首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bipolar assembly of caveolae in retinal pigment epithelium   总被引:1,自引:0,他引:1  
Caveolae and their associated structural proteins, the caveolins, are specialized plasmalemmal microdomains involved in endocytosis and compartmentalization of cell signaling. We examined the expression and distribution of caveolae and caveolins in retinal pigment epithelium (RPE), which plays key roles in retinal support, visual cycle, and acts as the main barrier between blood and retina. Electron microscopic observation of rat RPE, in situ primary cultures of rat and human RPE and a rat RPE cell line (RPE-J) demonstrated in all cases the presence of caveolae in both apical and basolateral domains of the plasma membrane. Caveolae were rare in RPE in situ but were frequent in primary RPE cultures and in RPE-J cells, which correlated with increased levels in the expression of caveolin-1 and -2. The bipolar distribution of caveolae in RPE is striking, as all other epithelial cells examined to date (liver, kidney, thyroid, and intestinal) assemble caveolae only at the basolateral side. This might be related to the nonpolar distribution of both caveolin-1 and 2 in RPE because caveolin-2 is basolateral and caveolin-1 nonpolar in other epithelial cells. The bipolar localization of plasmalemmal caveolae in RPE cells may reflect specialized roles in signaling and trafficking important for visual function. caveolin; raft microdomains; membrane traffic; normal rat kidney  相似文献   

2.
3.
Caveolae are omega-shaped invaginations of the plasmalemma possessing a cytoplasmic membrane protein coat of caveolin. Caveolae are present in the in vivo alveolar epithelial type I (ATI) lung cell, but absent in its progenitor, the alveolar epithelial type II (ATII) cell. In primary culture ATII cells grown on a plastic substratum acquire with time an ATI-"like" phenotype. We demonstrate that freshly isolated rat ATII cells lack caveolae and expression of caveolin-1 (a critical caveolae structural protein). As the ATII cells acquire an ATI-like phenotype in primary culture caveolin-1 expression increases, with caveolin-1 signal at 192 h postseeding up to 50-fold greater than at 60 h; caveolae were morphologically evident only after 132 h. When maintaining the differentiated ATII phenotype with time, i.e., culture upon collagen with an apical interface of air, a temporal increase in caveolin-1 expression was not observed, with only very faint signals evident even at 192 h postseeding; at no time did these cultures display caveolae. In late primary ATII cultures caveolin-1 expression and caveolae biogenesis occur as a function of in vitro transformation from the ATII to the ATI-like phenotype. The results have broad implications for the in vitro study of the role of caveolae and caveolin in alveolar epithelial cell biology.  相似文献   

4.
目的分析RhoC及其调节蛋白GDP解离抑制因子α(Guanine dissociation inhibitor,GDIα)在肺癌细胞中的表达及其与肺癌细胞转移能力间的关系。方法应用Western blot、RT-PCR分别检测正常支气管上皮细胞、不同的肺癌细胞系中的RhoC、Rho-GDIα蛋白及mRNA的表达。结果RhoC、Rho-GDIα在人支气管上皮细胞、肺腺癌细胞系、肺巨细胞癌细胞系均有表达,免疫荧光显示均表达于细胞浆。RhoC、Rho-GDIα在肺癌中的表达高于人支气管上皮细胞。在高转移能力的肺巨细胞癌亚系BEI RhoC、Rho-GDIα的表达均高于低转移能力的肺巨细胞癌亚系LH7。结论RhoC、RhoGDIα在肺癌细胞系中过表达并与转移能力相关。  相似文献   

