首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
We identified visual opsin genes for three flounder species, including the spotted halibut (Verasper variegatus), slime flounder (Microstomus achne), and Japanese flounder (Paralichthys olivaceus). Structure and function of opsins for the three species were characterized together with those of the barfin flounder (V. moseri) that we previously reported. All four flounder species possessed five basic opsin genes, including lws, sws1, sws2, rh1, and rh2. Specific features were observed in rh2 and sws2. The rh2‐a, one of the three subtypes of rh2, was absent in the genome of V. variegatus and pseudogenized in V. moseri. Moreover, rh2‐a mRNA was not detected in M. achne and P. olivaceus, despite the presence of a functional reading frame. Analyses of the maximum absorption spectra (λmax) estimated by in vitro reconstitution indicated that SWS2A of M. achne (451.9 nm) and P. olivaceus (465.6 nm) were blue‐sensitive, whereas in V. variegatus (485.4 nm), it was green‐sensitive and comparable to V. moseri (482.3 nm). Our results indicate that although the four flounder species possess a similar opsin gene repertoire, the SWS2A opsin of the genus Verasper is functionally green‐sensitive, while its overall structure remains conserved as a blue‐sensitive opsin. Further, the rh2‐a function seems to have been reduced during the evolution of flounders. λmax values of predicted ancestral SWS2A of Pleuronectiformes and Pleuronectidae was 465.4 and 462.4 nm, respectively, indicating that these were blue‐sensitive. Thus, the green‐sensitive SWS2A is estimated to be arisen in ancestral Verasper genus. It is suggested that the sensitivity shift of SWS2A from blue to green may have compensated functional reduction in RH2‐A.  相似文献   

2.
Kawamura S  Blow NS  Yokoyama S 《Genetics》1999,153(4):1839-1850
We isolated five classes of retinal opsin genes rh1(Cl), rh2(Cl), sws1(Cl), sws2(Cl), and lws(Cl) from the pigeon; these encode RH1(Cl), RH2(Cl), SWS1(Cl), SWS2(Cl), and LWS(Cl) opsins, respectively. Upon binding to 11-cis-retinal, these opsins regenerate the corresponding photosensitive molecules, visual pigments. The absorbance spectra of visual pigments have a broad bell shape with the peak, being called lambdamax. Previously, the SWS1(Cl) opsin cDNA was isolated from the pigeon retinal RNA, expressed in cultured COS1 cells, reconstituted with 11-cis-retinal, and the lambdamax of the resulting SWS1(Cl) pigment was shown to be 393 nm. In this article, using the same methods, the lambdamax values of RH1(Cl), RH2(Cl), SWS2(Cl), and LWS(Cl) pigments were determined to be 502, 503, 448, and 559 nm, respectively. The pigeon is also known for its UV vision, detecting light at 320-380 nm. Being the only pigments that absorb light below 400 nm, the SWS1(Cl) pigments must mediate its UV vision. We also determined that a nonretinal P(Cl) pigment in the pineal gland of the pigeon has a lambdamax value at 481 nm.  相似文献   

3.
Snakes are known to express a rod visual opsin and two cone opsins, only (SWS1, LWS), a reduced palette resulting from their supposedly fossorial origins. Dipsadid snakes in the genus Helicops are highly visual predators that successfully invaded freshwater habitats from ancestral terrestrial-only habitats. Here, we report the first case of multiple SWS1 visual pigments in a vertebrate, simultaneously expressed in different photoreceptors and conferring both UV and violet sensitivity to Helicops snakes. Molecular analysis and in vitro expression confirmed the presence of two functional SWS1 opsins, likely the result of recent gene duplication. Evolutionary analyses indicate that each sws1 variant has undergone different evolutionary paths with strong purifying selection acting on the UV-sensitive copy and dN/dS ∼1 on the violet-sensitive copy. Site-directed mutagenesis points to the functional role of a single amino acid substitution, Phe86Val, in the large spectral shift between UV and violet opsins. In addition, higher densities of photoreceptors and SWS1 cones in the ventral retina suggest improved acuity in the upper visual field possibly correlated with visually guided behaviors. The expanded visual opsin repertoire and specialized retinal architecture are likely to improve photon uptake in underwater and terrestrial environments, and provide the neural substrate for a gain in chromatic discrimination, potentially conferring unique color vision in the UV–violet range. Our findings highlight the innovative solutions undertaken by a highly specialized lineage to tackle the challenges imposed by the invasion of novel photic environments and the extraordinary diversity of evolutionary trajectories taken by visual opsin-based perception in vertebrates.  相似文献   

