首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The four extant members of the family Tapiridae have a disjunct, relictual distribution, with three species being Neotropical (Tapirus bairdii, T. terrestris, andT. pinchaque) and one found in Southeast Asia (T. indicus). Little recent work on tapir systematics have appeared, and no molecular studies of this group have been published. A phylogenetic analysis was undertaken using sequences of the mitochondrial cytochromec oxidase subunit II gene (COII) from representatives of the four species of tapirs, as well as a representative outgroup,Equus caballus. Analyses of the COII sequences indicate a close relationship between the two South American species of tapirs,T. terrestris andT. pinchaque, and estimates of divergence dates using rates of COII evolution are compatible with migration of a single tapir lineage into South America following the emergence of the isthmus of Panama, about 3 million years bp. Various methods of analysis, including maximum parsimony, maximum likelihood, and neighbor-joining, provided poorer resolution of other tapir relationship. The COII data suggest that three distinct tapir mitochondrial lineages, a South American (represented byT. terrestris andT. pinchaque), a Central American (represented byT. bairdii), and an Asian (represented byT. indicus) diverged relatively rapidly, 20–30 million years bp. Another goal of this study was to calibrate the rate of COII evolution in a eutherian mammal group which has a good fossil record, such as perissodactyls, to estimate accurately the rate of COII evolution in a nonprimate mammalian group. The rate of COII evolution in equids and tapirs has been relatively constant and, using corrected distances, calibrated to be approximately 0.22% lineage/million years. This rate is three-to fourfold lower than that of hominoid primates.  相似文献   

2.
Wood (J. Mamm. 18, 106–118; 1937) united the superfamilies Tapiroidea sensu stricto and Rhinocerotoidea in the suborder Ceratomorpha and aligned the Ceratomorpha with the suborder Hippomorpha within the order Perissodactyla. Although the monophyly of the Ceratomorpha appears now well-supported in paleontological and morphological analyses, the molecular relationship among the three extant superfamilies Tapiroidea, Rhinocerotoidea, and Equoidea has not yet been examined due to the limited amount of molecular information on tapirs. In the present study, we examined the phylogenetic position of Tapiroidea, represented by the complete mitochondrial cytochrome b gene (1140 bp) of a lowland tapir ( Tapirus terrestris ), and a Indian tapir ( Tapirus indicus ), relative to modern horses, zebras, donkeys, and rhinoceroses. The phylogenetic analyses using standard parsimony, neighbour-joining and maximum likelihood algorithms revealed monophyly of the Perissodactyla and three clearly distinct lineages: the modern horses, tapirs, and rhinoceroses. However, the sister-taxon relationship of the tapirs to either the rhinoceroses or the horses was not resolved conclusively in the bootstrap analysis. Spectral analysis, in which phylogenetic information is displayed independently of any selected tree, revealed that the DNA sequences available do not contain enough phylogenetic signal for any of the alternative hypotheses on the basal diversification of perissodactyls. The short branch lengths among the three perissodactyl lineages suggest that they diverged within a relatively short period, a finding consistent with molecular divergence datings and the fossil evidence that indicates a major radiation of the early perissodactyls approximately 54–50 million years ago.  相似文献   

3.
The sequence of the mitochondrial COII gene has been widely used to estimate phylogenetic relationships at different taxomonic levels across insects. We investigated the molecular evolution of the COII gene and its usefulness for reconstructing phylogenetic relationships within and among four collembolan families. The collembolan COII gene showed the lowest A + T content of all insects so far examined, confirming that the well-known A + T bias in insect mitochondrial genes tends to increase from the basal to apical orders. Fifty-seven percent of all nucleotide positions were variable and most of the third codon positions appeared free to vary. Values of genetic distance between congeneric species and between families were remarkably high; in some cases the latter were higher than divergence values between other orders of insects. The remarkably high divergence levels observed here provide evidence that collembolan taxa are quite old; divergence levels among collembolan families equaled or exceeded divergences among pterygote insect orders. Once the saturated third-codon positions (which violated stationarity of base frequencies) were removed, the COII sequences contained phylogenetic information, but the extent of that information was overestimated by parsimony methods relative to likelihood methods. In the phylogenetic analysis, consistent statistical support was obtained for the monophyly of all four genera examined, but relationships among genera/families were not well supported. Within the genus Orchesella, relationships were well resolved and agreed with allozyme data. Within the genus Isotomurus, although three pairs of populations were consistently identified, these appeared to have arisen in a burst of evolution from an earlier ancestor. Isotomurus italicus always appeared as basal and I. palustris appeared to harbor a cryptic species, corroborating allozyme data. Received: 12 January 1996 / Accepted: 10 August 1996  相似文献   