5.
Caveolae are small, flask-shaped invaginations of the plasma membrane present on a large number of mammalian cells. Recent results obtained with knock-out mice for the gene caveolin-1 demonstrate that expression of caveolin-1 protein is essential for caveolae formation in vivo. Caveolae are implicated in a wide variety of cellular events including transcytosis, cholesterol trafficking and as cellular centers important in coordinating signalling events. Caveolae share this role and the property of detergent insolubility with plasma membrane assemblies rich in glycosphingolipids and cholesterol, often called lipid rafts, but preferably referred to here as caveolae-like membrane domains. Due to such widespread presence and usage in cellular function, caveolae and related domains are implicated in human diseases, including cancer. In particular, the protein caveolin-1 is suggested to function as a tumor suppressor protein. Evidence demonstrating such a role for caveolin-1 in human colon carcinoma cells will be discussed together with data from microarray experiments seeking to identify caveolin-1 target genes responsible for such behavior.  相似文献   

6.
7.
Caveolin-1 is the major component protein of caveolae and associated with a lot of cellular events such as endocytosis, cholesterol homeostasis, signal transduction, and tumorigenesis. The majority of results suggest that caveolin-1 might not only act as a tumor suppressor gene but also a promoting metastasis gene. In this study, the divergent expression and roles of caveolin-1 were investigated in mouse hepatocarcinoma cell lines Hca-F, Hca-P, and Hepa1-6, which have high, low, and no metastatic potential in the lymph nodes, as compared with normal mouse liver cell line IAR-20. The results showed that expression of caveolin-1 mRNA and protein along with the amount of caveolae number in Hca-F cells was higher than that in Hca-P cells, but was not detectable in Hepa1-6 cells. When caveolin-1 expression in Hca-F cells was down-regulated by RNAi approach, Hca-F cells proliferation rate in vitro declined and the expression of lymphangiogenic factor VEGFA in Hca-F decreased as well. Furthermore, in vivo implantation assay indicated that reduction of caveolin-1 expression in Hca-F prevented the lymphatic metastasis tumor burden of Hca-F cells in 615 mice. These results suggest that caveolin-1 facilities the lymphatic metastasis ability of mouse hepatocarcinoma cells via regulation tumor cell growth and VEGFA expression.  相似文献   

8.
目的 分析Rhoc及其调节蛋白GDP解离抑制因子α(Guanine dissociation inhibitor,GDIα)在肺癌细胞中的表达及其与肺癌细胞转移能力间的关系.方法 应用Western blot、RT-PCR分别检测正常支气管上皮细胞、不同的肺癌细胞系中的RhoC、Rho-GDIa蛋白及RNA的表达.结果 RhoC、Rho-GDIα在人支气管上皮细胞、肺腺癌细胞系、肺巨细胞癌细胞系均有表达,免疫荧光显示均表达于细胞浆.RhoC、Rho-GDIα在肺癌中的表达高于人支气管上皮细胞.在高转移能力的肺巨细胞癌亚系BEl RhoC、Rho-GDIα的表达均高于低转移能力的肺巨细胞癌亚系LH7.结论 RhoC、RhoGDIα在肺癌细胞系中过表达并与转移能力相关.  相似文献   

9.
Caveolae are the sites in the cell membrane responsible for concentrating an array of signaling molecules critical for cell function. Recent studies have begun to identify the functions of caveolin-1, the 22-kDa caveolar protein that oligomerizes and inserts into the cytoplasmic face of the plasma membrane. Caveolin-1 appears to regulate caveolar internalization by stabilizing caveolae at the plasma membrane rather than controlling the shape of the membrane invagination. Because caveolin-1 is a scaffolding protein, it has also been hypothesized to function as a "master regulator" of signaling molecules in caveolae. Deletion of the caveolin-1 gene in mice resulted in cardiac hypertrophy and lung fibrosis, indicating its importance in cardiac and lung development. In the endothelium, caveolin-1 regulates nitric oxide signaling by binding to and inhibiting endothelial nitric oxide synthase (eNOS). Increased cytosolic Ca2+ or activation of the kinase Akt leads to eNOS activation and its dissociation from caveolin-1. Caveolae have also been proposed as the vesicle carriers responsible for transcellular transport (transcytosis) in endothelial cells. Transcytosis, the primary means of albumin transport across continuous endothelia, occurs by fission of caveolae from the membrane. This event is regulated by tyrosine phosphorylation of caveolin-1 and dynamin. As Ca2+ influx channels and pumps are localized in caveolae, caveolin-1 is also an important determinant of Ca2+ signaling in endothelial cells. Many of these findings were presented in San Diego, CA, at the 2003 Experimental Biology symposium "Caveolin Regulation of Endothelial Function" and are reviewed in this summary.  相似文献   