4.
Rhodopsinlike opsins constitute a distinct phylogenetic group (Yokoyama 1994, Mol. Biol. Evol. 11:32–39). This RH2 group includes the green-sensitive opsins in chicken and goldfish and the blue-sensitive opsin in a nocturnal lizard gecko. In the present study, we isolated and sequenced the genomic DNA clones for the RH2 opsin gene, rh2 Ac , of the diurnal lizard Anolis carolinensis. This single-copy gene spans 18.3 kb from start to stop codons, making it the longest opsin gene known in vertebrates. Phylogenetic analysis strongly suggests that rh2 Ac is more closely related to the chicken green opsin gene than to the gecko blue opsin gene. This gene tree differs from the organismal tree, where the two lizard species should be most closely related, implying that rh2 Ac and the gecko blue-sensitive opsin genes have been derived from duplicate ancestral genes.Correspondence to: S. Yukiyama  相似文献   

5.
Retinal projections were studied experimentally in the Northern water snake using modifications of the Nauta silver impregnation technique. Contralaterally, the retina projects to nucleus geniculatus lateralis pars dorsalis and pars ventralis, nucleus lentiformis mesencephali and nucleus geniculatus pretectalis. A sparse projection was also observed to nucleus ovalis. An additional afferent thalamic projection to nucleus ventrolateralis was found in two cases. The retina projects ipsilaterally to the dorsolateral portion of nucleus geniculatus lateralis pars dorsalis, and sparsely to nucleus lentiformis mesencephali and nucleus geniculatus pretectalis. Nucleus posterodorsalis receives dense bilateral retinal projections. Contralaterally, the retina also projects to the superficial layers of the tectum (layers 8–13 of Ramón) and to nucleus opticus tegmenti. Armstrong's findings that the retinal projections in Natrix are qualittatively similar to those in lizards were confirmed. However there are marked quantitative differences among the various pathways and their corresponding nuclei. These differences are particularly striking in comparing the visual projections to the dorsal thalamus, the retino-tecto-rotundal and the retino-geniculate systems. The first is reduced in volume and the second is markedly increased in volume in comparison with lizards. These data lend support to the theories of Walls that snakes evolved from fossorial lizards and of Underwood that the eyes of these lizards underwent reduction but not complete degeneration. Qualitatively the retinal projections are conservative among lizards and snakes, but a history of reduction of these pathways in ancestral snakes with a selective increase in the retino-geniculate system as a surface niche was reattained is reflected in the anatomy of this ophidian visual system.  相似文献   

6.
Yokoyama S  Blow NS  Radlwimmer FB 《Gene》2000,259(1-2):17-24
We have isolated and sequenced the RH1(Tg), RH2(Tg), SWS2(Tg), and LWS(Tg) opsin cDNAs from zebra finch retinas. Upon binding to 11-cis-retinal, these opsins regenerate the corresponding photosensitive molecules, visual pigments. The absorption spectra of visual pigments have a broad bell shape, with the peak being called lambda(max). Previously, SWS1(Tg) opsin cDNA was isolated from zebra finch retinal RNA, expressed in cultured COS1 cells, reconstituted with 11-cis-retinal, and the lambda(max) of the resulting visual pigment was shown to be 359nm. Here, the lambda(max) values of the RH1(Tg), RH2(Tg), SWS2(Tg), and LWS(Tg) pigments are determined to be 501, 505, 440, and 560nm, respectively. Molecular evolutionary analyses suggest that specific amino acid replacements in the SWS1 and SWS2 pigments, resulting from accelerated evolution, must have been responsible for their functional divergences among the avian pigments.  相似文献   

