首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The involvement of cAMP- andCa2+-mediated pathways in theactivation of tyrosine hydroxylase (TH) gene expression by nicotine wasexamined in PC-12 cells. ExtracellularCa2+ and elevations inintracellular Ca2+ concentration([Ca2+]i)were required for nicotine to increase TH mRNA. The nicotine-elicited rapid rise in[Ca2+]iwas inhibited by blockers of either L-type or N-type, and to a lesserextent P/Q-, but not T-type, voltage-gatedCa2+ channels. With continualnicotine treatment,[Ca2+]ireturned to basal levels within 3-4 min. After a lag of~5-10 min, there was a smaller elevation in[Ca2+]ithat persisted for 6 h and displayed different responsiveness toCa2+ channel blockers. This secondphase of elevated[Ca2+]iwas blocked by an inhibitor of store-operatedCa2+ channels, consistent with theobserved generation of inositol trisphosphate.1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM), when added before or 2 h after nicotine,prevented elevation of TH mRNA. Nicotine treatment significantly raised cAMP levels. Addition of the adenylyl cyclase inhibitor2',5'-dideoxyadenosine (DDA) prevented thenicotine-elicited phosphorylation of cAMP response element bindingprotein. DDA also blocked the elevation of TH mRNA only when addedafter the initial transient rise in [Ca2+]iand not after 1 h. This study reveals that several temporal phases areinvolved in the induction of TH gene expression by nicotine, each ofthem with differing requirements forCa2+ and cAMP.

  相似文献   

2.
In cultured rat cerebellar granule cells, glutamate or N-methyl-D-aspartate (NMDA) activation of the NMDA receptor caused a sustained increase in cytosolic Ca2+ levels ([Ca2+]i), reactive oxygen species (ROS) generation, and cell death (respective EC50 values for glutamate were 12, 30, and 38 µM) but no increase in caspase-3 activity. Removal of extracellular Ca2+ blocked all three glutamate-induced effects, whereas pretreatment with an ROS scavenger inhibited glutamate-induced cell death but had no effect on the [Ca2+]i increase. This indicates that glutamate-induced cell death is attributable to [Ca2+]i increase and ROS generation, and the [Ca2+]i increase precedes ROS generation. Apoptotic cell death was not seen until 24 h after exposure of cells to glutamate. S-nitrosoglutathione abolished glutamate-induced ROS generation and cell death, and only a transient [Ca2+]i increase was seen; similar results were observed with another nitric oxide (NO) donor, S-nitroso-N-acetylpenicillamine, but not with glutathione, which suggests that the effects were caused by NO. The transient [Ca2+]i increase and the abolishment of ROS generation induced by glutamate and S-nitrosoglutathione were still seen in the presence of an ROS scavenger. Glial cells, which were present in the cultures used, showed no [Ca2+]i increase in the presence of glutamate, and glutamate-induced granule cell death was independent of the percentage of glial cells. In conclusion, NO donors protect cultured cerebellar granule cells from glutamate-induced cell death, which is mediated by ROS generated by a sustained [Ca2+]i increase, and glial cells provide negligible protection against glutamate-induced excitotoxicity. cytosolic calcium concentration; N-methyl-D-aspartate; reactive oxygen species  相似文献   

3.
This study examines theCa2+ influx-dependent regulationof the Ca2+-activatedK+ channel(KCa) in human submandibulargland (HSG) cells. Carbachol (CCh) induced sustained increases in theKCa current and cytosolic Ca2+ concentration([Ca2+]i),which were prevented by loading cells with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Removal of extracellularCa2+ and addition ofLa3+ orGd3+, but notZn2+, inhibited the increases inKCa current and[Ca2+]i.Ca2+ influx during refill (i.e.,addition of Ca2+ to cells treatedwith CCh and then atropine inCa2+-free medium) failed to evokeincreases in the KCa current but achieved internal Ca2+ storerefill. When refill was prevented by thapsigargin,Ca2+ readdition induced rapidactivation of KCa. These dataprovide further evidence that intracellularCa2+ accumulation provides tightbuffering of[Ca2+]iat the site of Ca2+ influx (H. Mogami, K. Nakano, A. V. Tepikin, and O. H. Petersen. Cell 88: 49-55, 1997). We suggestthat the Ca2+ influx-dependentregulation of the sustained KCacurrent in CCh-stimulated HSG cells is mediated by the uptake ofCa2+ into the internalCa2+ store and release via theinositol 1,4,5-trisphosphate-sensitive channel.

