首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F Berger  N Morellet  F Menu    P Potier 《Journal of bacteriology》1996,178(11):2999-3007
The psychrotrophic bacterium Arthrobacter globiformis SI55 was grown at 4 and 25 degrees C, and the cell protein contents were analyzed by two-dimensional electrophoresis. Cells subjected to cold shocks of increasing magnitude were also analyzed. Correspondence analysis of protein appearance distinguished four groups of physiological significance. Group I contained cold shock proteins (Csps) overexpressed only after a large temperature downshift. Group II contained Csps with optimal expression after mild shocks. Group III contained proteins overexpressed after all cold shocks. These last proteins were also overexpressed in cells growing at 4 degrees C and were considered to be early cold acclimation proteins (Caps). Group IV contained proteins which were present at high concentrations only in 4 degrees C steady-state cells and appeared to be late Caps. A portion of a gene very similar to the Escherichia coli cspA gene (encoding protein CS7.4) was identified. A synthetic peptide was used to produce an antibody which detected a CS7.4-like protein (A9) by immunoblotting two-dimensional electrophoresis gels of A. globiformis SI55 total proteins. Unlike mesophilic microorganisms, this CS7.4-like protein was still produced during prolonged growth at low temperature, and it might have a particular adaptive function needed for balanced growth under harsh conditions. However, A9 was induced at high temperature by chloramphenicol, suggesting that CS7.4-like proteins have a more general role than their sole implication in cold acclimation processes.  相似文献   

2.
Cold shock proteins (Csps) are assumed to play a central role in the regulation of gene expression under cold shock conditions. Acting as single-stranded nucleic acid-binding proteins, they trigger the translation process and are therefore involved in the compensation of the influence of low temperatures (cold shock) upon the cell metabolism. However, it is unknown so far how Csps are switched on and off as a function of temperature. The aim of the present study is the study of possible structural changes responsible for this switching process. (1)H-(15)N HSQC spectra recorded at different temperatures and chemical-shift analysis have indicated subtle conformational changes for the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima (TmCsp) when the temperature is elevated from 303 K to its physiological temperature (343 K). The three-dimensional structure of TmCsp was determined by nuclear magnetic resonance (NMR) spectroscopy at 343 K to obtain quantitative information concerning these structural changes. By use of residual dipolar couplings, the loss of NOE information at high temperature could be compensated successfully. Most pronounced conformational changes compared with room-temperature conditions are observed for amino acid residues closely neighbored to two characteristic beta-bulges and a well-defined loop region of the protein. Because the residues shown to be responsible for the interaction of TmCsp with single-stranded nucleic acids can almost exclusively be found within these regions, nucleic acid-binding activity might be down-regulated with increasing temperature by the described conformational changes.  相似文献   

3.
Cold-shock response and cold-shock proteins.   总被引:13,自引:0,他引:13  
  相似文献   

4.
Escherichia coli and later found to be a cold-shock response common to many bacterial species. CspA of 7.4 kD, a major cold-shock protein in E. coli, has been shown to share structural similarity with a class of eukaryotic Y box proteins which have RNA-binding domains. Transient synthesis of CspA upon cold shock is mediated by increased stabilization of the mRNA at low temperatures. The proposed role of some cold-shock proteins including CspA in the bacterial adaptation to low temperatures is to function as a RNA chaperone in the regulation of translation. Some enzymes of psychrotrophic or psychrophilic bacteria exhibit unique features of a cold-adapted enzyme, high catalytic activity at a low temperature and rapid inactivation at a moderate temperature. A monomeric isocitrate dehydrogenase isozyme (IDH-II) of a psychrophilic bacterium, Vibrio sp. strain ABE-1, is a typical cold-adapted enzyme. In addition, this enzyme is induced at low temperatures. Low temperature-dependent expression of icdll encoding IDH-II is controlled by two different cis-elements located at the untranslated upstream region of the gene, one is a silencer and the other is essential for the low temperature response. The physiological role of IDH-II is evaluated by transforming E. coli with icdll. The growth rate of the E. coli transformants at low temperatures is dependent on the level of expressed IDH-II activity. Received 11 January 1999/ Accepted in revised form 6 April 1999  相似文献   

