首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 439 毫秒
1.
Retinal membrane guanylyl cyclase (RetGC) in the outer segments of vertebrate photoreceptors is controlled by guanylyl cyclase activating proteins (GCAPs), responding to light-dependent changes of the intracellular Ca(2+) concentrations. We present evidence that a different RetGC binding protein, retinal degeneration 3 protein (RD3), is a high-affinity allosteric modulator of the cyclase which inhibits RetGC activity at submicromolar concentrations. It suppresses the basal activity of RetGC in the absence of GCAPs in a noncompetitive manner, and it inhibits the GCAP-stimulated RetGC at low intracellular Ca(2+) levels. RD3 opposes the allosteric activation of the cyclase by GCAP but does not significantly change Ca(2+) sensitivity of the GCAP-dependent regulation. We have tested a number of mutations in RD3 implicated in human retinal degenerative disorders and have found that several mutations prevent the stable expression of RD3 in HEK293 cells and decrease the affinity of RD3 for RetGC1. The RD3 mutant lacking the carboxy-terminal half of the protein and associated with Leber congenital amaurosis type 12 (LCA12) is unable to suppress the activity of the RetGC1/GCAP complex. Furthermore, the inhibitory activity of the G57V mutant implicated in cone-rod degeneration is strongly reduced. Our results suggest that inhibition of RetGC by RD3 may be utilized by photoreceptors to block RetGC activity during its maturation and/or incorporation into the photoreceptor outer segment rather than participate in dynamic regulation of the cyclase by Ca(2+) and GCAPs.  相似文献   

2.
Ca2+-induced conformational changes of scallop myosin regulatory domain (RD) were studied using intrinsic fluorescence. Both the intensity and anisotropy of tryptophan fluorescence decreased significantly upon removal of Ca2+. By making a mutant RD we found that the Ca2+-induced fluorescence change is due mainly to Trp21 of the essential light chain which is located at the unusual Ca2+-binding EF-hand motif of the first domain. This result suggests that Trp21 is in a less hydrophobic and more flexible environment in the Ca2+-free state, supporting a model for regulation based on the 2 A resolution structure of scallop RD with bound Ca2+ [Houdusse A. and Cohen C. (1996) Structure 4, 21-32]. Binding of the fluorescent probe, 8-anilinonaphthalene-1-sulphonate (ANS) to the RD senses the dissociation of the regulatory light chain (RLC) in the presence of EDTA, by energy transfer from a tryptophan cluster (Trp818, 824, 826, 827) on the heavy chain (HC). We identified a hydrophobic pentapeptide (Leu836-Ala840) at the head-rod junction which is required for the effective energy transfer and conceivably is part of the ANS-binding site. Extension of the HC component of RD towards the rod region results in a larger ANS response, presumably indicating changes in HC-RLC interactions, which might be crucial for the regulatory function of scallop myosin.  相似文献   

3.
4.
We have previously identified a single inhibitory Ca2+-binding site in the first EF-hand of the essential light chain of Physarum conventional myosin (Farkas, L., Malnasi-Csizmadia, A., Nakamura, A., Kohama, K., and Nyitray, L. (2003) J. Biol. Chem. 278, 27399-27405). As a general rule, conformation of the EF-hand-containing domains in the calmodulin family is "closed" in the absence and "open" in the presence of bound cations; a notable exception is the unusual Ca2+-bound closed domain in the essential light chain of the Ca2+-activated scallop muscle myosin. Here we have reported the 1.8 A resolution structure of the regulatory domain (RD) of Physarum myosin II in which Ca2+ is bound to a canonical EF-hand that is also in a closed state. The 12th position of the EF-hand loop, which normally provides a bidentate ligand for Ca2+ in the open state, is too far in the structure to participate in coordination of the ion. The structure includes a second Ca2+ that only mediates crystal contacts. To reveal the mechanism behind the regulatory effect of Ca2+, we compared conformational flexibilities of the liganded and unliganded RD. Our working hypothesis, i.e. the modulatory effect of Ca2+ on conformational flexibility of RD, is in line with the observed suppression of hydrogen-deuterium exchange rate in the Ca2+-bound form, as well as with results of molecular dynamics calculations. Based on this evidence, we concluded that Ca2+-induced change in structural dynamics of RD is a major factor in Ca2+-mediated regulation of Physarum myosin II activity.  相似文献   

