moth) and Otiorhynchus sulcatus (vine weevil) was studied. At a dose of 30 IJs, larvae of G. mellonella show to be significantly more susceptible than O. sulcatus larvae. At a dose of one IJ, vine weevil larvae were more susceptible. The number of invading infective juveniles (IJs) increased with host size while the host mortality at a dose of one IJ decreased with the increase of host size. Time to first emergence was longer at a dose of one IJ per larva and increased with the increase of host size in both insect species. Reproduction of IJs differed between host species, host sizes and doses of nematodes. Generally, the IJs body size increased with an increasing host size. The longest infective juveniles were produced at the lowest IJ doses. Results are discussed in relation to the influence of different host species and their different sizes on the performance of H. megidis (strain NLH-E87.3) as a biological control agent.  相似文献   

3.
The efficacy of five entomopathogenic nematode strains of the families Steinernematidae and Heterorhabditidae was tested against the neonate larvae of Capnodis tenebrionis. The nematode strains screened included two of Steinernema carpocapsae (Exhibit and M137), and one each of S. feltiae (S6), S. arenarium (S2), and Heterorhanditis bacteriophora (P4). Exposure of neonate larvae of Capnodis to 10 and 150 infective juveniles (IJs) per larva (equivalent to 3 and 48 IJs/cm2 respectively) in test tubes with sterile sand, resulted in mortality between 60–91% and 96–100%, respectively. At a concentration of 150 IJs/larva, all of the nematode strains were highly virulent. Both S. carpocapsae strains (Exhibit and M137) caused infection and mortality to larvae more quickly than the other strains. However, at a lower concentration assay (10 IJs/larva), S. arenarium was the most virulent strain. The penetration rate as an indicator of entomopathogenic nematode infection was also evaluated. The highest value was recorded for S. arenarium (36%), followed by H. bacteriophora (30.6%), S. feltiae (23.1%), and S. carpocapsae (20.7%).  相似文献   

4.
Mortality of larval, pupal, and adult western cherry fruit fly, Rhagoletis indifferens (Tephritidae) exposed to the steinernematid nematodes Steinernema carpocapsae, Steinernema feltiae, and Steinernema intermedium, was determined in the laboratory and field. Larvae were the most susceptible stage, with mortality in the three nematode treatments ranging from 62 to 100%. S. carpocapsae and S. feltiae were equally effective against larvae at both 50 and 100 infective juveniles (IJs)/cm2. S. intermedium was slightly less effective against larvae than the other two species. Mortalities of R. indifferens larvae at 0, 2, 4, and 6 days following their introduction into soil previously treated with S. carpocapsae and S. feltiae at 50 IJs/cm2 were 78.6, 92.5, 95.0, and 77.5% and 87.5, 52.5, 92.5, and 70.0%, respectively, and at 100 IJs/cm2 were 90.0, 92.0, 100.0, and 84.0% and 90.0, 50.0, 42.0, and 40.0%, respectively. There was no decline in mortality caused by S. carpocapsae as time progressed, whereas there was in one test with S. feltiae. Larval mortalities caused by the two species were the same in a 1:1:1 vermiculite:peat moss:sand soil mix and a more compact silt loam soil. In the field, S. carpocapsae and S. feltiae were equally effective against larvae. Pupae were not infected, but adult flies were infected by all three nematode species in the laboratory. S. carpocapsae was the most effective species at a concentration of 100 IJs/cm2 and infected 11–53% of adults that emerged. The high pathogenicity of S. carpocapsae and S. feltiae against R. indifferens larvae and their persistence in soil as well as efficacy in different soil types indicate both nematodes hold promise as effective biological control agents of flies in isolated and abandoned lots or in yards of homeowners.  相似文献   

5.
Laboratory, greenhouse, and field experiments were performed with the objective of selecting efficient indigenous strains of entomopathogenic nematodes (EPNs) from Rio Grande do Sul (RS) state, Brazil, for controlling the South American fruit fly, Anastrepha fraterculus (Wied.). Laboratory experiments were conducted in 24 well-plates filled with sterile sand and one insect per well. In greenhouse experiments, plastic trays filled with soil collected from the field were used, while in field experiments, holes were made in soil under the edge of peach tree canopies. Among 19 EPN strains tested, Heterorhabditis bacteriophora Poinar RS88 and Steinernema riobrave Cabanillas, Poinar, & Raulston RS59 resulted in higher A. fraterculus larval (pre-pupal) and pupal mortality, with LD90 of 1630, 457 and 2851, 423 infective juveniles (IJs)/cm2, respectively. Greenhouse experiments showed no differences in pupal mortality at 250 and 500 IJs/cm2 of either nematode. In the field, H. bacteriophora RS88 and S. riobravae RS59 sprayed individually over natural and artificially infested fruit (250 IJs/cm2) resulted in A. fraterculus larval mortality of 51.3%, 28.1% and 20%, 24.3%, respectively. There was no significant difference in A. fraterculus pupal mortality sprayed with an aqueous suspension of either nematode; however, when using infected insect cadavers, H. bacteriophora RS88 was more efficient than S. riobrave RS59. Our results showed that H. bacteriophora RS88 was more virulent to insect larvae, with an efficient host search inside the infested fruit and control of pupae in the soil after being applied by aqueous suspension or infected cadavers.  相似文献   

