首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 191 毫秒
1.
松墨天牛的全球潜在分布区分析   总被引:5,自引:1,他引:4  
宋红敏  徐汝梅 《昆虫知识》2006,43(4):535-539,F0004
松墨天牛MonochamusalternatusHope分布在亚洲东部,是松材线虫Bursaphelenchusxylophilus(SteinerandBuhrer)在亚洲最有效的昆虫媒介,同时也是重要的蛀干害虫。利用CLIMEX模型分析松墨天牛分布区的气候限制因子,并在全球范围预测它的潜在分布区。模型分析结果表明,温度和降水是松墨天牛分布区的主要气候限制因子。温度在30°N以北地区和30°S以南地区主要表现为冷胁迫,在非洲中部、南亚和澳大利亚北部表现为热胁迫。有效积温不足可能是限制松墨天牛向北扩散的主要原因。降水在中国西北地区、非洲中北部、澳大利亚中部和西部与美国西部主要表现为干胁迫。降水量对分布区范围影响不大。预测结果表明,松墨天牛的全球潜在分布区远远大于实际分布范围。松墨天牛在东半球的潜在分布区包括亚洲东部和南部地区、地中海沿岸、非洲的中部和南部以及澳大利亚的东部和南部,在亚洲热带的潜在分布区1年3代,地中海地区1年1代,非洲1年2~3代,在澳大利亚主要1年1代。松墨天牛在西半球的潜在分布区主要集中在美国南部和东部沿海地区,中美洲以及南美洲的广大地区,美国主要1年1代,中美洲1年2~3代,南美洲主要1年2代。  相似文献   

2.
本研究的目的是i)确定伊比利亚半岛一种大疣蛛(Macrothele calpeiana)分布的气候相关性以预测其潜在分布,ii)详细阐述该物种在伊比利亚半岛的分布假说,iii)通过推断模型预测确认该物种在北非和整个地中海地区的适合区域,iv)预测气候变暖对蜘蛛潜在分布区的影响。基于物种的存在、远离目前环境条件下的可能缺失以及其它的气候参数,使用广义线性模型发展了潜在分布的可预测模型。蜘蛛在伊比利亚半岛上的潜在分布远大于目前已知的分布区,延伸到尚未发现蜘蛛分布的葡萄牙广大地区。本文提出了该种大疣蛛在适合分布区域内没有分布的历史因素。北非具有适合该物种的条件但却没有该属物种的分布支持了大疣蛛(Macrothele)祖先的东方起源假说。对地中海地区蜘蛛分布的推断突出显示了阿根廷地区有合适的分布区,该地区也发现有另一种欧洲大疣蛛。气候变暖将对现存于伊比利亚的M.calpeiana种群产生负面影响,因为气候变暖将减少并破碎化蜘蛛在北非的潜在栖息地。目前,急需确认在葡萄牙广大地区是否存在蜘蛛物种,发展对该属的系统发育研究以确定大疣蛛属起源和扩散史的理论。  相似文献   

3.
基于MaxEnt模型预测四川省松材线虫的潜在适生区   总被引:1,自引:0,他引:1  
松材线虫Bursaphelenchus xylophilus是我国重要的林业检疫性有害生物之一,由其引发的松材线虫病已造成巨大的经济损失,严重阻碍了林业的健康发展。研究并明确松材线虫在四川省的潜在适生区,对四川省有关部门制定该病害的早期监测、预警及防控具有一定的参考意义。本文基于2009—2018年四川省林业有害生物普查数据中松材线虫病和松墨天牛Monochamus alternatus的实际地理分布数据(松材线虫病:n=208,松墨天牛:n=803)及19个环境变量数据,利用MaxEnt模型和Arc GIS对松材线虫在四川省的潜在分布区进行预测,并用ROC曲线分析法检测模型模拟精度、用刀切法检测变量的重要性及其适宜值。结果表明:松材线虫在四川省的潜在最佳适生区主要分布在宜宾市、广安市、达州市、自贡市、西昌市,以及乐山市和眉山市的交界区,面积为36 541 km^2;影响松材线虫分布的主要环境变量为最干季均温(适值范围1. 5~8. 0℃,最适值6. 4℃)、季节性降水变异系数(适值范围22. 5%~34. 0%,最适值34. 0%)、最冷月最低温(适值范围0. 4~2. 5℃,最适值1. 9℃)、海拔(适值范围250~5 500 m,最适值450 m)、年温差(适值范围5. 9~9. 1℃,最适值5. 9℃)和年降水量(适值范围64~135 mm,最适值68 mm)。  相似文献   