5.
6.
7.
Arabidopsis RD21 is a cysteine protease of the papain family. Unlike other members of the papain family, RD21 has a C-terminal extension sequence composed of two domains, a 2-kD proline-rich domain and a 10-kD domain homologous to animal epithelin/granulin family proteins. The RD21 protein was accumulated as 38- and 33-kD proteins in Arabidopsis leaves. An immunoblot showed that the 38-kD protein had the granulin domain, whereas the 33-kD protein did not. A pulse-chase experiment with Bright-Yellow 2 transformant cells expressing RD21 showed that RD21 was synthesized as a 57-kD precursor and was then slowly processed to make the 33-kD mature protein via the 38-kD intermediate. After a 12-h chase, the 38-kD intermediate was still detected in the cells. These results indicate that the N-terminal propeptide was first removed from the 57-kD precursor, and the C-terminal granulin domain was then slowly removed to yield the 33-kD mature protein. Subcellular fractionation of the Bright-Yellow 2 transformant showed that the intermediate and mature forms of RD21 were localized in the vacuoles. Under the acidic conditions of the vacuolar interior, the intermediate was found to be easily aggregated. The intermediate and the mature protein were accumulated in association with leaf senescence. Taken together, these results indicate that the intermediate of RD21 was accumulated in the vacuoles as an aggregate, and then slowly matured to make a soluble protease by removing the granulin domain during leaf senescence.  相似文献   

8.
RD3-0028, a compound with a benzodithiin structure, was found to be a potent inhibitor of respiratory syncytial virus (RSV) replication. Its action is specific; no activity is seen against influenza A virus, measles virus, herpes simplex virus type 1 or 2, or human cytomegalovirus. A time-dependent drug addition experiment indicated that the antiviral activity occurs in the late stage of the RSV replication cycle, since this compound completely inhibited syncytium formation even when added up to 16 hr after the infection of cell monolayers at an MOI of 3. RD3-0028 had no direct virucidal effect on RSV. Western blotting analysis showed that RD3-0028 significantly decreased the amount of RSV proteins released into the cell culture medium. Moreover, five independent isolates of the RSV long strain were selected for growth in RD3-0028 (5-20 microg/ml). These resistant viruses were more than 80-fold less sensitive to RD3-0028 than the long strain. The F gene segment of each of these viruses was sequenced and in each case the mutant RNA segment contained at least one sequence alteration, converting asparagine 276 to tyrosine (F1 protein). These results suggest that RD3-0028 inhibits RSV replication by interfering with intracellular processing of the RSV fusion protein, or a step immediately thereafter, leading to loss of infectivity.  相似文献   

9.
Membrane responses to cyclic adenosine monophosphate (cAMP) injections have been studied by means of voltage clamp, Ca-indicator dye, and ion substitution techniques in identified neurons from the abdominal ganglion of Limax maximus. The ventral abdominal giant cell (AGC) displayed a response consisting of a decrease in outward current usually accompanied by a smaller enhancement of voltage-gated Ca2+ influx. Both responses were eliminated by external Cd2+ or Mn2+ and required membrane voltages more positive than -40 mV for expression. The enhanced influx persisted in Ba2+-substituted saline, while the decrease in outward current was blocked. A group of dorsal neurons (RD1-3, LD1) showed a mixed Na-Ca influx induced by cAMP that could be activated over a wide range of membrane potentials (less than -100 to greater than -20 mV). This flux caused a measurable increase in internal Ca2+. The influx was insensitive to Cd2+ and Mn2+ but was reduced by prolonged exposure to Co2+. The relative magnitude of the Na-Ca flux ratio showed considerable variation between specimens. In immature animals the Ca component was absent. The results demonstrated that elevation of intracellular cAMP can cause cell-specific changes of membrane conductance within closely associated neurons.  相似文献   

10.
Reactive disulfide compounds (RDSs) with a pyridyl ring adjacent to a disulfide bond, 2,2'dithiodipyridine (2,2' DTDP) and 4,4' dithiodipyridine (4,4' DTDP), induce Ca2+ release from isolated canine cardiac sarcoplasmic reticulum (SR) vesicles. RDSs are absolutely specific to free sulfhydryl (SH) groups and oxidize SH sites of low pKa via a thiol-disulfide exchange reaction, with the stoichiometric production of thiopyridone in the medium. As in skeletal SR, this reaction caused large increases in the Ca2+ permeability of cardiac SR and the number of SH sites oxidized by RDSs was kinetically and quantitatively measured through the absorption of thiopyridone. RDS-induced Ca2+ release from cardiac SR was characterized and compared to the action of RDSs on skeletal SR and to Ca2(+)-induced Ca2+ release. (i) RDS-induced Ca2+ release from cardiac SR was dependent on ionized Mg2+, with maximum rates of release occurring at 0.5 and 1 mM Mg2+free for 2,2' DTDP and 4,4' DTDP, respectively. (ii) In the presence of adenine nucleotides (0.1-1 mM), the oxidation of SH sites in cardiac SR by exogenously added RDS was inhibited, which, in turn, inhibited Ca2+ release induced by RDSs. (iii) Conversely, when the oxidation reaction between RDSs and cardiac SR was completed and Ca2+ release pathways were opened, subsequent additions of adenine nucleotides stimulated Ca2+ efflux induced by RDSs. (iv) Sulfhydryl reducing agents (e.g., dithiothreitol, DTT, 1-5 mM) inhibited RDS-induced Ca2+ efflux in a concentration-dependent manner. (v) RDSs elicited Ca2+ efflux from passively loaded cardiac SR vesicles (i.e., with nonfunctional Ca2+ pumps in the absence of Mg-ATP) and stimulated Ca2(+)-dependent ATPase activity, which indicated that RDS uncoupled Ca2+ uptake and did not act at the Ca2+, Mg2(+)-ATPase. These results indicate that RDSs selectively oxidize critical sulfhydryl site(s) on or adjacent to a Ca2+ release channel protein channel and thereby trigger Ca2+ release. Conversely, reduction of these sites reverses the effects of RDSs by closing Ca2+ release channels, which results in active Ca2+ reuptake by Ca2+, Mg2(+)-ATPase. These compounds can thus provide a method to covalently label and identify the protein involved in Ca2+ release from cardiac SR.  相似文献   