4.
It has recently been argued that living metazoans diverged over 800 million years ago, based on evidence from 22 nuclear genes for such a deep divergence between vertebrates and arthropods (Gu 1998). Two ``internal' calibration points were used. However, only one fossil divergence date (the mammal–bird split) was directly used to calibrate the molecular clock. The second calibration point (the primate–rodent split) was based on molecular estimates that were ultimately also calibrated by the same mammal–bird split. However, the first tetrapods that can be assigned with confidence to either the mammal (synapsid) lineage or the bird (diapsid) lineage are approximately 288 million years old, while the first mammals that can be assigned with confidence to either the primate or the rodent lineages are 65 million years old, or 85 million years old if ferungulates are part of the primate lineage and zhelestids are accepted as ferungulate relatives. Recalibration of the protein data using these fossil dates indicates that metazoans diverged between 791 and 528 million years ago, a result broadly consistent with the palaeontological documentation of the ``Cambrian explosion.' The third, ``external' calibration point (the metazoan–fungal divergence) was similarly problematic, since it was based on a controversial molecular study (which in turn used fossil dates including the mammal–bird split); direct use of fossils for this calibration point gives the absurd dating of 455 million years for metazoan divergences. Similar calibration problems affect another recent study (Wang et al. 1999), which proposes divergences for metazoans of 1000 million years or more: recalibrations of their clock again yields much more recent dates, some consistent with a ``Cambrian explosion' scenario. Molecular clock studies have persuasively argued for the imperfection of the fossil record but have rarely acknowledged that their inferences are also directly based on this same record. Received: 26 January 1999 / Accepted: 14 April 1999  相似文献   

5.
The evolution of perissodactyls (rhinoceroses, tapirs, and horses) has been well studied primarily because of their extensive fossil record. Nevertheless, controversy persists regarding relationships of some of the extant taxa, reflecting inconsistencies between molecular and morphological studies. Here we examine the phylogenetic relationships of 16 living perissodactyl species by concatenating two mitochondrial and nine nuclear genes, and we estimate their divergence times using a relaxed Bayesian molecular clock approach. Our analyses recovered the monophyly of the suborders Ceratomorpha and Hippomorpha, and the families Rhinoceratidae, Tapiridae, and Equidae. We supported the early divergence of the Indian rhinoceros in the late Oligocene (26 Mya) relative to the Sumatran and African rhinoceroses, and the split of caballine (domestic horse and Przewalski's wild horse) and noncaballine equids (zebras and African and Asiatic asses) in the Pliocene (4 Mya). An important implication of this study is that Equus asinus, the African wild ass was found to be the sister taxon of Asiatic asses and zebras, diverging from the common ancestor with caballine horses 2 Mya. Rates of chromosome rearrangements were also evaluated in perissodactyls, placing a notably high rate of variation amongst equids, particularly within the zebra clade. The robust phylogenetic results presented here are relevant in terms of understanding the evolutionary history of this highly threatened group of mammals. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 1289–1303.  相似文献   

6.

Background

Understanding the forces that shaped Neotropical diversity is central issue to explain tropical biodiversity and inform conservation action; yet few studies have examined large, widespread species. Lowland tapir (Tapirus terrrestris, Perissodactyla, Tapiridae) is the largest Neotropical herbivore whose ancestors arrived in South America during the Great American Biotic Interchange. A Pleistocene diversification is inferred for the genus Tapirus from the fossil record, but only two species survived the Pleistocene megafauna extinction. Here, we investigate the history of lowland tapir as revealed by variation at the mitochondrial gene Cytochrome b, compare it to the fossil data, and explore mechanisms that could have shaped the observed structure of current populations.