6.
The infectivity and biocontrol potential of entomopathogenic nematodes against two common urban tree leaf beetles (Altica quercetorum and Agelastica alni) pupating in the soil were examined under laboratory and semi‐field conditions. In the laboratory experiments, pre‐pupae and pupae of both insect species were shown to be highly susceptible to nematode infection when challenged in soil pre‐treated with the parasites’ infective juveniles. In general, Heterorhabditis megidis was more effective than Steinernema feltiae. However, significant differences were observed between individual isolates within the latter species. Nematodes developed and reproduced in cadavers of both insect species. A semi‐field experiment studying the biocontrol potential of selected nematode strains, conducted under the canopy of urban trees, confirmed the preliminary laboratory findings and revealed that H. megidis could eliminate most of the insects pupating in the soil, when applied at a relatively low dose of 105 IJs m?2. The potential of entomopathogenic nematodes as environmentally safe, effective, and economically viable agents for the biological control of tree leaf beetles in urban green areas is discussed.  相似文献   

7.
Predation of the entomopathogenic nematode, Steinernema feltiae (Rhabditida: Steinernematidae), by Sancassania sp. (Acari: Acaridae) isolated from field-collected scarab larvae was examined under laboratory conditions. Adult female mites consumed more than 80% of the infective juvenile (IJ) stage of S. feltiae within 24 h. When S. feltiae IJs were exposed to the mites for 24 h and then exposed to Galleria mellonella (Lepidoptera: Pyralidae) larvae, the number of nematodes penetrating into the larvae was significantly lower compared to S. feltiae IJs that were not exposed to mites (control). Soil type significantly affected the predation rate of IJs by the mites. Mites preyed more on nematodes in sandy soil than in loamy soil. We also observed that the mites consumed more S. feltiae IJs than Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae). No phoretic relationship was observed between mites and nematodes and the nematodes did not infect the mites.  相似文献   

8.
The effect of the predatory miteHypoaspis aculeifer Canestrini (Acarina:Laelapidae) on soil-dwelling stages of thewestern flower thrips (WFT) Frankliniellaoccidentalis Pergande (Thysanoptera: Thripidae)and the influence of combined releases of H.aculeifer and two entomopathogenic nematodes(EPNs) Heterorhabditis bacteriophora Poinar(Rhabditida: Heterorhabditidae) (strain HK3,HK3) and Steinernema feltiae Filipjev(Rhabditida: Steinernematidae) (Nemaplus®,SFN) were investigated in pot trials usingseedlings of green beans (Phaseolus vulgarisL.). Ten H. aculeifer adults per pot and 400infective juveniles (IJs) cm–2 soil, of the twoEPN strains were used. In comparison withuntreated control, H. aculeifer reduced theproportion of adult F. occidentalis emergenceby 46%, while SFN and HK3 led to a reductionin adult thrips emergence by 46% and 61%,respectively. Significant differences in adultWFT emergence were found between combinedtreatments of EPNs and H. aculeifer, andindividual applications of EPNs and/or H.aculeifer, with significantly lower adultthrips emergence in the combined treatments.These findings highlight the potential for acombined use of EPNs with H. aculeifer for thecontrol of soil-dwelling stages of thrips.  相似文献   

9.
《Journal of Asia》2022,25(2):101880
Bioassays to evaluate the mortality, virulence and reproduction potentials of four indigenous EPN strains, S-PQ16, S-BM12, H-KT3987 and H-CB3452 on insect larvae of mealworm (Tenebrio molitor) and greater wax moth (Galleria mellonella) revealed the highest mortality rates of two insect larvae at the highest inoculation dose of 100 IJs to range from 89 to 100 percent and 94.3–100 percent at 48 h after inoculation, respectively. Virulence was high for all nematode strains, with LC50 values between 29.6 and 47.3 IJs/insect host. The highest IJ yields were different between nematode strains and insect host, from 66.8 × 103 IJs (S-PQ16) to 118.6 × 103 IJs (H-KT3987) on T. molitor, and from 54.2 × 103 IJs (S-BM12) to 163.3 × 103 IJs (H-KT3987) on G. mellonella. The culturing cost in terms of food expenditure for rearing insect larvae varied between insect larvae and nematode strains, from 6.76 to 26.63 USD per billion IJs for nematode strains cultured on T. molitor larvae and from 3.54 to 7.81 USD per billion IJs for nematode strains cultured on G. mellonella larvae. The full cost for a nematode product of 2.5 × 109 IJs per hectare, produced through in vivo mass culturing, of the most efficient nematode strain, H-KT3987, was 191.3 USD, slightly cheaper than 199.4 USD for the same nematode product produced through in vitro mass culturing.  相似文献   

10.
The vertical distribution of soil nematodes down to a depth of 50 cm was studied in an age sequence of 0-, 5-, 10-, and 22-year-old Caragana microphylla plantations (treatments) in the Horqin Sandy Land, Northeast China. The abundances and generic compositions of nematode fauna in five soil layers (0–10, 10–20, 20–30, 30–40, and 40–50 cm) were analyzed. 42 genera were observed in the nematode suspensions, and Acrobeles was the dominant genus in all treatments. The results showed that the total number of nematodes and the generic diversity in an age sequence of C. microphylla plantations decreased with increasing soil depth. Significant differences in the numbers of total nematodes, bacterivores (BF), plant parasites (PP), and omnivores–predators (OP) were observed between treatments and depths. BF was the most abundant trophic group in our study, followed by OP. The numbers of OP showed an obviously increasing trend with increasing age of C. microphylla plantation. The vertical distribution of the soil nematode communities was related to gradual changes in soil chemical properties, and it indicated that C. microphylla plantations have played positive roles in improving soil environmental conditions and restoring desertified ecosystems in the Horqin Sandy Land. The ecological indices selected were influenced by plantation chronosequence but not by soil depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号