  相似文献   

4.
Calreticulin (CRT), a Ca2+-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac apoptosis in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In the present study, the effect of overexpression of CRT on susceptibility to apoptosis under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. Under oxidative stress due to H2O2, the CRT-overexpressing cells were highly susceptible to apoptosis compared with controls. In the overexpressing cells, the levels of cytoplasmic free Ca2+ ([Ca2+]i) were significantly increased by H2O2, whereas in controls, only a slight increase was observed. The H2O2-induced apoptosis was enhanced by the increase in [Ca2+]i caused by thapsigargin in control cells but was suppressed by BAPTA-AM, a cell-permeable Ca2+ chelator in the CRT-overexpressing cells, indicating the importance of the level of [Ca2+]i in the sensitivity to H2O2-induced apoptosis. Suppression of CRT by the introduction of the antisense cDNA of CRT enhanced cytoprotection against oxidative stress compared with controls. Furthermore, we found that the levels of activity of calpain and caspase-12 were elevated through the regulation of [Ca2+]i in the CRT-overexpressing cells treated with H2O2 compared with controls. Thus we conclude that the level of CRT regulates the sensitivity to apoptosis under oxidative stress due to H2O2 through a change in Ca2+ homeostasis and the regulation of the Ca2+-calpain-caspase-12 pathway in myocardiac cells. apoptosis; calcium; endoplasmic reticulum  相似文献   

5.
Despite extensive work in the field of glioblastoma research no significant increase in survival rates for this devastating disease has been achieved. It is known that disturbance of intracellular Ca2+ ([Ca2+]i) and intracellular pH (pHi) regulation could be involved in tumor formation. The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is a major regulator of [Ca2+]i. We have investigated the effect of inhibition of SERCA by thapsigargin (TG) on [Ca2+]i and pHi in human primary glioblastoma multiforme (GBM) cells and GBM cell lines, compared with normal human astrocytes, using the fluorescent indicators fura-2 and BCECF, respectively. Basal [Ca2+]i was higher in SK-MG-1 and U87 MG but not in human primary GBM cells compared with normal astrocytes. However, in tumor cells, TG evoked a much larger and faster [Ca2+]i increase than in normal astrocytes. This increase was prevented in nominally Ca2+-free buffer and by 2-APB, an inhibitor of store-operated Ca2+ channels. In addition, TG-activated Ca2+ influx, which was sensitive to 2-APB, was higher in all tumor cell lines and primary GBM cells compared with normal astrocytes. The pHi was also elevated in tumor cells compared with normal astrocytes. TG caused acidification of both normal and all GBM cells, but in the tumor cells, this acidification was followed by an amiloride- and 5-(N,N-hexamethylene)-amiloride-sensitive recovery, indicating involvement of a Na+/H+ exchanger. In summary, inhibition of SERCA function revealed a significant divergence in intracellular Ca2+ homeostasis and pH regulation in tumor cells compared with normal human astrocytes. fura-2; BCECF; store-operated calcium channels  相似文献   