Results

Separate methodological approaches found mutually exclusive divergence times for lowland tapir, either in the late or in the early Pleistocene, although a late Pleistocene divergence is more in tune with the fossil record. Bayesian analysis favored mountain tapir (T. pinchaque) paraphyly in relation to lowland tapir over reciprocal monophyly, corroborating the inferences from the fossil data these species are sister taxa. A coalescent-based analysis rejected a null hypothesis of allopatric divergence, suggesting a complex history. Based on the geographic distribution of haplotypes we propose (i) a central role for western Amazonia in tapir diversification, with a key role of the ecological gradient along the transition between Andean subcloud forests and Amazon lowland forest, and (ii) that the Amazon river acted as an barrier to gene flow. Finally, the branching patterns and estimates based on nucleotide diversity indicate a population expansion after the Last Glacial Maximum.

Conclusions

This study is the first examining lowland tapir phylogeography. Climatic events at the end of the Pleistocene, parapatric speciation, divergence along the Andean foothill, and role of the Amazon river, have similarly shaped the history of other taxa. Nevertheless further work with additional samples and loci is needed to improve our initial assessment. From a conservation perspective, we did not find a correspondence between genetic structure in lowland tapir and ecogeographic regions proposed to define conservation priorities in the Neotropics. This discrepancy sheds doubt into this scheme's ability to generate effective conservation planning for vagile species.  相似文献   

7.
Molecular evolution of nitrate reductase genes   总被引:9,自引:0,他引:9  
To understand the evolutionary mechanisms and relationships of nitrate reductases (NRs), the nucleotide sequences encoding 19 nitrate reductase (NR) genes from 16 species of fungi, algae, and higher plants were analyzed. The NR genes examined show substantial sequence similarity, particularly within functional domains, and large variations in GC content at the third codon position and intron number. The intron positions were different between the fungi and plants, but conserved within these groups. The overall and nonsynonymous substitution rates among fungi, algae, and higher plants were estimated to be 4.33 × 10−10 and 3.29 × 10−10 substitutions per site per year. The three functional domains of NR genes evolved at about one-third of the rate of the N-terminal and the two hinge regions connecting the functional domains. Relative rate tests suggested that the nonsynonymous substitution rates were constant among different lineages, while the overall nucleotide substitution rates varied between some lineages. The phylogenetic trees based on NR genes correspond well with the phylogeny of the organisms determined from systematics and other molecular studies. Based on the nonsynonymous substitution rate, the divergence time of monocots and dicots was estimated to be about 340 Myr when the fungi–plant or algae–higher plant divergence times were used as reference points and 191 Myr when the rice–barley divergence time was used as a reference point. These two estimates are consistent with other estimates of divergence times based on these reference points. The lack of consistency between these two values appears to be due to the uncertainty of the reference times. Received: 10 April 1995 / Accepted: 10 September 1995  相似文献   