4.
气候变暖情境下松材线虫在我国的适生区范围   总被引:1,自引:0,他引:1  
基于历史气象数据(1971—2000),利用CLIMEX软件对松材线虫Bursaphelenchus xylophilus在我国的潜在适生区进行了预测,结果显示:松材线虫在我国的适生范围广、适生程度高,全国除黑龙江、吉林省无适生区外,其余各省市区均有适生区域,其中约2/3的适生区为高度适生区,覆盖整个南方地区,分布北界达内蒙古通辽地区,西至西藏的日喀则地区;进一步结合英国气候变化研究中心提供的气候变暖情境下未来气候模拟数据TYNSC2.0,利用CLIMEX软件预测出未来30年内(2010-2039)松材线虫在我国的潜在适生区,结果发现同历史气候条件下相比,未来30年内松材线虫在我国的适生分布区将呈现范围增加、适生程度增加、向北扩散的趋势,其中分布北界将到达吉林省西部,分布西界则与历史气候条件下预测结果相差无几。  相似文献   

5.
松墨天牛化学感受组织荧光定量PCR内参基因的鉴定与筛选   总被引:2,自引:0,他引:2  
【目的】本研究拟选择适合用于分析松墨天牛Monochamus alternatus化学感受组织中基因表达的内参基因。【方法】依据转录组测序结果进行内参基因鉴定,利用RT-q PCR技术分析内参基因在松墨天牛不同发育阶段和不同性别化学感受组织间的表达差异,并利用软件ge Norm,Norm Finder和Best Keeper比较其表达的稳定性。【结果】松墨天牛转录组中鉴定出9个候选内参基因(Actin,TUB,18S rRNA,RPS27A,RPS3,RPL10,AK,GAPDH和EF1A),其中后7个候选内参基因在松墨天牛中被首次鉴定,松墨天牛候选内参基因和其他昆虫相应基因的同源性很高。9个候选内参基因引物均具有良好的扩增效率,18S rRNA的表达水平最高,EF1A的表达水平最低;18S rRNA和Actin在不同样品间的表达水平差异最大,GAPDH和TUB表达水平在不同样品间差异最小。ge Norm和Norm Finder软件分析认为,GAPDH是最稳定的内参基因,TUB是较为稳定的内参基因,18S rRNA和Actin是最不稳定的内参基因;Best Keeper软件分析认为,GAPDH和TUB是合适的内参基因,18S rRNA和Actin是不适合的内参基因。最适合校正松墨天牛化学感受组织中基因表达数据的内参基因数量为2个,即GAPDH和TUB,并且这样的内参基因组合可以用于不同发育阶段和不同性别的不同化学感受组织。【结论】本研究结果为利用RT-q PCR技术准确分析松墨天牛和其他天牛基因包括化学感受组织基因相对表达量的内参基因选择提供了重要参考。  相似文献   

6.
根据麦双尾蚜Diuraphis noxia (Mordvilko) 在中国新疆的分布地点,对CLIMEX软件中适宜温度上限、限制性高温、有效积温、冷逆境开始积累点、热逆境开始积累点、冷逆境积累速率、热逆境积累速率和湿逆境积累速率等参数值进行修改调试,调整后的CLIMEX生态气候模型,对新疆麦双尾蚜分布的模拟准确率达到90%。由此模型进行预测,云南、新疆、黑龙江、青海、西藏、吉林、辽宁、甘肃、宁夏、内蒙古、山西和山东等12个省(区)存在麦双尾蚜的适生区。以麦双尾蚜在新疆发生程度和小麦分布区的关系,对CLIMEX的预测结果进行修正,据此推测山东不适合麦双尾蚜生存,东北、西北和西南春麦区麦双尾蚜生存适宜程度比CLIMEX模型预测值降低1/2~3/4。  相似文献   