6.
To test thehypothesis that intracellular Ca2+activation of large-conductanceCa2+-activatedK+ (BK) channels involves thecytosolic form of phospholipase A2 (cPLA2), we first inhibited theexpression of cPLA2 by treating GH3 cells with antisenseoligonucleotides directed at the two possible translation start siteson cPLA2. Western blot analysis and a biochemical assay of cPLA2activity showed marked inhibition of the expression ofcPLA2 in antisense-treated cells.We then examined the effects of intracellularCa2+ concentration([Ca2+]i)on single BK channels from these cells. Open channel probability (Po) for thecells exposed to cPLA2 antisenseoligonucleotides in 0.1 µM intracellularCa2+ was significantly lower thanin untreated or sense oligonucleotide-treated cells, but the voltagesensitivity did not change (measured as the slope of thePo-voltagerelationship). In fact, a 1,000-fold increase in[Ca2+]ifrom 0.1 to 100 µM did not significantly increasePoin these cells, whereas BK channels from cells in the other treatmentgroups showed a normalPo-[Ca2+]iresponse. Finally, we examined the effect of exogenous arachidonic acidon thePoof BK channels from antisense-treated cells. Although arachidonic aciddid significantly increasePo,it did so without restoring the[Ca2+]isensitivity observed in untreated cells. We conclude that although [Ca2+]idoes impart some basal activity to BK channels inGH3 cells, the steepPo-[Ca2+]irelationship that is characteristic of these channels involves cPLA2.

  相似文献   

7.
We previously reported that glucosamine and hyperglycemia attenuate the response of cardiomyocytes to inositol 1,4,5-trisphosphate-generating agonists such as ANG II. This appears to be related to an increase in flux through the hexosamine biosynthesis pathway (HBP) and decreased Ca2+ entry into the cells; however, a direct link between HBP and intracellular Ca2+ homeostasis has not been established. Therefore, using neonatal rat ventricular myocytes, we investigated the relationship between glucosamine treatment; the concentration of UDP-N-acetylglucosamine (UDP-GlcNAc), an end product of the HBP; and the level of protein O-linked N-acetylglucosamine (O-GlcNAc) on ANG II-mediated changes in intracellular free Ca2+ concentration ([Ca2+]i). We found that glucosamine blocked ANG II-induced [Ca2+]i increase and that this phenomenon was associated with a significant increase in UDP-GlcNAc and O-GlcNAc levels. O-(2-acetamido-2-deoxy-D-glucopyranosylidene)-amino-N-phenylcarbamate, an inhibitor of O-GlcNAcase that increased O-GlcNAc levels without changing UDP-GlcNAc concentrations, mimicked the effect of glucosamine on the ANG II-induced increase in [Ca2+]i. An inhibitor of O-GlcNAc-transferase, alloxan, prevented the glucosamine-induced increase in O-GlcNAc but not the increase in UDP-GlcNAc; however, alloxan abrogated the inhibition of the ANG II-induced increase in [Ca2+]i. These data support the notion that changes in O-GlcNAc levels mediated via increased HBP flux may be involved in the regulation of [Ca2+]i homeostasis in the heart. hypertrophy; left ventricle; calcium channels; calcium signaling  相似文献   

8.
To clarify the contribution of intracellularCa2+ concentration([Ca2+]i)-dependent and -independentsignaling mechanisms in arteriolar smooth muscle (aSM) to modulation ofarteriolar myogenic tone by nitric oxide (NO), released in response toincreases in intraluminal flow from the endothelium, changes in aSM[Ca2+]i and diameter of isolated rat gracilismuscle arterioles (pretreated with indomethacin) were studied byfluorescent videomicroscopy. At an intraluminal pressure of 80 mmHg, [Ca2+]i significantly increased andmyogenic tone developed in response to elevations of extracellularCa2+ concentration. The Ca2+ channelinhibitor nimodipine substantially decreased[Ca2+]i and completely inhibited myogenictone. Dilations to intraluminal flow (that were inhibited byN-nitro-L-arginine methyl ester)or dilations to the NO donorS-nitroso-N-acetyl-DL-penicillamine (that were inhibited by the guanylate cyclase inhibitor1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) were notaccompanied by substantial decreases in aSM[Ca2+]i. 8-Bromoguanosine cGMP and thecGMP-specific phosphodiesterase inhibitor zaprinast significantlydilated arterioles yet elicited only minimal decreases in[Ca2+]i. Thus flow-induced endothelialrelease of NO elicits relaxation of arteriolar smooth muscle by acGMP-dependent decrease of the Ca2+ sensitivity of thecontractile apparatus without substantial changes in thepressure-induced level of [Ca2+]i.