8.
Forelimb morphology is an indicator for terrestrial locomotor ecology. The limb morphology of the enigmatic tapir (Perissodactyla: Tapirus) has often been compared to that of basal perissodactyls, despite the lack of quantitative studies comparing forelimb variation in modern tapirs. Here, we present a quantitative assessment of tapir upper forelimb osteology using three‐dimensional geometric morphometrics to test whether the four modern tapir species are monomorphic in their forelimb skeleton. The shape of the upper forelimb bones across four species (T. indicus; T. bairdii; T. terrestris; T. pinchaque) was investigated. Bones were laser scanned to capture surface morphology and 3D landmark analysis was used to quantify shape. Discriminant function analyses were performed to reveal features which could be used for interspecific discrimination. Overall our results show that the appendicular skeleton contains notable interspecific differences. We demonstrate that upper forelimb bones can be used to discriminate between species (>91% accuracy), with the scapula proving the most diagnostic bone (100% accuracy). Features that most successfully discriminate between the four species include the placement of the cranial angle of the scapula, depth of the humeral condyle, and the caudal deflection of the olecranon. Previous studies comparing the limbs of T. indicus and T. terrestris are corroborated by our quantitative findings. Moreover, the mountain tapir T. pinchaque consistently exhibited the greatest divergence in morphology from the other three species. Despite previous studies describing tapirs as functionally mediportal in their locomotor style, we find osteological evidence suggesting a spectrum of locomotor adaptations in the tapirs. We conclude that modern tapir forelimbs are neither monomorphic nor are tapirs as conserved in their locomotor habits as previously described. J. Morphol. 277:1469–1485, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
Synonymous substitution rates in mitochondrial and nuclear genes of Drosophila were compared. To make accurate comparisons, we considered the following: (1) relative synonymous rates, which do not require divergence time estimates, should be used; (2) methods estimating divergence should take into account base composition; (3) only very closely related species should be used to avoid effects of saturation; (4) the heterogeneity of rates should be examined. We modified the methods estimating synonymous substitution numbers to account for base composition bias. By using these methods, we found that mitochondrial genes have 1.7–3.4 times higher synonymous substitution rates than the fastest nuclear genes or 4.5–9.0 times higher rates than the average nuclear genes. The average rate of synonymous transversions was 2.7 (estimated from the melanogaster species subgroup) or 2.9 (estimated from the obscura group) times higher in mitochondrial genes than in nuclear genes. Synonymous transversions in mitochondrial genes occurred at an approximately equivalent rate to those in the fastest nuclear genes. This last result is not consistent with the hypothesis that the difference in turnover rates between mitochondrial and nuclear genomes is the major factor determining higher synonymous substitution rates in mtDNA. We conclude that the difference in synonymous substitution rates is due to a combination of two factors: a higher transitional mutation rate in mtDNA and constraints on nuclear genes due to selection for codon usage. Received: 27 November 1996 / Accepted: 8 May 1997  相似文献   

10.
《Journal of morphology》2017,278(11):1517-1535
The distal forelimb (autopodium) of quadrupedal mammals is a key morphological unit involved in locomotion, body support, and interaction with the substrate. The manus of the tapir (Perissodactyla: Tapirus ) is unique within modern perissodactyls, as it retains the plesiomorphic tetradactyl (four‐toed) condition also exhibited by basal equids and rhinoceroses. Tapirs are known to exhibit anatomical mesaxonic symmetry in the manus, although interspecific differences and biomechanical mesaxony have yet to be rigorously tested. Here, we investigate variation in the manus morphology of four modern tapir species (Tapirus indicus , Tapirus bairdii , Tapirus pinchaque , and Tapirus terrestris ) using a geometric morphometric approach. Autopodial bones were laser scanned to capture surface shape and morphology was quantified using 3D‐landmark analysis. Landmarks were aligned using Generalised Procrustes Analysis, with discriminant function and partial least square analyses performed on aligned coordinate data to identify features that significantly separate tapir species. Overall, our results support the previously held hypothesis that T. indicus is morphologically separate from neotropical tapirs; however, previous conclusions regarding function from morphological differences are shown to require reassessment. We find evidence indicating that T. bairdii exhibits reduced reliance on the lateral fifth digit compared to other tapirs. Morphometric assessment of the metacarpophalangeal joint and the morphology of the distal facets of the lunate lend evidence toward high loading on the lateral digits of both the large T. indicus (large body mass) and the small, long limbed T. pinchaque (ground impact). Our results support other recent studies on T. pinchaque , suggesting subtle but important adaptations to a compliant but inclined habitat. In conclusion, we demonstrate further evidence that the modern tapir forelimb is a variable locomotor unit with a range of interspecific features tailored to habitual and biomechanical needs of each species.  相似文献   