7.
2017至2020年,在浙江九龙山国家级自然保护区内及周边网格化布设63台Ltl-6210MC红外相机,对区内的黑熊(Ursus thibetanus)及其同域物种进行调查。监测期间,5台红外相机共拍摄到9张黑熊活动照片和6次黑熊活动视频,提取到7次黑熊有效照片。根据本次监测到的黑熊位点与文献记录,共确定华东地区黑熊出现位点14个。基于黑熊栖息地特征选择土地利用和7个生境因子为预测背景,利用物种分布模型预测黑熊在华东地区的潜在分布区。为提高预测的精准度,采用了biomod 2软件包中的10种模型算法,并用真实技能统计值(TSS)和曲线下面积值(AUC)来评估这10种算法,只有当TSS值超过0.8且AUC值大于0.9时,才使用该模型算法预测物种的潜在分布区。结果表明:(1)推测保护区内现存2或3只黑熊;(2)最冷月份最低温(Bio6)和最湿季节降水量(Bio16)是限制黑熊分布的主要环境因子;(3)黑熊在华东地区存在3个主要潜在分布区,即浙–赣潜在分布区、浙–赣–皖潜在分布区和浙–皖潜在分布区,适生区面积约为317km~2。综上所述,这些结果可为加强华东地区黑熊的保护提供一定的资料。  相似文献   

8.
纳塔尔实蝇Ceratitis rosa Karsch属双翅目实蝇科腊实蝇属,为害30余种经济植物,被我国列为进境植物检疫性有害生物。本研究运用CLIMEX 3.0及ArcGIS 9.3对纳塔尔实蝇在我国目前及未来的潜在地理分布进行了预测。结果显示:在目前的气候条件下,纳塔尔实蝇在我国的潜在地理分布区为18.250°N-30.250°N,其中,华南和东南地区为高度潜在地理分布区,包括四川、重庆、云南、福建、广东、广西、海南以及台湾等地。在未来的气候条件下,2020和2050年潜在地理分布区的北界分别移至31.250°N和32.250°N,且中度潜在地理分布区北移明显;2100年潜在地理分布区的北界移至33.750°N,且高度适生区北移明显。因此建议目前应加强纳塔尔实蝇检疫措施,完善监测体系,监测网点主要设在我国的南方地区,尤其应对云南、广西、广东、福建和海南等地进行长期监测;同时,应对湖南、贵州、江西、湖北、江苏、安徽等省进行定期监测,严防该虫入侵。  相似文献   

9.
【目的】本研究旨在克隆并鉴定松墨天牛Monochamus alternatus内源漆酶基因MaLac1,分析其在松墨天牛不同发育阶段的表达水平,为进一步明确MaLac1功能提供依据。【方法】基于松墨天牛肠道转录组测序数据,通过RACE克隆松墨天牛MaLac1基因的全长cDNA序列,并对其进行生物信息学分析;将该基因与pET-32a载体链接构建表达载体pET-MaLac1,导入大肠杆菌Escherichia coli Rosetta (DE3)使其表达;使用qPCR检测MaLac1基因在松墨天牛不同发育阶段(低龄幼虫、老熟幼虫、蛹、雌成虫和雄成虫)肠道中的表达差异。【结果】克隆获得松墨天牛MaLac1的cDNA全长序列(GenBank登录号:KY073340)。MaLac1开放阅读框全长2 067 bp,编码一个含688个氨基酸的蛋白质,预测分子量为78.34 kD,等电点为5.30。SignalP 4.1 Server预测MaLac1在N端包含一个15个氨基酸的信号肽。序列比对分析表明,MaLac1具有典型的昆虫漆酶基因特征,与赤拟谷盗Tribolium castaneum漆酶基因的氨基酸序列一致性达93%。SDS-PAGE检测发现IPTG诱导表达了一条大约78 kD的特异蛋白条带,与推测大小一致。qPCR结果显示,MaLac1在不同发育阶段的松墨天牛肠道中均有表达,其中,在雌成虫肠道中表达量最高,在雄成虫肠道中的次之,在幼虫肠道中的最低。【结论】MaLac1在松墨天牛成虫中表达量显著高于其在幼虫中的,这一结果可能与幼虫和成虫的取食习性差异相关。MaLac1在松墨天牛体内的功能还有待进一步研究。  相似文献   

10.
报道中国拟天牛亚科西藏1雌性新发现:Diplectrus bistigmaeus Zhang,Ren et Ba,2012,并对其进行描述。Nacerdes(Xanthochroa)brendelli?vihla,1987和N.(Asiochroa)mimoncomeroides?vihla,1998两种首次在中国记录,并基于DIVA-GIS对它们在中国的潜在分布区进行了预测。  相似文献   

