首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Asparagus virus 1 (AV‐1) infects Asparagus officinalis L. (Asparagaceae) in the field worldwide. However, various wild relatives of A. officinalis are resistant to AV‐1. Here we study the behavior of the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), on 19 AV‐1‐resistant wild relatives of A. officinalis. We focus on behavior that is associated with regular cell penetration, relevant for inoculation of AV‐1, and sieve element penetration to check for vector resistance and its potential influence on AV‐1 transmission. Parameters, relevant for the transmission of non‐persistent viruses and host plant acceptance, were obtained by the electrical penetration graph technique. Furthermore, phylloclade architecture of A. officinalis and its wild relatives was examined to study its influence on aphid behavior. Behavior of M. persicae displays many cell penetrations and long ingestion periods on A. officinalis, compared to the generally shorter cell penetrations (reduced potential for virus transmission) and reduced or no ingestion (phloem‐located aphid resistance) on wild relatives. Because effects on aphid behavior are not consistent throughout the group of the tested wild relatives of A. officinalis, with some wild relatives being susceptible to M. persicae, a common genetic background for AV‐1 and aphid resistance appears to be unlikely. However, the reduced potential of virus transmission as well as aphid resistance shown by some wild relatives may be useful for future breeding programs.  相似文献   

2.
The enzyme myrosinase (EC 3.2.3.1.147) is present in specialised myrosin cells and forms part of the glucosinolate–myrosinase system, also known as ‘the mustard oil bomb’, which has an important role in the defence system of cruciferous plants against insect pests. Transgenic Brassica napus MINELESS have been produced by transgenic ablation of myrosin cells. This prompted us to investigate the importance of myrosin cells in plant–aphid interactions. In order to study this, we challenged transgenic MINELESS and wild‐type cultivar Westar seedlings with the aphids Brevicoryne brassicae (a specialist) and Myzus persicae (a generalist). Our study included aphid free‐choice and aphid fecundity experiments. Data from these experiments showed that B. brassicae prefers wild‐type seedlings and M. persicae prefers MINELESS. Bbrassicae and Mpersicae showed significant variation in establishment on plants regardless of whether they were wild type or MINELESS and also differed significantly in affecting plant parts. Myrosinase activity in MINELESS control seedlings was 83.6% lower than the wild‐type control seedlings. Infestation with either of the two aphid species induced myrosinase levels in both wild‐type and MINELESS seedlings. Infestation with Mpersicae reduced the concentration of most glucosinolates while Bbrassicae had the opposite effect. B. brassicae enhanced the formation of glucosinolate hydrolysis products both in wild‐type and MINELESS seedlings. However, Mpersicae decreased All ITC but increased 3,4ETBut NIT in wild‐type seedlings. Taken together, the investigation shows that the presence of myrosin cells affects the preference of generalist and specialist aphid species for Brassica napus plants.  相似文献   

3.
Since the beginning of breeding narrow‐leafed lupins [Lupinus angustifolius L. (Fabaceae)] with a low alkaloid content, susceptibility to several aphid species has increased. Therefore, the probing and feeding behavior of Aphis fabae Scopoli, Aphis craccivora Koch, Acyrthosiphon pisum (Harris), Myzus persicae (Sulzer), and the well‐adapted Macrosiphum albifrons Essig (all Hemiptera: Aphididae) was studied over 12 h on narrow‐leafed lupin genotypes containing varying amounts and compositions of alkaloids. We used the electrical penetration graph (EPG) technique to obtain information on the influence of alkaloid content and composition on the susceptibility to various aphid species. Results indicated that the total time of probing of A. fabae, A. craccivora, A. pisum, and M. persicae increased with a reduced alkaloid content, whereas the alkaloid content had no influence on M. albifrons. Almost all of the individuals (>93%) conducted sieve element phases on the highly susceptible genotype Bo083521AR (low alkaloid content). A reduced occurrence of phloem phases was observed during the 12‐h recording on the alkaloid‐rich cultivar Azuro, especially for A. pisum (37.5%) and A. fabae (55.0%). Furthermore, aphids feeding on genotypes with low alkaloid content had in most cases significantly longer sieve element phases than when feeding on resistant genotypes (Kalya: low alkaloid content, yet resistant; Azuro: high alkaloid content, resistant), whereas M. albifrons showed the longest phloem phase on the alkaloid‐rich cultivar Azuro. As most significant differences were found in phloem‐related parameters, it is likely that the most important plant factors influencing aphid probing and feeding behavior are localized in the sieve elements. The aphids’ feeding behavior on the cultivar Kalya, with a low alkaloid content but reduced susceptibility, indicates that not only the total alkaloid content influences the feeding behavior but additional plant factors have an impact.  相似文献   