10.
11.
PURPOSE OF REVIEW: Caveolae are 50-100 nm cell surface plasma membrane invaginations observed in terminally differentiated cells. They are characterized by the presence of the protein marker caveolin-1. Caveolae and caveolin-1 are present in almost every cell type that has been implicated in the development of an atheroma. These include endothelial cells, macrophages, and smooth muscle cells. Caveolae and caveolin-1 are involved in regulating several signal transduction pathways and processes that play an important role in atherosclerosis. RECENT FINDINGS: Several recent studies using genetically engineered mice (Cav-1 (-/-) null animals) have now clearly demonstrated a role for caveolin-1 and caveolae in the development of atherosclerosis. In fact, they suggest a rather complex one, either proatherogenic or antiatherogenic, depending on the cell type examined. For example, in endothelial cells, caveolin-1 and caveolae may play a proatherogenic role by promoting the transcytosis of LDL-cholesterol particles from the blood to the sub-endothelial space. In contrast, in smooth muscle cells, the ability of caveolin-1 to negatively regulate cell proliferation (neointimal hyperplasia) may have an antiatherogenic effect. SUMMARY: Caveolin-1 and caveolae play an important role in several steps involved in the initiation of an atheroma. Development of new drugs that regulate caveolin-1 expression may be important in the prevention or treatment of atherosclerotic vascular disease.  相似文献   

12.
Caveolae are 50- to 100-nm invaginations of the plasma membrane. Caveolins are the structural protein components of caveolar membranes. The caveolin gene family is composed of three members: caveolin-1, caveolin-2, and caveolin-3. Caveolin-1 and caveolin-2 are coexpressed in many cell types, including adipocytes, endothelial cells, epithelial cells, and fibroblasts. In contrast, caveolin-3 expression is essentially restricted to skeletal and smooth muscle cells as well as cardiac myocytes. While the interaction between caveolin-1 and caveolin-2 has been documented previously, the reciprocal interaction between endogenous caveolin-1 and caveolin-3 and their functional role in cell types expressing both isoforms have yet to be identified. Here we demonstrate for the first time that caveolin-1 and caveolin-3 are coexpressed in mouse and rat cardiac myocytes of the atria but not ventricles. We also found that caveolin-1 and caveolin-3 can interact and form heterooligomeric complexes in this cell type. Doxorubicin is an effective anticancer agent, but its use is limited by the possible development of cardiotoxicity. Using caveolin-1- and caveolin-3-null mice, we show that both caveolin-1 and caveolin-3 expression are required for doxorubicin-induced apoptosis in the atria through activation of caspase 3. Together, these results bring new insight into the functional role of caveolae and suggest that caveolin-1/caveolin-3 heterooligomeric complexes may play a key role in chemotherapy-induced cardiotoxicity in the atria.  相似文献   

13.
Caveolae are flask-shaped endocytic structures composed primarily of caveolin-1 (Cav1) and caveolin-2 (Cav2) proteins. Interestingly, a cytoplasmic accumulation of Cav1 protein does not always result in a large number of assembled caveolae organelles, suggesting a regulatory mechanism that controls caveolae assembly. In this study we report that stimulation of epithelial cells with epithelial growth factor (EGF) results in a profound increase in the number of caveolar structures at the plasma membrane. Human pancreatic tumor cells (PANC-1) and normal rat kidney cells (NRK), as a control, were treated with 30 ng/ml EGF for 0, 5, and 20 min before fixation and viewing by electron microscopy. Cells fixed without EGF treatment exhibited modest numbers of plasma membrane-associated caveolae. Cells treated with EGF for 5 or 20 min showed an 8-10-fold increase in caveolar structures, some forming long, pronounced caveolar "towers" at the cell-cell borders. It is known that Cav1 is Src-phosphorylated on tyrosine 14 in response to EGF treatment, although the significance of this modification is unknown. We postulated that phosphorylation could provide the stimulus for caveolae assembly. To this end, we transfected cells with mutant forms of Cav1 that could not be phosphorylated (Cav1Y14F) and tested if this altered protein reduced the number of EGF-induced caveolae. We observed that EGF-stimulated PANC-1 cells expressing the mutant Cav1Y14F protein exhibited a 90-95% reduction in caveolae number compared with cells expressing wild type Cav1. This study provides novel insights into how cells regulate caveolae formation and implicates EGF-based signaling cascades in the phosphorylation of Cav1 as a stimulus for caveolae assembly.  相似文献   