7.
The role of sequence variation in the spectral tuning of color vision is well established in many systems. This includes the cichlids of Lake Victoria where sequence variation has been linked to environmental light gradients and speciation. The cichlids of Lake Malawi are a similar model for visual evolution, but the role of gene sequence variation in visual tuning between closely related species is unknown. This work describes such variation in multiple species of two rock-dwelling genera: Metriaclima and Labidochromis. Genomic DNA for seven cone opsin genes was sequenced and the structure of the opsin proteins was inferred. Retinal binding pocket polymorphisms were identified and compared to available data regarding spectral absorbance shifts. Sequence variation with known or potential effects on absorbance spectra were found in four genes: SWS1 (UV sensitive), SWS2B (violet sensitive), RH2Aβ (green sensitive), and LWS (red sensitive). Functional variation was distributed such that each genus had both a variable short-wavelength and long-wavelength sensitive opsin. This suggests spectral tuning is important at the margins of the cichlid visual spectrum. Further, there are two SWS1 opsin alleles that differ in sensitivity by 10 nm and are >2 MY divergent. One of these occurs in a haplotype block >1 kb. Potential haplotype blocks were found around the RH2 opsin loci. These data suggest that molecular diversification has resulted in functionally unique alleles and changes to the visual system. These data also suggest that opsin sequence variation tunes spectral sensitivities between closely related species and that the specific regions of spectral tuning are genus-specific.  相似文献   

8.
Uniquely for non-primate mammals, three classes of cone photoreceptors have been previously identified by microspectrophotometry in two marsupial species: the polyprotodont fat-tailed dunnart (Sminthopsis crassicaudata) and the diprotodont honey possum (Tarsipes rostratus). This report focuses on the genetic basis for these three pigments. Two cone pigments were amplified from retinal cDNA of both species and identified by phylogenetics as members of the short wavelength-sensitive 1 (SWS1) and long wavelength-sensitive (LWS) opsin classes. In vitro expression of the two sequences from the fat-tailed dunnart confirmed the peak absorbances at 363 nm in the UV for the SWS1 pigment and 533 nm for the LWS pigment. No additional expressed cone opsin sequences that could account for the middle wavelength cones could be amplified. However, amplification from the fat-tailed dunnart genomic DNA with RH1 (rod) opsin primer pairs identified two genes with identical coding regions but sequence differences in introns 2 and 3. Uniquely therefore for a mammal, the fat-tailed dunnart has two copies of an RH1 opsin gene. This raises the possibility that the middle wavelength cones express a rod rather than a cone pigment.  相似文献   

9.
10.
Vision is a major sense for Primates and the ability to perceive colors has great importance for the species ecology and behavior. Visual processing begins with the activation of the visual opsins in the retina, and the spectral absorption peaks are highly variable among species. In most Primates, LWS/MWS opsins are responsible for sensitivity to long/middle wavelengths within the visible light spectrum, and SWS1 opsins provide sensitivity to short wavelengths, in the violet region of the spectrum. In this study, we aimed to investigate the genetic variation on the sws1 opsin gene of New World monkeys (NWM) and search for amino acid substitutions that might be associated with the different color vision phenotypes described for a few species. We sequenced the exon 1 of the sws1 opsin gene of seven species from the families Callitrichidae, Cebidae, and Atelidae, and searched for variation at the spectral tuning sites 46, 49, 52, 86, 90, 93, 114, 116, and 118. Among the known spectral tuning sites, only residue 114 was variable. To investigate whether other residues have a functional role in the SWS1 absorption peak, we performed computational modeling of wild-type SWS1 and mutants A50I and A50V, found naturally among the species investigated. Although in silico analysis did not show any visible effect caused by these substitutions, it is possible that interactions of residue 50 with other sites might have some effect in the spectral shifts in the order of ~14 nm, found among the NWM. We also performed phylogenetic reconstruction of the sws1 gene, which partially recovered the species phylogeny. Further studies will be important to uncover the mutations responsible for the phenotypic variability of the SWS1 of NWM, and how spectral tuning may be associated with specific ecological features such as preferred food items and habitat use.  相似文献   