11.
RS‐4‐(4‐Hydroxyphenyl)‐2‐butanol (rhododendrol, RD) was reported to induce leukoderma of the skin. To explore the mechanism underlying that effect, we previously showed that oxidation of RD with mushroom tyrosinase produces RD‐quinone, which is converted to secondary quinone products, and we suggested that those quinones are cytotoxic because they bind to cellular proteins and produce reactive oxygen species. We then confirmed that human tyrosinase can oxidize both enantiomers of RD. In this study, we examined the metabolism of RD in B16F1 melanoma cells in vitro. Using 4‐amino‐3‐hydroxy‐n‐butylbenzene as a specific indicator, we detected moderate levels of RD‐pheomelanin in B16F1 cells exposed to 0.3 to 0.5 mM RD for 72 h. We also confirmed the covalent binding of RD‐quinone to non‐protein thiols and proteins through cysteinyl residues. The covalent binding of RD‐quinone to proteins was 20‐ to 30‐fold greater than dopaquinone. These results suggest that the tyrosinase‐induced metabolism of RD causes melanocyte toxicity.  相似文献   

12.
Mitogen-activated protein (MAP) kinases mediate cellular responses to a wide variety of stimuli. Activation of a MAP kinase (MAPK) occurs after phosphorylation by an upstream MAP kinase kinase (MAPKK). The Arabidopsis thaliana genome encodes 10 MKKs, but few of these have been shown directly to activate any of the 20 Arabidopsis MAPKs (AtMPKs) and NaCl-, drought- or abscisic acid (ABA)-induced genes RD29A or RD29B. We have constructed the constitutively activated form for nine of the 10 AtMKK proteins, and tested their ability to activate the RD29A and RD29B promoters and also checked the ability of the nine activated AtMKK proteins to phosphorylate 11 of the AtMPK proteins in transient assays. The results show that three proteins, AtMKK1, AtMKK2 and AtMKK3, could activate the RD29A promoter, while these three and two additional AtMKK6/8 proteins could activate the RD29B promoter. Four other proteins, AtMKK7/AtMKK9 and AtMKK4/AtMKK5, can cause hypersensitive response (HR) in tobacco leaves using transient analysis. The activation of the RD29A promoter correlated with four uniquely activated AtMPK proteins. A novel method of activating AtMPK proteins by fusion to a cis-acting mutant of a human MAPK kinase MEK1 was used to confirm that specific members of the AtMPK gene family can activate the RD29A stress pathway.  相似文献   

13.
14.
Protein kinase C (PKC) activity (phosphorylation increased by addition of Ca2+/phosphatidylserine or Ca2+/phosphatidylserine/phorbol ester) was found in both a synaptic plasma membrane (SPM) and a postsynaptic density (PSD) fraction. The SPM fraction had as endogenous substrates 87K-, 60K-, 50K-, and 20K-Mr proteins, whereas the PSD fraction had only the 20K-Mr protein. The PKC activity was also detected using histone III-S as a substrate, in SPM but much less in PSD. Phosphorylations of histone and the endogenous substrates of PKC, assayed in the absence of Ca2+, were enhanced in the SPM prepared after treatment of brain homogenate with phorbol 12-myristate 13-acetate (TPA), but very little enhancement was found in PSD after such treatment. The SPM PKC activity (both for endogenous substrate proteins and for histone), which was enhanced by TPA treatment of brain homogenate, was inhibited by calcium (IC50, 3 x 10(-7) M). The phosphorylations of the 20K-Mr protein in PSD, and in SPM prepared with and without TPA treatment, were all inhibited by H-7. The 20K-Mr protein in the PSD fraction is also phosphorylated by a PSD Ca2+/calmodulin-dependent protein kinase II. The evidence indicates that both SPM and PSD fractions contain a PKC activity. Detergent treatment of SPM, to produce a purified PSD fraction, results in a PSD fraction that has lost most of the endogenous substrates, lost the TPA-induced enhanced activity assayed in the absence of Ca2+, and lost the inhibitory effect of low Ca2+ concentration.  相似文献   