  相似文献   

9.
Malignant hyperthermia (MH) is a potentially fatal pharmacogenetic syndrome caused by exposure to halogenated volatile anesthetics and/or depolarizing muscle relaxants. We have measured intracellular Ca2+ concentration ([Ca2+]i) using double-barreled, Ca2+-selective microelectrodes in myoballs prepared from skeletal muscle of MH-susceptible (MHS) and MH-nonsusceptible (MHN) swine. Resting [Ca2+]i was approximately twofold in MHS compared with MHN quiescent myoballs (232 ± 35 vs. 112 ± 11 nM). Treatment of myoballs with caffeine or 4-chloro-m-cresol (4-CmC) produced an elevation in [Ca2+]i in both groups; however, the concentration required to cause a rise in [Ca2+]i elevation was four times lower in MHS than in MHN skeletal muscle cells. Incubation of MHS cells with the fast-complexing Ca2+ buffer BAPTA reduced [Ca2+]i, raised the concentration of caffeine and 4-CmC required to cause an elevation of [Ca2+]i, and reduced the amount of Ca2+ release associated with exposure to any given concentration of caffeine or 4-CmC to MHN levels. These results suggest that the differences in the response of MHS skeletal myoballs to caffeine and 4-CmC may be mediated at least in part by the chronic high resting [Ca2+]i levels in these cells. calcium homeostasis; 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid  相似文献   

10.
While nitric oxide (NO)-mediated biological interactions have been intensively studied, the underlying mechanisms of nitrosative stress with resulting pathology remain unclear. Previous studies have demonstrated that NO exposure increases free zinc ions (Zn2+) within cells. However, the resulting effects on endothelial cell survival have not been adequately resolved. Thus the purpose of this study was to investigate the role of altered zinc homeostasis on endothelial cell survival. Initially, we confirmed the previously observed significant increase in free Zn2+ with a subsequent induction of apoptosis in our pulmonary artery endothelial cells (PAECs) exposed to the NO donor N-[2-aminoethyl]-N-[2-hydroxy-2-nitrosohydrazino]-1,2-ethylenediamine. However, NO has many effects upon cell function and we wanted to specifically evaluate the effects mediated by zinc. To accomplish this we utilized the direct addition of zinc chloride (ZnCl2) to PAEC. We observed that Zn2+-exposed PAECs exhibited a dose-dependent increase in superoxide (O2·) generation that was localized to the mitochondria. Furthermore, we found Zn2+-exposed PAECs exhibited a significant reduction in mitochondrial membrane potential, loss of cardiolipin from the inner leaflet, caspase activation, and significant increases in TdT-mediated dUTP nick end labeling-positive cells. Furthermore, using an adenoviral construct for the overexpression of the Zn2+-binding protein, metallothionein-1 (MT-1), we found either MT-1 overexpression or coincubation with a Zn2+-selective chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylene-diamide, in PAECs significantly protected the mitochondria from both NO and Zn2+-mediated disruption and induction of apoptosis and cell death. In summary, our results indicate that a loss of Zn2+ homeostasis produces mitochondrial dysfunction, increased oxidative stress, and apoptotic cell death. We propose that regulation of Zn2+ levels may represent a potential therapeutic target for disease associated with both nitrosative and oxidative stress. reactive nitrogen species; apoptosis mitochondrial dysfunction  相似文献   