5.
The cold-shock response, characterized by a specific pattern of gene expression, is induced upon a downshift in temperature and in the presence of inhibitors of ribosomal function. Here, we demonstrate that RbfA of Escherichia coli, considered to be involved in ribosomal maturation and/or initiation of translation, is a cold-shock protein. Shifting the rbfA mutant to a lower temperature resulted in a constitutive induction of the cold-shock response accompanied by slower growth at low temperatures, while shifting the rbfA mutant that overproduces wild-type RbfA resulted in an increase in total protein synthesis accompanied by faster growth adaptation to the lower temperature. Furthermore, the cold-shock response was also constitutively induced in a cold-sensitive 16S rRNA mutant at low temperatures. Accompanying the transient induction of the cold-shock response, we also report that shifting E. coli from 37°C to 15°C resulted in a temporary inhibition of initiation of translation, as evidenced by the transient decrease in polysomes accompanied by the transient increase in 70S monosomes. The accumulative data indicate that the inducing signal for the cold-shock response is the increase in the level of cold-unadapted non-translatable ribo-somes which are converted to cold-adapted translatable ribosomes by the association of cold-shock proteins such as RbfA. Therefore, the expression of the cold-shock response, and thus cellular adaptation to low temperature, is regulated at the level of translation. The data also indicate that cold-shock proteins can be translated by ribosomes under conditions that are not translatable for most mRNAs.  相似文献   

6.
Qiu Y  Kathariou S  Lubman DM 《Proteomics》2006,6(19):5221-5233
Bacterial cold adaptation in Exiguobacterium sibiricum 255-15 was studied on a proteomic scale using a 2-D liquid phase separation coupled with MS technology. Whole-cell lysates of E. sibiricum 255-15 grown at 4 degrees C and 25 degrees C were first fractionated according to pI by chromatofocusing (CF), and further separated based on hydrophobicity by nonporous silica RP HPLC (NPS-RP-HPLC) which was on-line coupled with an ESI-TOF MS for intact protein M(r) measurement and quantitative interlysate comparison. Mass maps were created to visualize the differences in protein expression between different growth temperatures. The differentially expressed proteins were then identified by PMF using a MALDI-TOF MS and peptide sequencing by MS/MS with a MALDI quadrupole IT TOF mass spectrometer (MALDI-QIT-TOF MS). A total of over 500 proteins were detected in this study, of which 256 were identified. Among these proteins 39 were cold acclimation proteins (Caps) that were preferentially or uniquely expressed at 4 degrees C and three were homologous cold shock proteins (Csps). The homologous Csps were found to be similarly expressed at 4 degrees C and 25 degrees C, where these three homologous Csps represent about 10% of the total soluble proteins at both 4 degrees C and 25 degrees C.  相似文献   

7.
The psychrotrophic bacterium Pseudomonas fragi was subjected to cold shocks from 30 or 20 to 5 degrees C. The downshifts were followed by a lag phase before growth resumed at a characteristic 5 degrees C growth rate. The analysis of protein patterns by two-dimentional gel electrophoresis revealed overexpression of 25 or 17 proteins and underexpression of 12 proteins following the 30- or 20-to-5 degrees C shift, respectively. The two downshifts shared similar variations of synthesis of 20 proteins. The kinetic analysis distinguished the induced proteins into cold shock proteins (Csps), which were rapidly but transiently overexpressed, and cold acclimation proteins (Caps), which were more or less rapidly induced but still overexpressed several hours after the downshifts. Among the cold-induced proteins, four low-molecular-mass proteins, two of them previously characterized as Caps (CapA and CapB), and heat acclimation proteins (Haps) as well as heat shock proteins (Hsps) for the two others (TapA and TapB) displayed higher levels of induction. Partial amino acid sequences, obtained by microsequencing, were used to design primers to amplify by PCR the four genes and then determine their nucleotide sequences. A BamHI-EcoRI restriction fragment of 1.9 kb, containing the complete coding sequence for capB, was cloned and sequenced. The four peptides belong to the family of small nucleic acid-binding proteins as CspA, the major Escherichia coli Csp. They are likely to play a major role in the adaptative response of P. fragi to environmental temperature changes.  相似文献   

8.
There is a considerable interest in the cold adaptation of food-related bacteria, including starter cultures for industrial food fermentations, food spoilage bacteria and food-borne pathogens. Mechanisms that permit low-temperature growth involve cellular modifications for maintaining membrane fluidity, the uptake or synthesis of compatible solutes, the maintenance of the structural integrity of macromolecules and macromolecule assemblies, such as ribosomes and other components that affect gene expression. A specific cold response that is shared by nearly all food-related bacteria is the induction of the synthesis so-called cold-shock proteins (CSPs), which are small (7 kDa) proteins that are involved in mRNA folding, protein synthesis and/or freeze protection. In addition, CSPs are able to bind RNA and it is believed that these proteins act as RNA chaperones, thereby reducing the increased secondary folding of RNA at low temperatures. In this review established and novel aspects concerning the structure, function and control of these CSPs are discussed. A model for bacterial cold adaptation, with a central role for ribosomal functioning, and possible mechanisms for low-temperature sensing are discussed.  相似文献   