4.
Green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), an important pest of potato (Solanum tuberosum L.) (Solanaceae), preferentially settles on Potato leafroll virus (PLRV)‐infected potato plants as compared with non‐infected ones, primarily in response to volatile organic compounds (VOCs) released by the plants. In this study, we examined the dynamics of these effects, measuring arrestment of apterous M. persicae in response to VOC from upper, middle, and lower leaflets of PLRV‐infected potato plants at the same stage in disease progression (4 weeks after inoculation), but inoculated at 1, 3, or 5 weeks after transplanting (WAT). Sham‐inoculated plants were used as controls and VOC were collected and quantified. Aphid arrestment was greater on PLRV‐infected plants inoculated at 1 and 3 WAT as compared with sham‐inoculated plants, but this preference was reversed in plants inoculated at 5 WAT. Relative arrestment of M. persicae by infected plants and VOC release was greater for lower and middle leaflets than for upper leaflets at 1 and 3 WAT compared to sham‐inoculated plants. The reverse was observed in plants inoculated at 5 WAT. Findings indicate that aphid preference is influenced by VOC release from PLRV‐ or sham‐inoculated potato plants and that VOC emissions and aphid preference depend upon the age at inoculation and leaf position within the potato plants. The implications of these dynamics in vector behavior for spread of PLRV in the field in natural and managed systems are discussed.  相似文献   

5.
Because N is frequently the most limiting mineral macronutrient for plants in terrestrial ecosystems, modulating N input may have ecological consequences through trophic levels. Thus, in agro‐ecosystems, the success of natural enemies may depend not only from their herbivorous hosts but also from the host plant whose qualities may be modulated by N input. We manipulated foliar N concentrations by providing to Camelina sativa plants three different nitrogen rates (control, optimal, and excessive). We examined how the altered host‐plant nutritional quality influenced the performances of two aphid species, the generalist green peach aphid, Myzus persicae, and the specialist cabbage aphid, Brevicoryne brassicae, and their common parasitoid Diaeretiella rapae. Both N inputs led to increased N concentrations in the plants but induced contrasted concentrations within aphid bodies depending on the species. Compared to the control, plant biomass increased when receiving the optimal N treatment but decreased under the excessive treatment. Performances of M. persicae improved under the optimal treatment compared to the control and excessive treatments whereas B. brassicae parameters declined following the excessive N treatment. In no‐choice trials, emergence rates of D. rapae developing in M. persicae were higher on both optimum and excessive N treatments, whereas they remained stable whatever the treatment when developing in B. brassicae. Size of emerging D. rapae females was positively affected by the treatment only when it developed in M. persicae on the excessive N treatment. This work showed that contrary to an optimal N treatment, when N was delivered in excess, plant suitability was reduced and consequently affected negatively aphid parameters. Surprisingly, these negative effects resulted in no or positive consequences on parasitoid parameters, suggesting a buffered effect at the third trophic level. Host N content, host suitability, and dietary specialization appear to be major factors explaining the functioning of our studied system.  相似文献   