11.
The potential geographical distribution and relative abundance of the Old World screw-worm fly, Chrysomya bezziana Villeneuve (Diptera: Calliphoridae) as determined by climate, was assessed using CLIMEX, a computer program for matching climates. CLIMEX describes the relative growth and persistence of animal populations in relation to climate. The observed global distribution of C.bezziana was compared with the potential distribution predicted by CLIMEX. The differences in the two distributions indicate the areas at risk of colonization, with particular reference to Australia and the Americas. According to the model, the potential area of permanent colonization in Australia extends south to the mid-coast of New South Wales. Comparison of areas suitable for permanent establishment with the potential summer distribution indicates that large additional areas, carrying most of the continent's livestock, could be colonized in the summer months. Seasonal population growth indices are presented for three ports in Australia at which screw-worm fly specimens have been collected by quarantine authorities. They indicate the relative risk associated with introductions at different places in different seasons and so provide valuable planning information for quarantine authorities. The CLIMEX predictions for C.bezziana in North America are shown to be similar to the recorded distribution limits of the New World screw-worm fly, Cochliomyia hominivorax (Coquerel). The fly could also colonize South America, as far south as southern Brazil and midway through Argentina.  相似文献   

12.
Climate change affects the rate of insect invasions as well as the abundance, distribution and impacts of such invasions on a global scale. Among the principal analytical approaches to predicting and understanding future impacts of biological invasions are Species Distribution Models (SDMs), typically in the form of correlative Ecological Niche Models (ENMs). An underlying assumption of ENMs is that species–environment relationships remain preserved during extrapolations in space and time, although this is widely criticised. The semi-mechanistic modelling platform, CLIMEX, employs a top-down approach using species ecophysiological traits and is able to avoid some of the issues of extrapolation, making it highly applicable to investigating biological invasions in the context of climate change. The tephritid fruit flies (Diptera: Tephritidae) comprise some of the most successful invasive species and serious economic pests around the world. Here we project 12 tephritid species CLIMEX models into future climate scenarios to examine overall patterns of climate suitability and forecast potential distributional changes for this group. We further compare the aggregate response of the group against species-specific responses. We then consider additional drivers of biological invasions to examine how invasion potential is influenced by climate, fruit production and trade indices. Considering the group of tephritid species examined here, climate change is predicted to decrease global climate suitability and to shift the cumulative distribution poleward. However, when examining species-level patterns, the predominant directionality of range shifts for 11 of the 12 species is eastward. Most notably, management will need to consider regional changes in fruit fly species invasion potential where high fruit production, trade indices and predicted distributions of these flies overlap.  相似文献   

13.
Thrips palmi Karny, melon thrips was introduced and first recorded in 1993 in Korea. This species has become a serious pest of vegetable and ornamental crops. The CLIMEX simulation was applied to T. palmi to predict its potential geographic distribution in Korea under the Representative Concentration Pathway (RCP) 8.5 climate change scenario. In the CLIMEX simulation, the ecoclimatic index was calculated, and compared in each simulated year and each simulated location. The map comparisons show good agreements between simulated and present distributions of T. palmi, indicating that the CLIMEX model has promising potential for prediction of future distributions of this species in Korea. In the near future, until the year 2020, all the western and eastern parts of Korea show favorable to marginal suitability for T. palmi populations in the fields. After the year 2040, potential distributions shift from no persistence to favorable for establishment and persistence from coastal to interior regions of the Korean peninsula, except for a north‐eastern interior region which is the northernmost part of a high mountainous (Baekdu‐Daegan) area in Korea. Based on the simulation results, the geographical distribution of T. palmi will expand over its current weather restrictions in the near future under a severe climate change scenario. Thus, pest management measures and strategies should be re‐evaluated in Korea, and should include further studies on interspecific competition and ecosystem changes due to climate changes.  相似文献   

14.
Bactrocera zonata (Saunders) is one of the most harmful species of Tephritidae. It causes extensive damage in Asia and threatens many countries located along or near the Mediterranean Sea. The climate mapping program, CLIMEX 3.0, and the GIS software, ArcGIS 9.3, were used to model the current and future potential geographical distribution of B. zonata. The model predicts that, under current climatic conditions, B. zonata will be able to establish itself throughout much of the tropics and subtropics, including some parts of the USA, southern China, southeastern Australia and northern New Zealand. Climate change scenarios for the 2070s indicate that the potential distribution of B. zonata will expand poleward into areas which are currently too cold. The main factors limiting the pest's range expansion are cold, hot and dry stress. The model's predictions of the numbers of generations produced annually by B. zonata were consistent with values previously recorded for the pest's occurrence in Egypt. The ROC curve and the AUC (an AUC of 0.912) were obtained to evaluate the performance of the CLIMEX model in this study. The analysis of this information indicated a high degree of accuracy for the CLIMEX model. The significant increases in the potential distribution of B. zonata projected under the climate change scenarios considered in this study suggest that biosecurity authorities should consider the effects of climate change when undertaking pest risk assessments. To prevent the introduction and spread of B. zonata, enhanced quarantine and monitoring measures should be implemented in areas that are projected to be suitable for the establishment of the pest under current and future climatic conditions.  相似文献   