11.
Cichlid fish of the East African Rift Lakes are renowned for their diversity and offer a unique opportunity to study adaptive changes in the visual system in rapidly evolving species flocks. Since color plays a significant role in mate choice, differences in visual sensitivities could greatly influence and even drive speciation of cichlids. Lake Malawi cichlids inhabiting rock and sand habitats have significantly different cone spectral sensitivities. By combining microspectrophotometry (MSP) of isolated cones, sequencing of opsin genes, and spectral analysis of recombinant pigments, we have established the cone complements of four species of Malawi cichlids. MSP demonstrated that each of these species predominately expresses three cone pigments, although these differ between species to give three spectrally different cone complements. In addition, rare populations of spectrally distinct cones were found. In total, seven spectral classes were identified. This was confirmed by opsin gene sequencing, expression, and in vitro reconstitution. The genes represent the four major classes of cone opsin genes that diverged early in vertebrate evolution. All four species possess a long-wave-sensitive (LWS), three spectrally distinct green-sensitive (RH2), a blue-sensitive (SWS2A), a violet-sensitive (SWS2B), and an ultraviolet-sensitive (SWS1) opsin. However, African cichlids determine their spectral sensitivity by differential expression of primarily only three of the seven available cone opsin genes. Phylogenetic analysis suggests that all percomorph fish have similar potential.  相似文献   

12.
Teleosts show a great variety in visual opsin complement, due to both gene duplication and gene loss. The repertoire ranges from one subfamily of visual opsins (scotopic vision) including rod opsin only retinas seen in many deep-sea species to multiple subfamilies of visual opsins in some pelagic species. We have investigated the opsin repertoire of Atlantic cod (Gadus morhua) using information in the recently sequenced cod genome and found that despite cod not being a deep sea species it lacks visual subfamilies sensitive towards the most extreme parts of the light spectra representing UV and red light. Furthermore, we find that Atlantic cod has duplicated paralogs of both blue-sensitive SWS2 and green-sensitive RH2 subfamilies, with members belonging to each subfamily linked in tandem within the genome (two SWS2-, and three RH2A genes, respectively). The presence of multiple cone opsin genes indicates that there have been duplication events in the cod ancestor SWS2 and RH2 opsins producing paralogs that have been retained in Atlantic. Our results are supported by expressional analysis of cone opsins, which further revealed an ontogenetic change in the array of cone opsins expressed. These findings suggest life stage specific programs for opsin regulation which could be linked to habitat changes and available light as the larvae is transformed into an early juvenile. Altogether we provide the first molecular evidence for color vision driven by only two families of cone opsins due to gene loss in a teleost.  相似文献   

13.
Echolocating bats are able to orientate, navigate and forage without visual cues. To probe the role of vision in bats, we studied the visual opsin genes from the echolocating little brown bat (Myotis lucifugus). Short-wavelength sensitive (SWS1) opsin, middle/long-wavelength sensitive (M/LWS) opsin and rhodopsin cDNA sequences were identified from the Ensembl database and validated by the sequencing of genomic DNA. We retrieved the published orthologous genes from eleven additional representative species of mammals from GenBank and conducted an evolutionary analysis. We found that the M/LWS opsin and rhodopsin genes were both under strong purifying selection, whereas the SWS1 opsin gene has undergone positive selection at two amino acid sites and one lineage, though the main evolutionary force is still purifying selection. Two-ratio model of the SWS1 opsin gene revealed that the ω ratio for the little brown bat lineage was nearly three times lower than the background ratio, suggesting a much stronger functional constraint. Our relative rate tests show the little brown bat has a lower nonsynonymous substitution rate than those in other mammals (on average 32% lower) for the SWS1 opsin gene. However, no such significant differences were detected for the M/LWS opsin and rhodopsin genes. The results of the relative ratio tests are consistent with that of tests for selection, showing a history of purifying selection on the little brown bat opsin genes. These findings suggest a functional role of vision in the little brown bat despite being nocturnal and using echolocation. We speculate that this echolocating bat may be able to use visual cues to orientate, navigate and forage at night, to discriminate color under moonlight and starlight conditions, or to avoid predation by diurnal raptors.  相似文献   