6.
Tobacco viruses transmitted by green peach aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), cause severe disease in flue‐cured tobacco, Nicotiana tabacum L. (Solanaceae), in China and throughout the world. Field experiments were conducted in 2016 and 2017 in Longyan City, Fujian Province, China, to determine whether M. persicae and aphid‐transmitted virus diseases are affected by intercropping of oilseed rape, Brassica napus L. (Brassicaceae), in tobacco fields. The results showed that, compared with those in monocultured fields, the densities of M. persicae and winged aphids in intercropped fields significantly decreased in both 2016 and 2017. In particular, the appearance of winged aphids was delayed by ca. 7 days. Moreover, the densities of Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae), a parasitoid of the aphid, significantly increased in 2016 and 2017. Accordingly, the incidence rates of aphid‐transmitted virus diseases (those caused by the cucumber mosaic virus, potato virus Y, and tobacco etch virus) significantly decreased in the intercropped fields in 2016 and 2017. Tobacco yields and monetary value significantly increased in 2016 (by 10–25 and 14–29%, respectively) and 2017 (by 17–22 and 22–34%, respectively). Consequently, our results suggest that intercropping oilseed rape in tobacco fields is a good approach to regulating and controlling aphids and tobacco mosaic viruses, for example potyvirus, and this intercropping can help control aphid‐transmitted virus diseases in tobacco.  相似文献   

7.
Herbivorous insects can cause severe cellular changes to plant foliage following infestations, depending on feeding behaviour. Here, a proteomic study was conducted to investigate the influence of green peach aphid (Myzus persicae Sulzer) as a polyphagous pest on the defence response of Arabidopsis thaliana (L.) Heynh after aphid colony establishment on the host plant (3 days). Analysis of about 574 protein spots on 2‐DE gels revealed 31 differentially expressed protein spots. Twenty out of these 31 differential proteins were selected for analysis by mass spectrometry. In 12 of the 20 analysed spots, we identified seven and nine proteins using MALDI‐TOF‐MS and LC‐ESI‐MS/MS, respectively. Of the analysed spots, 25% contain two proteins. Different metabolic pathways were modulated in Arabidopsis leaves according to aphid feeding: most corresponded to carbohydrate, amino acid and energy metabolism, photosynthesis, defence response and translation. This paper has established a survey of early alterations induced in the proteome of Arabidopsis by M. persicae aphids. It provides valuable insights into the complex responses of plants to biological stress, particularly for herbivorous insects with sucking feeding behaviour.  相似文献   

8.
Three aphid species regularly feed on pecan [Carya illinoinensis (Wangenh.) K. Koch (Juglandaceae)] foliage: the black pecan aphid, Melanocallis caryaefoliae (Davis), the yellow pecan aphid, Monelliopsis pecanis Bissell, and the blackmargined aphid, Monellia caryella (Fitch) (all Hemiptera: Aphididae). Adults of M. caryaefoliae and both the nymphs and adults of M. pecanis and M. caryella mainly feed on the lower surface of leaves. Nymphs of M. caryaefoliae appear unique by frequently feeding on the upper surface of pecan leaves. This is risky behavior given the environmental hazards (e.g., rain, solar radiation, and dislodgement) associated with the upper surface. Thus, we determined the leaf surface distribution of M. caryaefoliae on trees in an orchard and on pecan seedlings in the laboratory. A pecan orchard survey found all three aphid species and stages predominantly on the lower leaf surface, except for the nymphs of M. caryaefoliae, which were evenly distributed between upper and lower leaf surfaces. This survey also found aphidophagous lacewing (Neuroptera) larvae predominantly on the lower leaf surface, whereas ladybird beetle (Coleoptera: Coccinellidae) larvae were more evenly distributed between upper and lower surfaces. Laboratory experiments using single or multiple pecan aphid species revealed M. caryaefoliae distribution on pecan seedlings similar to orchard data. Nymphal M. caryaefoliae require nearly 2 days to elicit chlorotic feeding lesions on leaves; without these lesions, nymphal development is hindered. The similar distribution of nymphs of M. caryaefoliae on both leaf surfaces likely reflects a strategy of predator avoidance allowing a proportion of the population to survive.  相似文献   