9.
Summary A psychrotrophic bacterium Colwellia sp. NJ341 from Antarctic sea ice could grow at −5 and 22 °C, and the extent of cellular protein content and growth were greater at low temperatures (0–10 °C) than at higher temperatures. SDS-PAGE analysis demonstrated the presence of a 7 kDa cold-shock protein. The further result of two-dimensional electrophoresis (2-DE) showed that two proteins a and c were newly synthesized at near-freezing temperatures. With matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) analysis, proteins a and c were identified as glutathione S-transferase (GST) and cold-shock protein A (CspA), respectively, which were involved in cold-adaptation at near-freezing temperature in an Antarctic psychrophilic bacterium Colwellia sp. NJ341.  相似文献   

10.
在现代生物学和生物技术研究中,通过基因重组表达获得目标蛋白已成为常规技术。因其培养简单、操作方便、遗传背景清楚、克隆表达技术成熟,大肠杆菌表达系统通常是人们表达重组蛋白的首选。但是在常规温度下进行基因的重组表达,动、植物和常温微生物的基因产物多数在数小时内变性沉淀;还有一些重组蛋白对宿主具有细胞毒性,难以得到重组表达。因此,我们构建了1种新型T载体——pEXC-T;它结合TA克隆技术和低温诱导表达功能,具有表达水平高、操作方便、目标蛋白得到分子伴侣保护和低温保存等特点。采用构建和优化的pEXC载体,P1抗原蛋白、溶血素PLO两种不稳定性蛋白在pEXC中都实现了高效的可溶性表达。低温表达系统p EXC的建立和发展为蛋白质的结构与功能的研究,以及抗原和药用蛋白的制备提供了便利的途径。  相似文献   

11.
Protein folding is usually slowed-down at low temperatures, and thus low-temperature expression is an effective strategy to improve the soluble yield of aggregation-prone proteins. In this study, we investigated the effects of a variety of cold shock proteins and domains (Csps) on an Escherichia coli cell extract-based cell-free protein synthesis system (CF). Most of the 12 Csps that were successfully prepared dramatically improved the protein yields, by factors of more than 5 at 16°C and 2 at 23°C, to levels comparable to those obtained at 30°C. Their stimulatory effects were complementary to each other, while CspD and CspH were inhibitory. The Csps’ effects correlated well with their Pfam CSD family scores (PF00313.22). All of the investigated Csps, except CspH, similarly possessed RNA binding and chaperon activities and increased the messenger RNA amount irrespective of their effect, suggesting that the proper balance between these activities was required for the enhancement. Unexpectedly, the 5′-untranslated region of cspA was less effective as the leader sequence. Our results demonstrated that the use of the Csps presented in this study will provide a simple and highly effective strategy for the CF, to improve the soluble yields of aggregation-prone proteins.  相似文献   

12.
13.
微生物产生的冷休克蛋白研究进展   总被引:1,自引:0,他引:1  
冷休克蛋白(cold shock protein,Csp)首先在大肠杆菌中发现,它与微生物对冷环境的适应及多种细胞功能有关。冷休克蛋白基因是一段编码70个左右氨基酸的DNA序列,在这段序列中有5′非翻译区(5′UTR)、冷盒及下游盒等特征。冷休克蛋白作为DNA或RNA结合蛋白在基因表达调控过程中起重要作用。冷休克蛋白在转录、mRNA稳定性及翻译等几个水平上被严格调控。  相似文献   

14.
The dynamic nature of thermophily   总被引:6,自引:0,他引:6  
1. Evidence for a close relation between thermophilic and mesophilic bacteria is discussed. 2. It is shown that in the absence of nutrients thermophilic bacteria at 55°C. die as rapidly as mesophilic bacteria, and that enzyme systems of the thermophils are rapidly inactivated at this temperature. 3. It is concluded that the thermophils can live at high temperatures because they can synthesize enzymes and other cellular constituents faster than these are destroyed by heat. 4. In order to account for this great synthetic capacity at high temperatures, and for the high minimum temperatures observed for many thermophils, it is postulated that these organisms have a higher temperature coefficient of enzyme synthesis than mesophils.  相似文献   