14.
Matsumoto Y  Fukamachi S  Mitani H  Kawamura S 《Gene》2006,371(2):268-278
A variety of visual pigment repertoires present in fish species is believed due to the great variation under the water of light environment. A complete set of visual opsin genes has been isolated and characterized for absorption spectra and expression in the retina only in zebrafish. Medaka (Oryzias latipes) is a fish species phylogenetically distant from zebrafish and has served as an important vertebrate model system in molecular and developmental genetics. We previously isolated a medaka rod opsin gene (RH1). In the present study we isolated all the cone opsin genes of medaka by genome screening of a lambda-phage and bacterial artificial chromosome (BAC) libraries. The medaka genome contains two red, LWS-A and LWS-B, three green, RH2-A, RH2-B and RH2-C, and two blue, SWS2-A and SWS2-B, subtype opsin genes as well as a single-copy of the ultraviolet, SWS1, opsin gene. Previously only one gene was believed present for each opsin type as reported in a cDNA-based study. These subtype opsin genes are closely linked and must be the products of local gene duplications but not of a genome-wide duplication. Peak absorption spectra (lambda(max)) of the reconstituted photopigments with 11-cis retinal varied greatly among the three green opsins, 452 nm for RH2-A, 516 nm for RH2-B and 492 nm for RH2-C, and between the two blue opsins, 439 nm for SWS2-A and 405 nm for SWS2-B. Zebrafish also has multiple opsin subtypes, but phylogenetic analysis revealed that medaka and zebrafish gained the subtype opsins independently. The lambda and BAC DNA clones isolated in this study could be useful for investigating the regulatory mechanisms and evolutionary diversity of fish opsin genes.  相似文献   

15.
Vertebrate opsins are divided into four major groups: RH1 (rhodopsins), RH2 (rhodopsinlike with various absorption sensitivities), SWS (short-wavelength sensitive), and LWS/MWS (long and middle-wavelength sensitive) groups. The green opsin genes (g101 Af and g101 Af ) in a Mexican characin Astyanax fasciatus belong to the LWS/MWS group, whereas those in goldfish belong to the RH2 group (Yokoyama 1994, Mol Biol Evol 11:32–39). A newly isolated opsin gene (rh11 Af ) from A. fasciatus contains five exons and four introns, spanning 4.2 kilobases from start to stop codons. This gene is most closely related to the two green opsin genes of goldfish and belongs to the RH2 group. In the LWS/MWS group, gene duplication of the ancestral red and green opsin genes predates the speciation between A. fasciatus and goldfish, suggesting that goldfish also has an additional gene which is orthologous to g101 Af and g103 Af .Correspondence to: S. Yokoyama  相似文献   

16.
Previous evidence suggested that notothenioid fish had lost red-sensitive (LWS) visual pigment and photoreceptors, but retained ultraviolet-sensitive (SWS1), blue-sensitive (SWS2), and green-sensitive (RH2) pigments. We used RT-PCR and Southern blot to isolate the LWS opsin gene in five notothenioid species. We determined full-coding LWS opsin sequences and genomic sequences. The expected peak absorbance of the LWS opsin, based on the five-sites rule that is primarily responsible for the spectral sensitivities in vertebrates, ranged from 541 to 553 nm. In Antarctic waters, light of this wavelength penetrates to dozens of meters. Thus, we conclude that notothenioids use tetrachromatic color vision in shallower waters, at least during the Antarctic summer.  相似文献   

17.
The ability to use multiple cues in assessing predation risk is especially important to prey animals exposed to multiple predators. Wall lizards, Podarcis muralis, respond to predatory attacks from birds in the open by hiding inside rock crevices, where they may encounter saurophagous ambush smooth snakes. Lizards should avoid refuges with these snakes, but in refuges lizards can also find non‐saurophagous viperine snakes, which lizards do not need to avoid. We investigated in the laboratory whether wall lizards used different predator cues to detect and discriminate between snake species within refuges. We simulated predatory attacks in the open to lizards, and compared their refuge use, and the variation in the responses after a repeated attack, between predator‐free refuges and refuges containing visual, chemical, or visual and chemical cues of saurophagous or non‐saurophagous snakes. Time to enter a refuge was not influenced by potential risk inside the refuge. In contrast, in a successive second attack, lizards sought cover faster and tended to increase time spent hidden in the refuge. This suggests a case of predator facilitation because persistent predators in the open may force lizards to hide faster and for longer in hazardous refuges. However, after hiding, lizards spent less time in refuges with both chemical and visual cues of snakes, or with chemical cues alone, than in predator‐free refuges or in refuges with snake visual cues alone, but there were no differences in response to the two snake species. Therefore, lizards could be overestimating predation risk inside refuges. We discuss which selection pressures might explain this lack of discrimination of predatory from similar non‐predatory snakes.  相似文献   