9.
Five asparagus cultivars, three breeding lines and the wild relative Asparagus amarus were tested for natural infection by Asparagus virus 1 (AV‐1) in experimental fields at two locations over 3 and 4 years, respectively. In the first year after re‐planting the annual crowns in the field, more than 90% of tested plants of cultivars were infected by AV‐1. In the third and fourth year, 100% of tested plants of cultivars were AV‐1 infected. In comparison, all plants of the wild relative A. amarus were completely free of AV‐1, suggesting a high level of resistance. Additionally, 1‐year‐old glasshouse‐cultivated plants of A. officinalis and A. amarus were placed in an AV‐1 provocation cabin under field conditions. Seven months later, 100% of the A. officinalis plants showed a high virus concentration in ELISA, whereas no AV‐1 was detectable in the A. amarus plants. This result was confirmed by highly sensitive AV‐1‐specific RT‐PCR. To exclude vector resistance, the feeding behaviour of green peach aphid Myzus persicae was tested over 12 h using the electrical penetration graph method. Both asparagus genotypes were accepted by the aphids as potential hosts, but the feeding time was significantly longer on A. amarus. A genetic distance analysis of the various cultivars of Asparagus officinalis and selected wild relatives of the JKI collection was carried out, resulting in a clear discrimination of cultivars and wild relatives, especially A. amarus. The potential breeding value of the putative resistance carrier is discussed.  相似文献   

10.
Thiamethoxam (TMX) is one of the most effective neonicotinoid insecticides for the control of green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), and various side effects can be expected in its natural enemies. The multicolored Asian lady beetle or harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is an important predator against M. persicae in greenhouses and fields. In this study, we evaluated the toxicity of TMX to H. axyridis and the effect on the functional response of this predator to M. persicae through three routes of exposure. Acute toxicity bioassays indicated that LC50 values of TMX on H. axyridis through direct residual contact (‘contact’), systemic application (‘systemic’), and leaf‐dip treatment (‘leaf‐dip’) were 18.99, 21.26, and 15.39 mg a.i. l?1, respectively. The hazard quotient indicated a potential hazard of this agrochemical regardless of the exposure routes. The mortality caused by the lowest rate, 2 mg a.i. l?1, was not significantly different compared with the control group. For the three routes of sublethal TMX exposure, the type‐II functional response was a good fit to the prey consumption of H. axyridis. Predation was most affected by leaf‐dip treatment, followed by contact and systemic treatments, which had similar effect. For all exposure routes, the predation capacity of the predator recovered quickly after transfer to untreated cabbage leaves. Thiamethoxam applied systemically was the least toxic to H. axyridis and did not affect the functional response of the predator. However, the sublethal effects of TMX through both contact and leaf‐dip application may reduce the population growth of H. axyridis and consequently impair the biological control of M. persicae by this predator. These results illustrate that the assessment of potential effects of TMX on H. axyridis is crucial to develop effective integrated pest management programs for M. persicae in China.  相似文献   