11.
To determine whetherthe phosphoinositol/Ca2+ pathwayinteracts with the adenylate cyclase/adenosine 3',5'-cyclicmonophosphate (cAMP) pathway in the cardiac -receptor, the effectsof U-50488, a specific -receptor agonist, on the intracellularCa2+ concentration([Ca2+]i)and forskolin-induced accumulation of cAMP in rat ventricular myocyteswere determined after interference of thephosphoinositol/Ca2+ pathway.U-50488 suppressed the forskolin-induced accumulation of cAMP andelevated[Ca2+]i,which were blocked by norbinaltorphimine, a specific -receptor antagonist, and pertussis toxin. The effects of U-50488 werequalitatively similar to those of A-23187, aCa2+ ionophore, but opposite tothose of1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-acetoxymethyl ester (AM), a[Ca2+]ichelator. Abolition of U-50488-induced elevation of[Ca2+]iby BAPTA-AM also abolished the effect of U-50488 on forskolin-induced accumulation of cAMP. Inhibition of the phospholipase C by specific inhibitors, U-73122 and neomycin, abolished the effects of U-50488 onboth[Ca2+]iand forskolin-induced accumulation of cAMP. The results showed for thefirst time that -receptor stimulation may suppress cAMP accumulationvia activation of thephosphoinositol/Ca2+ pathway inthe rat heart.

  相似文献   

12.
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 µM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 µM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 µM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG. voltage-gated potassium channels; ether-à-go-go-related gene potassium channels; slow-inactivating outward currents; fast-inactivating outward currents  相似文献   

13.
Tonic contraction of corpus cavernosum smooth muscle cells (SMCs) maintains the flaccid state of the penis, and relaxation is initiated by nitric oxide (NO), leading to erection. Our aim was to investigate the effect of NO on the smooth muscle cellular response to adrenergic stimulation in corpus cavernosum. Fura-2 fluorescence was used to record intracellular Ca2+ concentration ([Ca2+]i) from freshly isolated SMCs from rat and human. Phenylephrine (PE) transiently elevated [Ca2+]i in the presence and absence of extracellular Ca2+, indicating release from intracellular stores. Whereas the NO donor S-nitroso-N-acetylpenicillamine (SNAP) with sildenafil citrate (SIL) caused no change in basal [Ca2+]i, the PE-induced rise of [Ca2+]i was reversibly inhibited by 27 ± 7% (n = 21, P < 0.005) in rat and by 55 ± 15% (n = 9, P < 0.01) in human SMCs. SNAP and SIL also reduced the contractile response to PE. To investigate the mechanism, we applied mediators alone or in combination. The soluble guanylyl cyclase inhibitor ODQ reduced the effect of SNAP and SIL. SIL, cGMP analogs, and NO donors without SIL did not reduce the PE-induced rise of [Ca2+]i. However, the combination of 8-bromo-cGMP with SNAP reduced the Ca2+ peak by 42 ± 9% (n = 22, P < 0.01). Our results demonstrate that NO and cGMP act synergistically to reduce Ca2+ release from intracellular stores. Reduction of intracellular Ca2+ release may contribute to relaxation of the corpus cavernosum, leading to erection. calcium stores; nitric oxide; sildenafil citrate; inositol 1,4,5-trisphosphate receptor  相似文献   

14.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

15.
L-Arginine (L-Arg) affects variousparameters that modulate the progression of renal disease. These samefactors [e.g., glomerular filtration rate, changes in mesangialcell (MC) tension, and production of NO] are all controlled atleast in part by changes in MC intracellular Ca2+concentration([Ca2+]i). Wetherefore evaluated the effect of L-Arg on MC[Ca2+]i. We found thatL-Arg inhibits the vasopressin-stimulated rise in MC[Ca2+]i both in rat andmurine cell cultures. This effect does not appear to be due tometabolism of L-Arg to either NO or L-ornithine (L-Orn). Blocking the metabolism of L-Arg withN-monomethyl-L-arginine, an NOsynthase inhibitor, or with 20 mM L-valine(L-Val), an inhibitor of Orn formation,does not reverse the inhibition. However, other cationic amino acids,as well guanidine, the functional group ofL-Arg, all inhibit thevasopressin-stimulated rise in[Ca2+]i,consistent with a structural basis for this effect. We conclude that1)L-Arg inhibitsvasopressin-stimulated murine and rat MC [Ca2+]irise, 2) this inhibition is notmediated by metabolism of L-Arg to either NO or L-Orn, and3) the effect ofL-Arg is due to its cationicfunctional group, guanidine.