11.
Partial sequences of two mitochondrial genes, the 12S ribosomal gene (739 bp) and the cytochrome b gene (672 bp), were analyzed in hopes of reconstructing the evolutionary relationships of 11 leporid species, representative of seven genera. However, partial cytochrome b sequences were of little phylogenetic value in this study. A suite of pairwise comparisons between taxa revealed that at the intergeneric level, the cytochrome b gene is saturated at synonymous coding positions due to multiple substitution events. Furthermore, variation at the nonsynonymous positions is limited, rendering the cytochrome b gene of little phylogenetic value for assessing the relationships between leporid genera. If the cytochrome b data are analyzed without accounting for these two classes of nucleotides (i.e., synonymous and nonsynonymous sites), one may incorrectly conclude that signal exists in the cytochrome b data. The mitochondrial 12S rRNA gene, on the other hand, has not experienced excessive saturation at either stem or loop positions. Phylogenies reconstructed from the 12S rDNA data support hypotheses based on fossil evidence that African rock rabbits (Pronolagus) are outside of the main leporid stock and that leporids experienced a rapid radiation. However, the molecular data suggest that this radiation event occurred in the mid-Miocene several millions of years earlier than the Pleistocene dates suggested by paleontological evidence. Received: 23 April 1998 / Accepted: 14 May 1998  相似文献   

12.
Analysis of the 18S rDNA sequences of five species of the family Dugesiidae (phylum Platyhelminthes, suborder Tricladida, infraorder Paludicola) and eight species belonging to families Dendrocoelidae and Planaridae and to the infraorder Maricola showed that members of the family Dugesiidae have two types of 18S rDNA genes, while the rest of the species have only one. The duplication event also affected the ITS-1, 5.8S, ITS-2 region and probably the 28S gene. The mean divergence value between the type I and the type II sequences is 9% and type II 18S rDNA genes are evolving 2.3 times more rapidly than type I. The evolutionary rates of type I and type II genes were calibrated from biogeographical data, and an approximate date for the duplication event of 80–120 million years ago was calculated. The type II gene was shown, by RT-PCR, to be transcribed in adult individuals of Schmidtea polychroa, though at very low levels. This result, together with the fact that most of the functionally important positions for small-subunit rRNA in prokaryotes have been conserved, indicates that the type II gene is probably functional. Received: 24 March 1998 / Accepted: 17 March 1999  相似文献   

13.
A 2550-bp portion of the mitochondrial genome of a Demosponge, genus Tetilla, was amplified from whole genomic DNA extract and sequenced. The sequence was found to code for the 3′ end of the 16S rRNA gene, cytochrome c oxidase subunit II, a lysine tRNA, ATPase subunit 8, and a 5′ portion of ATPase subunit 6. The Porifera cluster distinctly within the eumetazoan radiation, as a sister group to the Cnidaria. Also, the mitochondrial genetic code of this sponge is likely identical to that found in the Cnidaria. Both the full COII DNA and protein sequences and a portion of the 16S rRNA gene were found to possess a striking similarity to published Cnidarian mtDNA sequences, allying the Porifera more closely to the Cnidaria than to any other metazoan phylum. The gene arrangement, COII—tRNALys—ATP8—ATP6, is observed in many Eumetazoan phyla and is apparently ancestral in the metazoa. Received: 24 November 1997 / Accepted: 14 September 1998  相似文献   

14.
Although the relationships of the living hominoid primates (humans and apes) are well known, the relationships of the fossil species, times of divergence of both living and fossil species, and the biogeographic history of hominoids are not well established. Divergence times of living species, estimated from molecular clocks, have the potential to constrain hypotheses of the relationships of fossil species. In this study, new DNA sequences from nine protein-coding nuclear genes in great apes are added to existing datasets to increase the precision of molecular time estimates bearing on the evolutionary history of apes and humans. The divergence of Old World monkeys and hominoids at the Oligocene-Miocene boundary (approximately 23 million years ago) provides the best primate calibration point and yields a time and 95% confidence interval of 5.4 +/- 1.1 million years ago (36 nuclear genes) for the human-chimpanzee divergence. Older splitting events are estimated as 6.4 +/- 1.5 million years ago (gorilla, 31 genes), 11.3 +/- 1.3 million years ago (orangutan, 33 genes), and 14.9 +/- 2.0 million years ago (gibbon, 27 genes). Based on these molecular constraints, we find that several proposed phylogenies of fossil hominoid taxa are unlikely to be correct.  相似文献   