11.
Heritable bacterial endosymbionts are common in aphids (Hemiptera: Aphididae), and they can influence ecologically important traits of their hosts. It is generally assumed that their persistence in a population is dependent on a balance between the costs and benefits they confer. A good example is Hamiltonella defensa Moran et al., a facultative symbiont that provides a benefit by strongly increasing aphid resistance to parasitoid wasps, but becomes costly to the host in the absence of parasitoids. Regiella insecticola Moran et al. is another common symbiont of aphids and generally does not influence resistance to parasitoids. In the green peach aphid, Myzus persicae (Sulzer), however, one strain (R5.15) was discovered that behaves like H. defensa in that it provides strong protection against parasitoid wasps. Here we compare R5.15‐infected and uninfected lines of three M. persicae clones to test whether this protective symbiont is costly as well, i.e., whether it has any negative effects on aphid life‐history traits. Furthermore, we transferred R5.15 to two other aphid species, the pea aphid, Acyrthosiphon pisum (Harris), and the black bean aphid, Aphis fabae Scopoli, where this strain is also protective against parasitoids and where we could compare its effects with those of additional, non‐protective strains of R. insecticola. Negative effects of R5.15 on host survival and lifetime reproduction were limited and frequently non‐significant, and these effects were comparable or in one case weaker than those of R. insecticola strains that are not protective against parasitoid wasps. Unless the benefit of protection is counteracted by detrimental effects on traits that were not considered in this study, R. insecticola strain R5.15 should have a high potential to spread in aphid populations.  相似文献   

12.
The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), poses a new threat to soybean, Glycine max (L.) Merrill (Fabaceae), production in the north central USA. As H. halys continues to spread and increase in abundance in the region, the interaction between H. halys and management tactics deployed for other pests must be determined. Currently, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is the most abundant and damaging insect pest of soybean in the region. Aphid‐resistant soybean, mainly with the Rag1 gene, is commercially available for management of A. glycines. Here, experiments were performed to evaluate the effects of Rag1 aphid‐resistant soybean on the mortality, development, and preference of H. halys. In a no‐choice test, mortality of H. halys reared on Rag1 aphid‐resistant soybean pods was significantly lower than when reared on aphid‐susceptible soybean pods (28 vs. 53%). Development time, adult weight, and proportion females of surviving adults did not differ when reared on Rag1 aphid‐resistant or aphid‐susceptible soybean pods. In choice tests, H. halys exhibited a preference for Rag1 aphid‐resistant over aphid‐susceptible soybean pods after 4 h, but not after 24 h. Halyomorpha halys exhibited no preference when tested with vegetative‐stage or reproductive‐stage soybean plants. The preference by H. halys for Rag1 aphid‐resistant soybean pods and the decreased mortality when reared on these pods suggests that the use of Rag1 aphid‐resistant soybean may favor this emerging pest in the north central USA.  相似文献   

13.
Many plant viruses depend on aphids and other phloem‐feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus‐infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over‐expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a‐protease domain (NIa‐Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa‐Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa‐Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant–aphid interactions to promote its own transmission.  相似文献   

14.
Aphids are the most common vector of plant viruses, and their feeding behavior is an important determinant of virus transmission. Positive effects of global change on aphid performance have been documented, but effects on aphid behavior are not known. We assessed the plant‐mediated behavioral responses of a generalist aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), to increased CO2 and nitrogen when feeding on each of three host species: Amaranthus viridis L. (Amaranthaceae), Polygonum persicaria L. (= Persicaria maculosa Gray) (Polygonaceae), and Solanum dulcamara L. (Solanaceae). Via a family of constrained Markov models, we tested the degree to which aphid movements demonstrate preference among host species or plants grown under varying environmental conditions. Entropy rates of the estimated Markov chains were used to further quantify aphid behavior. Our statistical methods provide a general tool for assessing choice and quantitatively comparing animal behavior under different conditions. Aphids displayed strong preferences for the same host species under all growth conditions, indicating that CO2‐ and N‐induced changes in plant chemistry have minimal effects on host preference. However, entropy rates increased in the presence of non‐preferred hosts, even when preferred hosts were available. We conclude that the presence of a non‐preferred host species affected aphid‐feeding behavior more than changes in plant leaf chemistry when plants were grown under elevated CO2 and increased N availability.  相似文献   