  相似文献   

16.
Bovine adrenalzona fasciculata cells (AZF) express a noninactivatingK+ current(IAC) whoseinhibition by adrenocorticotropic hormone and ANG II may be coupled tomembrane depolarization andCa2+-dependentcortisol secretion. We studiedIACinhibition byCa2+ and theCa2+ionophore ionomycin in whole cell and single-channel patch-clamp recordings of AZF. In whole cell recordings with intracellular (pipette)Ca2+concentration([Ca2+]i)buffered to 0.02 µM,IAC reachedmaximum current density of 25.0 ± 5.1 pA/pF(n = 16); raising[Ca2+]ito 2.0 µM reduced it 76%. In inside-out patches, elevated[Ca2+]idramatically reducedIAC channelactivity. Ionomycin inhibited IAC by 88 ± 4% (n = 14) without altering rapidlyinactivating A-type K+ current.Inhibition of IACby ionomycin was unaltered by adding calmodulin inhibitory peptide tothe pipette or replacing ATP with its nonhydrolyzable analog5'-adenylylimidodiphosphate.IAC inhibition byionomycin was associated with membrane depolarization. When[Ca2+]iwas buffered to 0.02 µM with 2 and 11 mM1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), ionomycin inhibitedIAC by 89.6 ± 3.5 and 25.6 ± 14.6% and depolarized the same AZF by 47 ± 8 and 8 ± 3 mV, respectively (n = 4). ANG II inhibitedIAC significantlymore effectively when pipette BAPTA was reduced from 11 to 2 mM. Raising[Ca2+]iinhibits IACthrough a mechanism not requiring calmodulin or protein kinases,suggesting direct interaction withIAC channels. ANGII may inhibitIAC anddepolarize AZF by activating parallel signaling pathways, one of whichuses Ca2+ asa mediator.

  相似文献   

17.
Ethanol strongly augments secretin-stimulated, but not acetylcholine (ACh)-stimulated, fluid secretion from pancreatic duct cells. To understand its mechanism of action, we examined the effect of short-chain n-alcohols on fluid secretion and intracellular Ca2+ concentration ([Ca2+]i) in guinea pig pancreatic ducts. Fluid secretion was measured by monitoring the luminal volume of isolated interlobular ducts. [Ca2+]i was estimated using fura-2 microfluorometry. Methanol and ethanol at 0.3–10 mM concentrations significantly augmented fluid secretion and induced a transient elevation of [Ca2+]i in secretin- or dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP)-stimulated ducts. However, they failed to affect fluid secretion and [Ca2+]i in unstimulated and ACh-stimulated ducts. In contrast, propanol and butanol at 0.3–10 mM concentrations significantly reduced fluid secretion and decreased [Ca2+]i in unstimulated ducts and in ducts stimulated with secretin, DBcAMP, or ACh. Both stimulatory and inhibitory effects of n-alcohols completely disappeared after their removal from the perfusate. Propanol and butanol inhibited the plateau phase, but not the initial peak, of [Ca2+]i response to ACh as well as the [Ca2+]i elevation induced by thapsigargin, suggesting that they inhibit Ca2+ influx. Removal of extracellular Ca2+ reduced [Ca2+]i in duct cells and completely abolished secretin-stimulated fluid secretion. In conclusion, there is a distinct cutoff point between ethanol (C2) and propanol (C3) in their effects on fluid secretion and [Ca2+]i in duct cells. Short-chain n-alcohols appear to affect pancreatic ductal fluid secretion by activating or inhibiting the plasma membrane Ca2+ channel. intracellular calcium; acetylcholine  相似文献   