18.
Vision represents an excellent model for studying adaptation, given the genotype‐to‐phenotype map that has been characterized in a number of taxa. Fish possess a diverse range of visual sensitivities and adaptations to underwater light, making them an excellent group to study visual system evolution. In particular, some speciose but understudied lineages can provide a unique opportunity to better understand aspects of visual system evolution such as opsin gene duplication and neofunctionalization. In this study, we showcase the visual system evolution of neotropical Characiformes and the spectral tuning mechanisms they exhibit to modulate their visual sensitivities. Such mechanisms include gene duplications and losses, gene conversion, opsin amino acid sequence and expression variation, and A1/A2‐chromophore shifts. The Characiforms we studied utilize three cone opsin classes (SWS2, RH2, LWS) and a rod opsin (RH1). However, the characiform's entire opsin gene repertoire is a product of dynamic evolution by opsin gene loss (SWS1, RH2) and duplication (LWS, RH1). The LWS‐ and RH1‐duplicates originated from a teleost specific whole‐genome duplication as well as characiform‐specific duplication events. Both LWS‐opsins exhibit gene conversion and, through substitutions in key tuning sites, one of the LWS‐paralogues has acquired spectral sensitivity to green light. These sequence changes suggest reversion and parallel evolution of key tuning sites. Furthermore, characiforms' colour vision is based on the expression of both LWS‐paralogues and SWS2. Finally, we found interspecific and intraspecific variation in A1/A2‐chromophores proportions, correlating with the light environment. These multiple mechanisms may be a result of the diverse visual environments where Characiformes have evolved.  相似文献   

19.
Quantitative genetics have not been used in vision studies because of the difficulty of objectively measuring large numbers of individuals. Here, we examine the effectiveness of a molecular technique, real-time PCR, as an inference of visual components in the bluefin killifish, Lucania goodei, to determine whether there is population variation in opsin expression. Previous work has shown that spring animals possess a higher frequency of UV and violet cones and a lower frequency of yellow and red cones than swamp animals. Here, we found a good qualitative match between the population differences in opsin expression and those found previously in cone frequency. Spring animals expressed higher amounts of SWS1 and SWS2B opsins (which correspond to UV and violet photopigments) and lower amounts of RH2 and LWS opsins (which correspond to yellow and red photopigments) than swamp animals. The counterintuitive pattern between color pattern, lighting environment, and vision remains. Males with blue anal fins are more abundant in swamps where animals express fewer SWS1 and SWS2B opsins and where transmission of UV/blue wavelengths is low. Understanding this system requires quantitative genetic studies. Real-time PCR is an effective tool for studies requiring inferences of visual physiology in large numbers of individuals.Abbreviations ERG electroretinogram - MSP microspectrophotometry  相似文献   

20.
Worm-like snakes (scolecophidians) are small, burrowing species with reduced vision. Although largely neglected in vertebrate research, knowledge of their biogeographical history is crucial for evaluating hypotheses of snake origins. We constructed a molecular dataset for scolecophidians with detailed sampling within the largest family, Typhlopidae (blindsnakes). Our results demonstrate that scolecophidians have had a long Gondwanan history, and that their initial diversification followed a vicariant event: the separation of East and West Gondwana approximately 150 Ma. We find that the earliest blindsnake lineages, representing two new families described here, were distributed on the palaeolandmass of India+Madagascar named here as Indigascar. Their later evolution out of Indigascar involved vicariance and several oceanic dispersal events, including a westward transatlantic one, unexpected for burrowing animals. The exceptional diversification of scolecophidians in the Cenozoic was probably linked to a parallel radiation of prey (ants and termites) as well as increased isolation of populations facilitated by their fossorial habits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号