15.
Control of green peach aphid (Myzus persicae), a globally important pest, using plant‐derived oils is a promising alternative to conventional insecticides. Although various plant‐derived oils are potentially useful for insect control, dose–response studies and efficacy comparisons among oils have not been widely reported. Our objective was to compare M. persicae control by plant‐derived oils, focusing on oils derived from Brassicaceae species that exhibit rotational and environmental quality benefits. We thus applied sprays of emulsified ethyl esters from the seed oils of yellow mustard (Sinapis alba), oriental mustard (Brassica juncea) and rapeseed (Brassica napus) to M. persicae in a laboratory bioassay. A dose–response relationship was modelled for the S. alba spray yielding LD50/LD95 values of 18.2 ± 0.87/128.1 ± 5.10 μg ester per cm2 (P < 0.0001). Ethyl esters of oils from all three species and soybean (Glycine max) ethyl ester were compared to determine the efficacy of Brassicaceae oils relative to the dominant plant‐oil spray currently available. All ethyl esters were equally efficacious despite measured differences in fatty acid profiles among the oils. Oils derived from mustards B. juncea and S. alba are potentially useful feedstocks for the production of insecticidal sprays, and testing on additional insects is warranted.  相似文献   

16.
Pathogens may alter their hosts, which consequently increases transmission efficiency by vectors. We examined the effects of Raspberry leaf mottle virus [RLMV; Closterovirus (Closteroviridae)] and Raspberry latent virus [RpLV; Reovirus (Reoviridae)], alone and in a co‐infection in raspberry, Rubus idaeus L. (Rosaceae) cv. Meeker, on the behavior and performance of its vector, Amphorophora agathonica Hottes (Hemiptera: Aphididae). Longevity was increased in aphids feeding on all infected‐plant treatments compared with healthy plants, but aphid fecundity only increased in the co‐infection treatment. In a two‐way choice study between infected and healthy plants, aphids showed no difference in preference between plants after 30 min of exposure. After 24 h, aphids significantly preferred to settle on plants infected with RLMV over healthy, but healthy plants over plants infected with RpLV. There were no differences in settling preferences between healthy and co‐infected plants. An electrical penetration graph study showed no differences in aphid feeding behavior on plants infected with RLMV and RLMV+RpLV when compared with healthy controls. Our results are consistent with past findings that infected plant's impact vector performance and behavior, but also highlight the need to further investigate greater virus diversity and effects of mixed infections.  相似文献   

17.
Young leaves of the potato Solanum tuberosum L. cultivar Kardal contain resistance factors to the green peach aphid Myzuspersicae (Sulzer) (Hemiptera: Aphididae) and normal probing behavior is impeded. However, M. persicae can survive and reproduce on mature and senescent leaves of the cv. Kardal plant without problems. We compared the settling ofM. persicae on young and old leaves and analyzed the impact of aphids settling on the plant in terms of gene expression. Settling, as measured by aphid numbers staying on young or old leaves, showed that after 21 h significantly fewer aphids were found on the young leaves. At earlier time points there were no difference between young and old leaves, suggesting that the young leaf resistance factors are not located at the surface level but deeper in the tissue. Gene expression was measured in plants at 96 h postinfestation, which is at a late stage in the interaction and in compatible interactions this is long enough for host plant acceptance to occur. In old leaves of cv. Kardal (compatible interaction), M. persicae infestation elicited a higher number of differentially regulated genes than in young leaves. The plant response to aphid infestation included a larger number of genes induced than repressed, and the proportion of induced versus repressed genes was larger in young than in old leaves. Several genes changing expression seem to be involved in changing the metabolic state of the leaf from source to sink.  相似文献   