15.
The complete mitochondrial DNA (mtDNA) molecule of the hamadryas baboon, Papio hamadryas, was sequenced and included in a molecular analysis of 24 complete mammalian mtDNAs. The particular aim of the study was to time the divergence between Cercopithecoidea and Hominoidea. That divergence, set at 30 million years before present (MYBP) was a fundamental reference for the original proposal of recent hominoid divergences, according to which the split among gorilla, chimpanzee, and Homo took place 5 MYBP. In the present study the validity of the postulated 30 MYBP dating of the Cercopithecoidea/Hominoidea divergence was examined by applying two independent nonprimate molecular references, the divergence between artiodactyls and cetaceans set at 60 MYBP and that between Equidae and Rhinocerotidae set at 50 MYBP. After calibration for differences in evolutionary rates, application of the two references suggested that the Cercopithecoidea/Hominoidea divergence took place >50 MYBP. Consistent with the marked shift in the dating of the Cercopithecoidea/Hominoidea split, all hominoid divergences receive a much earlier dating. Thus the estimated date of the divergence between Pan (chimpanzee) and Homo is 10–13 MYBP and that between Gorilla and the Pan/Homo linage ≈17 MYBP. The same datings were obtained in an analysis of clocklike evolving genes. The findings show that recalculation is necessary of all molecular datings based directly or indirectly on a Cercopithecoidea/Hominoidea split 30 MYBP. Received: 1 April 1998 / Accepted: 1 July 1998  相似文献   

16.
Complete chloroplast 23S rRNA and psbA genes from five peridinin-containing dinoflagellates (Heterocapsa pygmaea, Heterocapsa niei, Heterocapsa rotun-data, Amphidinium carterae, and Protoceratium reticulatum) were amplified by PCR and sequenced; partial sequences were obtained from Thoracosphaera heimii and Scrippsiella trochoidea. Comparison with chloroplast 23S rRNA and psbA genes of other organisms shows that dinoflagellate chloroplast genes are the most divergent and rapidly evolving of all. Quartet puzzling, maximum likelihood, maximum parsimony, neighbor joining, and LogDet trees were constructed. Intersite rate variation and invariant sites were allowed for with quartet puzzling and neighbor joining. All psbA and 23S rRNA trees showed peridinin-containing dinoflagellate chloroplasts as monophyletic. In psbA trees they are related to those of chromists and red algae. In 23S rRNA trees, dinoflagellates are always the sisters of Sporozoa (apicomplexans); maximum likelihood analysis of Heterocapsa triquetra 16S rRNA also groups the dinoflagellate and sporozoan sequences, but the other methods were inconsistent. Thus, dinoflagellate chloroplasts may actually be related to sporozoan plastids, but the possibility of reproducible long-branch artifacts cannot be strongly ruled out. The results for all three genes fit the idea that dinoflagellate chloroplasts originated from red algae by a secondary endosymbiosis, possibly the same one as for chromists and Sporozoa. The marked disagreement between 16S rRNA trees using different phylogenetic algorithms indicates that this is a rather poor molecule for elucidating overall chloroplast phylogeny. We discuss possible reasons why both plastid and mitochondrial genomes of alveolates (Dinozoa, Sporozoa and Ciliophora) have ultra-rapid substitution rates and a proneness to unique genomic rearrangements. Received: 27 December 1999 / Accepted: 24 March 2000  相似文献   