14.
Lung cancer is the leading cause of cancer deaths worldwide. In the United States, only one in six lung cancer patients survives five years after diagnosis. These statistics may improve if new therapeutic targets are identified. We previously reported that an enzyme of fatty acid metabolism, very long-chain acyl-CoA synthetase 3 (ACSVL3), is overexpressed in malignant glioma, and that depleting glioblastoma cells of ACSVL3 diminishes their malignant properties. To determine whether ACSVL3 expression was also increased in lung cancer, we studied tumor histologic sections and lung cancer cell lines. Immunohistochemical analysis of normal human lung showed moderate ACSVL3 expression only in bronchial epithelial cells. In contrast, all of 69 different lung tumors tested, including adeno-, squamous cell, large cell, and small cell carcinomas, had robustly elevated ACSVL3 levels. Western blot analysis of lung cancer cell lines derived from these tumor types also had significantly increased ACSVL3 protein compared to normal bronchial epithelial cells. Decreasing the growth rate of lung cancer cell lines did not change ACSVL3 expression. However, knocking down ACSVL3 expression by RNA interference reduced cell growth rates in culture by 65–76%, and the ability of tumor cells to form colonies in soft agar suspension by 65–80%. We also conducted studies to gain a better understanding of the biochemical properties of human ACSVL3. ACSVL3 mRNA was detected in many human tissues, but the expression pattern differed somewhat from that of the mouse. The enzyme activated long- and very long-chain saturated fatty acid substrates, as well as long-chain mono- and polyunsaturated fatty acids to their respective coenzyme A derivatives. Endogenous human ACSVL3 protein was found in a punctate subcellular compartment that partially colocalized with mitochondria as determined by immunofluorescence microscopy and subcellular fractionation. From these studies, we conclude that ACSVL3 is a promising new therapeutic target in lung cancer.  相似文献   

15.
cav-p60 expression in rat muscle tissues   总被引:1,自引:0,他引:1  
Caveolae are plasmalemmal invaginations of uncertain function. In view of the large number of hypotheses on caveolar functions, it is important to identify which components of caveolae are tissue specific and which are general. The only well-characterized major protein of caveolae is caveolin, which exists in three tissue-specific isoforms: caveolin-1, -2, and -3. Recently cav-p60 was characterized as a 60-kDa caveola-specific protein in adipocytes. The distributions of cav-p60 and caveolin isoforms in different rat muscle tissues were examined by immunofluorescence and immunoelectron microscopy. Cav-p60 was present in caveolae of skeletal and heart muscle, in vascular and intestinal smooth muscle, and in adipocyte caveolae. Furthermore cav-p60 was present in endothelial cells and cells of perineural sheaths. Caveolin-1 and -2 were present in adipocytes, endothelial cells, and cells of perineural sheaths. In all kinds of vascular and intestinal smooth muscle, caveolin-1 and -2 were present at high levels, whereas caveolin-3 expression was low or undetectable, depending on the specific smooth muscle subtype. High levels of caveolin-3 were found only in caveolae and T tubules of skeletal and heart muscle. We conclude that cav-p60 is a highly specific marker of caveolae in many if not all cell types having caveolae.  相似文献   