18.
Earthworm‐produced compost or vermicompost has been shown to increase resistance of plants to a variety of insect pests, but it is still unclear whether this resistance is dose dependent and whether the mechanisms responsible are the same for insect species with differing feeding habits and preferences. Therefore, we tested the effects of plants grown in various vermicompost concentrations (0, 20, 40, and 60%) on the preference and performance of generalist, Myzus persicae L., and specialist, Brevicoryne brassicae L. (both Hemiptera: Aphididae), aphid pests. Preference was evaluated with leaf disk (apterous) and whole plant (alate) choice assays. After 24 h of feeding, there was no significant negative effect on the feeding preference noted for apterae of either species of any of the treatments tested. To the contrary, apterae B. brassicae showed a significant preference for vermicompost treatments over control leaf disks. Alate M. persicae preferred alighting on control plants over vermicompost‐grown plants, but B. brassicae showed no preference toward any of the treatments tested. Both aphid species deposited significantly more nymphs on control plants than on those grown in 20% vermicompost. Furthermore, plants grown in soil amended with 20% vermicompost significantly suppressed mass accumulation, as well as numbers of adults and nymphs of both aphid species compared to controls. These data clearly show that vermicompost soil amendments can significantly influence pest aphid preference and performance on plants and that these effects are not dose dependent, but rather species and morph dependent.  相似文献   

19.
The aim of this study was to investigate biological and molecular characteristics of Lecanicillium strains isolated from Hemipteran hosts in Argentina. Morphology‐based taxonomic characterization together with molecular taxonomy based on rRNA operon internal transcribed spacer (ITS), mitochondrial nad1 gene, and nuclear ef1a gene sequences resulted in the assignment of nine out of ten isolates to the Lecanicillium lecanii sensu lato complex. However, whereas several isolates were thus unequivocally characterized as Lecanicillium muscarium or Lecanicillium longisporum, species assignment was not possible for three isolates that might represent a new species within the L. lecanii s.l. complex. We found two group‐I introns on 18S and 28S rRNA gene on only one isolate. Pathogenicity tests were conducted against the peach aphid using conidial suspensions (1 × 107 conidia/ml), and the Kaplan–Meier analysis was performed to evaluate the survival of Myzus persicae. Lecanicillium longisporum CEP 155 and L. muscarium CEP 182 were significantly more pathogenic to M. persicae than all the Lecanicillium isolates causing aphid mortalities >85%. Determination of susceptibility to the benzimidazole fungicide benomyl revealed important differences between Lecanicillium strains. The inhibitory effect of benomyl appeared less pronounced for the L. muscarium fungal isolates than for those belonging to a different taxon. Based in our results, the best candidate strain as microbial biological control agent against M. persicae is L. muscarium CEP 182. However, further research under field conditions in greenhouses should be done in order to confirm the compatibility of entomopathogenic fungi and fungicides within an IPM strategy.  相似文献   

20.
We compared the settling preferences and reproductive potential of an oligophagous herbivore, the pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), in response to pea plants, Pisum sativum L. cv. ‘Aragorn’ (Fabaceae), infected with two persistently transmitted viruses, Pea enation mosaic virus (PEMV) and Bean leaf roll virus (BLRV), that differ in their distribution within an infected plant. Aphids preferentially oriented toward and settled on plants infected with PEMV or BLRV in comparison with sham‐inoculated plants (plants exposed to herbivory by uninfected aphids), but aphids did not discriminate between plants infected with the two viruses. Analysis of plant volatiles indicated that plants inoculated with either virus had significantly higher green leaf volatile‐to‐monoterpene ratios. Time until reproductive maturity was marginally influenced by plant infection status, with a trend toward earlier nymph production on infected plants. There were consistent age‐specific effects of plant infection status on aphid fecundity: reproduction was significantly enhanced for aphids on BLRV‐infected plants across most time intervals, though mean aphid fecundity did not differ between sham and PEMV‐infected plants. There was no clear pattern of age‐specific survivorship; however, mean aphid lifespan was reduced on plants infected with PEMV. Our results are consistent with predictions of the host manipulation hypothesis, extended to include plant viruses: non‐viruliferous A. pisum preferentially orient to virus‐infected host plants, potentially facilitating pathogen transmission. These studies extend the scope of the host manipulation hypothesis by demonstrating that divergent fitness effects on vectors arise relative to the mode of virus transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号