15.
The longhorn crazy ant (Paratrechina longicornis) is a globally distributed ant species with a high invasion risk, suggesting the need to use species distribution modeling to evaluate its potential distribution. Therefore, this study aimed to predict the potential distribution of longhorn crazy ants in response to climate change by using CLIMEX and Maxent and identifying the climatic factors that influence their habitat. Then, the model outcomes were used to construct an ensemble map to evaluate invasion risk in South Korea. The results indicated that temperature-related variables mainly affect the distribution of the longhorn crazy ant, and the two models showed consensus regions in South America, Africa, Australia, and Southeast Asia. Due to climate change, it was expected that the northern limit would somewhat rise. In South Korea, high-risk areas were predicted to be located along the coasts, but they would expand as a consequence of climate change. Since the invasion of longhorn crazy ants has occurred via commercial trades, a relatively high risk in coastal areas demands a high level of attention. We expect that this study will provide initial insight into selecting areas for longhorn crazy ant quarantine with ensemble species distribution modeling.  相似文献   

16.
As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981–2010) and future climate warming estimates based on simulated climate data for the 2020s (2011–2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas.  相似文献   

17.
The significant dependence of agricultural productivity on pest control requires pest distribution predictions at an early stage of pest invasion. Because pest cycles are critically affected by climate, climate is one of the most important factors for predicting an invasive pest. CLIMEX is a highly effective tool that can predict potential geographical species distributions, and test the regional suitability for a target species' habitat based on data including climate change scenarios. CLIMEX has been recently used in Europe, North America, China and Australia, among others. However, for modeling species distributions in Korea, the use of the model has been limited to date. This study aimed to first introduce the function and application of CLIMEX by reviewing important studies using this model. Second, we investigated previous studies using the model simulation to demonstrate the practical applicability of CLIMEX for the agricultural sector, and its use in forecasting.  相似文献   

18.
Abstract  Various factors can influence the population dynamics of phytophages post introduction, of which climate is fundamental. Here we present an approach, using a mechanistic modelling package (CLIMEX), that at least enables one to make predictions of likely dynamics based on climate alone. As biological control programs will have minimal funding for basic work (particularly on population dynamics), we show how predictions can be made using a species geographical distribution, relative abundance across its range, seasonal phenology and laboratory rearing data. Many of these data sets are more likely to be available than long-term population data, and some can be incorporated into the exploratory phase of a biocontrol program. Although models are likely to be more robust the more information is available, useful models can be developed using information on species distribution alone. The fitted model estimates a species average response to climate, and can be used to predict likely geographical distribution if introduced, where the agent is likely to be more abundant (i.e. good locations) and more importantly for interpretation of release success, the likely variation in abundance over time due to intra- and inter-year climate variability. The latter will be useful in predicting both the seasonal and long-term impacts of the potential biocontrol agent on the target weed. We believe this tool may not only aid in the agent selection process, but also in the design of release strategies, and for interpretation of post-introduction dynamics and impacts. More importantly we are making testable predictions. If biological control is to become more of a science making and testing such hypothesis will be a key component.  相似文献   

19.
Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae), known as common cutworm, is a worldwide pest that causes severe damage to various crops and vegetables in South Korea. In this study, we predicted the potential distribution of S. litura in South Korea in a climate change scenario by applying species distribution modeling. We used the CLIMEX software as a main tool and determined optimal parameter values to simulate the current distribution of S. litura in Asia. We then used these parameter values to predict the species' future distribution in South Korea. As a result, we prepared maps indicating areas with suitable climate for S. litura and showed that these areas gradually increased as a result of climate change. Approximately 98% of the areas in South Korea were predicted to have a favorable climate for S. litura in 2100; 63.2% of the area in South Korea is currently favorable. To the best of our knowledge, this is the first study to predict the potential distribution of S. litura in South Korea, and it provides the basic data necessary to establish an optimal control strategy of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号