17.
The sequence (16,829 nt) of the complete mitochondrial genome of the greater Indian rhinoceros, Rhinoceros unicornis, was determined. Like other perissodactyls studied (horse and donkey) the rhinoceros demonstrates length variation (heteroplasmy) associated with different numbers of repetitive motifs in the control region. The 16,829-nt variety of the molecule includes 36 identical control region motifs. The evolution of individual peptide-coding genes was examined by comparison with a distantly related perissodactyl, the horse, and the relationships among the orders Carnivora, Perissodactyla, and Artiodactyla (+ Cetacea) were examined on the basis of concatenated sequences of 12 mitochondrial peptide-coding genes. The phylogenetic analyses grouped Carnivora, Perissodactyla, and Artiodactyla (+ Cetacea) into a superordinal clade and within this clade a sister group relationship was recognized between Carnivora and Perissodactyla to the exclusion of Artiodactyla (+ Cetacea) . On the basis of the molecular difference between the rhinoceros and the horse and by applying as a reference to Artiodactyl/Cetacean divergence set at 60 million years ago (MYA), the evolutionary divergence between the families Rhinocerotidae and Equidae was dated to approximately 50 MYA.   相似文献   

18.
We inferred the incidence of nucleotide conversions in the COI and 16S rRNA mitochondrial genes of members of the Symphyta and basal Apocrita (Hymenoptera). Character-state reconstructions in both genes suggested that conversions between A and T (AT transversions) occurred much more frequently than any other type of change, although we cannot wholly discount an underlying transition bias. Parsimony analysis of COI nucleotide characters did not recover phylogeny; e.g., neither the Tenthredinoidea nor Apocrita were recovered as monophyletic. However, analysis of COI amino acid characters did recover these relationships, as well as others based on fossil and morphological evidence. Analysis of 16S rRNA characters also recovered these relationships providing conversions between A and T were down-weighted. Analysis of the combined data sets gave relatively strong support for various relationships, suggesting that both data sets supported similar topographies. These data sets, both separately and combined, suggested that the phytophagous Siricidae were more closely related to the predominantly parasitic Apocrita than were the ectoparasitic Orussoidea. This suggests that the wasp parasitic lifestyle did not have a single origin, unless the Siricidae have more recently reverted to phytophagy. Alternatively, parasitism evolved twice independently, once in the Orussoidea and again in the Apocrita. The latter scenario is supported by the observation that the evolution of parasitism was accompanied by a tendency for the larvae to develop inside plant tissues. Adaptations that accompanied the movement of wasps into a confined, wood-boring habitat may have preadapted them to becoming ectoparasitic. Received: 27 March 1996 / Accepted: 2 August 1996  相似文献   

19.
We carried out an analysis of partial sequences from expressed major histocompatibility complex (MHC) class I genes isolated from a range of equid species and more distantly related members of the mammalian order Perissodactyla. Phylogenetic analysis revealed a minimum of six groups, five of which contained genes and alleles that are found in equid species and one group specific to the rhinoceros. Four of the groups contained only one, or very few sequences, indicating the presence of relatively nonpolymorphic loci, while another group contained the majority of the equid sequences identified. These data suggest that a diversification of MHC genes took place after the split between the Equidae and the Rhinocerotidae yet before the speciation events within the genus Equus. Received: 17 November 1998 / Accepted: 7 April 1999  相似文献   

20.
Complete sequences of seven protein coding genes from Penaeus notialis mitochondrial DNA were compared in base composition and codon usage with homologous genes from Artemia franciscana and four insects. The crustacean genes are significantly less A + T-rich than their counterpart in insects and the pattern of codon usage (ratio of G + C-rich versus A + T-rich codon) is less biased. A phylogenetic analysis using amino acid sequences of the seven corresponding polypeptides supports a sister-taxon status for mollusks–annelid and arthropods. Furthermore, a distance matrix-based tree and two most-parsimonious trees both suggest that crustaceans are paraphyletic with respect to insects. This is also supported by the inclusion of Panulirus argus COII (complete) and COI and COIII (partial) sequence data. From analysis of single and combined genes to infer phylogenies, it is observed that obtained from single genes are not well supported in most topologies cases and notably differ from that of the tree based on all seven genes. Received: 25 August 1998 / Accepted: 8 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号