15.
The cold-shock response — a hot topic   总被引:4,自引:2,他引:2  
  相似文献   

16.
S Kumar  C J Tsai  R Nussinov 《Biochemistry》2001,40(47):14152-14165
Here, we analyze the thermodynamic parameters and their correlations in families containing homologous thermophilic and mesophilic proteins which show reversible two-state folding <--> unfolding transitions between the native and the denatured states. For the proteins in these families, the melting temperatures correlate with the maximal protein stability change (between the native and the denatured states) as well as with the enthalpic and entropic changes at the melting temperature. In contrast, the heat capacity change is uncorrelated with the melting temperature. These and additional results illustrate that higher melting temperatures are largely obtained via an upshift and broadening of the protein stability curves. Both thermophilic and mesophilic proteins are maximally stable around room temperature. However, the maximal stabilities of thermophilic proteins are considerably greater than those of their mesophilic homologues. At the living temperatures of their respective source organisms, homologous thermophilic and mesophilic proteins have similar stabilities. The protein stability at the living temperature of the source organism does not correlate with the living temperature of the protein. We tie thermodynamic observations to microscopics via the hydrophobic effect and a two-state model of the water structure. We conclude that, to achieve higher stability and greater resistance to high and low temperatures, specific interactions, particularly electrostatic, should be engineered into the protein. The effect of these specific interactions is largely reflected in an increased enthalpy change at the melting temperature.  相似文献   

17.
Cell-free synthesis of recombinant proteins has emerged as an alternative method of protein production although protein yields still cannot compete with in vivo expression techniques. In systems based on S30 extracts of Escherichia coli unfavorable side-reactions are involved in limiting protein yields. Therefore, carrying out cell-free reactions at lower temperatures might be beneficial as side reactions should be decreased. In this study we show that by using the 5′-untranslated region of the cold-shock gene cspA from E. coli as mRNA leader in cell-free reactions, the expression temperature can be decreased and simultaneously leads to an increase in protein yields. A compensation for the lower activity of T7 RNA polymerase at lower temperatures enhances protein synthesis even further. Additionally, this 5′-untranslated region also standardizes the optimal expression temperature of different proteins.  相似文献   

18.
Cold-shock proteins (Csps) are a subgroup of the cold-induced proteins preferentially expressed in bacteria and other organisms on reduction of the growth temperature below the physiological temperature. They are related to the cold-shock domain found in eukaryotes and are some of the most conserved proteins known. Their exact function is still not known, but translational regulation, possibly via RNA chaperoning, has been discussed. Here we present the structure of a hyperthermophilic member of the Csp family. The NMR solution structure of TmCsp from Thermotoga maritima, the hyperthermophilic member of this class of proteins, was solved on the basis of 1015 conformational constraints. It contains five beta strands combined in two antiparallel beta sheets making up a beta barrel structure, in which beta strands 1-4 are arranged in a Greek-key topology. The side chain of R2, which is exclusively found in thermophilic members of the Csp family, probably participates in a peripheral ion cluster involving residues D20, R2, E47 and K63, suggesting that the thermostability of TmCsp is based on the peripheral ion cluster around the side chain of R2.  相似文献   

19.
Trigger factor (TF) is the first molecular chaperone interacting cotranslationally with virtually all nascent polypeptides synthesized by the ribosome in bacteria. Thermal adaptation of chaperone function was investigated in TFs from the Antarctic psychrophile Pseudoalteromonas haloplanktis, the mesophile Escherichia coli and the hyperthermophile Thermotoga maritima. This series covers nearly all temperatures encountered by bacteria. Although structurally homologous, these TFs display strikingly distinct properties that are related to the bacterial environmental temperature. The hyperthermophilic TF strongly binds model proteins during their folding and protects them from heat‐induced misfolding and aggregation. It decreases the folding rate and counteracts the fast folding rate imposed by high temperature. It also functions as a carrier of partially folded proteins for delivery to downstream chaperones ensuring final maturation. By contrast, the psychrophilic TF displays weak chaperone activities, showing that these functions are less important in cold conditions because protein folding, misfolding and aggregation are slowed down at low temperature. It efficiently catalyses prolyl isomerization at low temperature as a result of its increased cellular concentration rather than from an improved activity. Some chaperone properties of the mesophilic TF possibly reflect its function as a cold shock protein in E. coli.  相似文献   

20.
A polar bacterium was isolated from Arctic sea sediments and identified as Psychromonas artica, based on 16S rDNA sequence. Psychromonas artica KOPRI 22215 has an optimal growth temperature of 10 °C and a maximum growth temperature of 25 °C, suggesting this bacterium is a psychrophile. Cold shock proteins (Csps) are induced upon temperature downshift by more than 10 °C. Functional studies have researched mostly Csps of a mesophilic bacterium Escherichia coli, but not on those of psychrophilic bacteria. In an effort to understand the molecular mechanisms of psychrophilic bacteria that allow it withstand freezing environments, we cloned a gene encoding a cold shock protein from P. artica KOPRI 22215 (CspAPa) using the conserved sequences in csp genes. The 204 bp-long ORF encoded a protein of 68 amino acids, sharing 56% homology to previously reported E. coli CspA protein. When CspAPa was overexpressed in E. coli, it caused cell growth-retardation and morphological elongation. Interestingly, overexpression of CspAPa drastically increased the host’s cold-resistance by more than ten times, suggesting the protein aids survival in polar environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号