18.
We investigated the role of intracellular Mg2+(Mgi2+) on the ATP regulation ofNa+/Ca2+ exchanger in squid axons and bovineheart. In squid axons and nerve vesicles, the ATP-upregulated exchangerremains activated after removal of cytoplasmic Mg2+, evenin the absence of ATP. Rapid and complete deactivation of theATP-stimulated exchange occurs upon readmission ofMgi2+. At constant ATP concentration, the effectof intracellular Mg2+ concentration([Mg2+]i) on the ATP regulation of exchangeris biphasic: activation at low [Mg2+]i,followed by deactivation as [Mg2+]i isincreased. No correlation was found between the above results and thelevels of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] measured innerve membrane vesicles. Incorporation ofPtdIns(4,5)P2 into membrane vesicles activates Na+/Ca2+ exchange in mammalian heart but not insquid nerve. Moreover, an exogenous phosphatase prevents MgATPactivation in squid nerves but not in mammalian heart. It is concludedthat 1) Mgi2+ is an essentialcofactor for the deactivation part of ATP regulation of the exchangerand 2) the metabolic pathway of ATP upregulation of theNa+/Ca2+ exchanger is different in mammalianheart and squid nerves.

  相似文献   

19.
The mechanism involved inN-methyl-D-glucamine(NMDA)-induced Ca2+-dependentintracellular acidosis is not clear. In this study, we investigated indetail several possible mechanisms using cultured rat cerebellargranule cells and microfluorometry [fura 2-AM or 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-AM].When 100 µM NMDA or 40 mM KCl was added, a marked increase in theintracellular Ca2+ concentration([Ca2+]i)and a decrease in the intracellular pH were seen. Acidosis wascompletely prevented by the use ofCa2+-free medium or1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, suggesting that it resulted from an influx of extracellular Ca2+. The following fourmechanisms that could conceivably have been involved were excluded:1)Ca2+ displacement of intracellularH+ from common binding sites;2) activation of an acid loader or inhibition of acid extruders; 3)overproduction of CO2 or lactate; and 4) collapse of the mitochondrialmembrane potential due to Ca2+uptake, resulting in inhibition of cytosolicH+ uptake. However,NMDA/KCl-induced acidosis was largely prevented by glycolyticinhibitors (iodoacetate or deoxyglucose in glucose-free medium) or byinhibitors of the Ca2+-ATPase(i.e.,Ca2+/H+exchanger), including La3+,orthovanadate, eosin B, or an extracellular pH of 8.5. Our results therefore suggest that Ca2+-ATPaseis involved in NMDA-induced intracellular acidosis in granule cells. Wealso provide new evidence that NMDA-evoked intracellular acidosisprobably serves as a negative feedback signal, probably with theacidification itself inhibiting the NMDA-induced[Ca2+]i increase.

  相似文献   

20.
The intent of this work was to evaluate the role of cAMP inregulation of ciliary activity in frog mucociliary epithelium and toexamine the possibility of cross talk between the cAMP- andCa2+-dependent pathways in thatregulation. Forskolin and dibutyryl cAMP induced strong transientintracellular Ca2+ concentration([Ca2+]i)elevation and strong ciliary beat frequency enhancement with prolongedstabilization at an elevated plateau. The response was not affected byreduction of extracellular Ca2+concentration. The elevation in[Ca2+]iwas canceled by pretreatment with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, thapsigargin, and a phospholipase C inhibitor, U-73122. Underthose experimental conditions, forskolin raised the beat frequency to amoderately elevated plateau, whereas the initial strong rise infrequency was completely abolished. All effects were canceled by H-89,a selective protein kinase A (PKA) inhibitor. The results suggest adual role for PKA in ciliary regulation. PKA releasesCa2+ from intracellular stores,strongly activating ciliary beating, and, concurrently, producesmoderate prolonged enhancement of the beat frequency by aCa2+-independent mechanism.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号