16.
17.
Caveolin-1 is an essential protein constituent of caveolae. Accumulating evidence indicates that caveolin-1 may act as a positive regulator of cancer progression. In this study, we investigated the function of caveolin-1 in human lung cancer cells. Caveolin-1 knockdown inhibited cell proliferation and reduced focal adhesion kinase (Fak) phosphorylation. Matrix invasion and cell migration as well as expression and activity of matrix metalloproteases were attenuated following caveolin-1 RNAi-mediated knockdown or overexpression of Y14F and P132L mutants, demonstrating dominant-negative activity of these mutants. Time-lapse fluorescence microscopy revealed that caveolin-1 and its mutants P132L and Y14F are localized to the trailing edge of migrating cells during both random and directed cell movement, implying an active role of caveolin-1 in the migration process. Suppression of caveolin-1 function greatly elevated the percentage of H1299 cells exhibiting focal adhesions. In addition, cell aggregation was increased by wild type caveolin-1 and attenuated by both P132L and Y14F mutants. Overexpression of wild type caveolin-1 increased caveolae density, however, P132L and Y14F mutants did not affect caveolae formation, suggesting that in this respect that the mutants do not act in a dominant negative manner, and that effects of caveolin-1 on caveolae and cell invasion, migration, focal adhesion and aggregation, are separable. Our data provide novel mechanistic insights into the role of caveolin-1 in cell motility, invasiveness and aggregation, therefore, expanding our understanding of the tumor-promoting activities of caveolin-1 in advanced-stage cancer.  相似文献   

18.
Caveolae were initially described some 50 years ago. For many decades, they remained predominantly of interest to structural biologists. The identification of a molecular marker for these domains, caveolin, combined with the possibility to isolate such cholesterol- and sphingolipid-rich regions as detergent-insoluble membrane complexes paved the way to more rigorous characterization of composition, regulation, and function. Experiments with knock-out mice for the caveolin genes clearly demonstrate the importance of caveolin-1 and -3 in formation of caveolae. Nonetheless, detergent-insoluble domains are also found in cells lacking caveolin expression and are referred to here as lipid rafts. Caveolae and lipid rafts were shown to represent membrane compartments enriched in a large number of signaling molecules whose structural integrity is essential for many signaling processes. Caveolin-1 is an essential structural component of cell surface caveolae, important for regulating trafficking and mobility of these vesicles. In addition, caveolin-1 is found at many other intracellular locations. Variations in subcellular localization are paralleled by a plethora of ascribed functions for this protein. Here, more recent data addressing the role of caveolin-1 in cellular signaling and the development of diseases like cancer will be preferentially discussed.  相似文献   

19.
Reggie-1 and reggie-2 are highly conserved and widely expressed proteins associated with membrane rafts. The molecular function of reggies remains to be clarified, but recent data indicate that they are involved in various cellular processes such as insulin signaling, phagocytosis and actin remodeling. However, there is discrepancy in the literature if reggies are associated with caveolae or non-caveolar rafts. Reggies are expressed and raft associated also in many cells which do not contain caveolae, such as neurons and lymphocytes. However, it is not clear if the function or localization of reggies are dependent on the presence of caveolae and expression of caveolin-1 protein. In this study, we directly addressed this question in epithelial cells. We could show that ectopic expression of caveolin-1 does not result in any change in the cellular localization of reggie-1, which is present at the plasma membrane also in the absence of caveolin-1. On the other hand, caveolin-2, which localizes in caveolae, is dependent on caveolin-1 expression in order to be localized at the plasma membrane. Although reggie-1 and reggie-2 strongly interact with each other, we did not detect a direct interaction between caveolin-1 and reggies by means of a yeast two-hybrid assay, nor could reggies be co-immunoprecipitated with caveolin-1. Furthermore, endogenous reggie-1 and -2 were found not to colocalize with caveolin-1 in epithelial cells. Thus, our data indicate that reggies are localized in microdomains different from caveolae, and the function of reggies is different from and independent of caveolin-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号