15.
Suspensions of aspirin-treated, 32P-prelabelled, washed platelets containing ADP scavengers in the buffer were activated with either phorbol 12,13-dibutyrate (PdBu) or the Ca2+ ionophore A23187. High concentrations of PdBu (greater than or equal to 50 nM) induced platelet aggregation and the protein kinase C (PKC)-dependent phosphorylation of proteins with molecular masses of 20 (myosin light chain), 38 and 47 kDa. No increase in cytosolic Ca2+ was observed. Preincubation of platelets with prostacyclin (PGI2) stimulated the phosphorylation of a 50 kDa protein [EC50 (concn. giving half-maximal effect) 0.6 ng of PGI2/ml] and completely abolished platelet aggregation [ID50 (concn. giving 50% inhibition) 0.5 ng of PGI2/ml] induced by PdBu, but had no effect on phosphorylation of the 20, 38 and 47 kDa proteins elicited by PdBu. The Ca2+ ionophore A23187 induced shape change, aggregation, mobilization of Ca2+, rapid phosphorylation of the 20 and 47 kDa proteins and the formation of phosphatidic acid. Preincubation of platelets with PGI2 (500 ng/ml) inhibited platelet aggregation, but not shape change, Ca2+ mobilization or the phosphorylation of the 20 and 47 kDa proteins induced by Ca2+ ionophore A23187. The results indicate that PGI2, through activation of cyclic AMP-dependent kinases, inhibits platelet aggregation at steps distal to protein phosphorylation evoked by protein kinase C and Ca2+-dependent protein kinases.  相似文献   

16.
Arachidonic acid (AA) increased, at constant Ca2+, the levels of force and 20-kDa myosin light chain (MLC20) phosphorylation in permeabilized smooth muscle, and slowed relaxation and MLC20 dephosphorylation. The Ca(2+)-sensitizing effect of AA was not inhibited by inhibitors of AA metabolism (indomethacin, nordihydroguaiaretic acid, or propyl gallate), of protein kinase C (pseudopeptide) or by guanosine-5'-O-(beta-thiodiphosphate) and was abolished by oxidation of AA in air. A non-metabolizable AA analog, 5,8,11,14-eicosatetraynoic acid) also had Ca(2+)-sensitizing effects. Extensive treatment with saponin abolished the Ca(2+)-sensitizing effects of phorbol 12,13-dibutyrate and guanosine-5'-O-(gamma-thiotriphosphate), but not that of AA. A purified, oligomeric MLC20 phosphatase isolated from gizzard smooth muscle was dissociated into subunits by AA, and its activity was inhibited toward heavy meromyosin but not phosphorylase. We conclude that AA may act as a messenger-promoting protein phosphorylation through direct inhibition of the form of protein phosphatase(s) that dephosphorylate MLC20 in vivo.  相似文献   

17.
In Arabidopsis thaliana suspension cells, ABA was previously shown to promote the activation of anion channels and the reduction of proton pumping that both contribute to the plasma membrane depolarization. These two ABA responses were shown to induce two successive [Ca(2+)](cyt) spikes. As reactive oxygen species (ROS) have emerged as components of ABA signaling pathways especially by promoting [Ca(2+)](cyt) variations, we studied whether ROS were involved in the regulation of anion channels and proton pumps activities. Here we demonstrated that ABA induced ROS production which triggered the second of the two [Ca(2+)](cyt) increases observed in response to ABA. Blocking ROS generation using diphenyleneiodonium (DPI) impaired the proton pumping reduction, the anion channel activation and the RD29A gene expression in response to ABA. Furthermore, H(2)O(2) was shown to activate anion channels and to inhibit plasma membrane proton pumping, as did ABA. However, ROS partially mimicked ABA's effects since H(2)O(2) treatment elicited anion channel activation but not the subsequent expression of the RD29A gene as did ABA. This suggests that expression of the RD29A gene in response to ABA results from the activation of multiple concomitant signaling pathways: blocking of one of them would impair gene expression whereas stimulating only one would not. We conclude that ROS are a central messenger of ABA in the signaling pathways leading to the plasma membrane depolarization induced by ABA.  相似文献   

18.
Conditions were developed for the long-term stabilization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum, purified Ca2+-ATPase, and purified-delipidated Ca2+-ATPase preparations. The standard storage medium contains 0.1 M KCl, 10 mM K-3-(N-morpholino)propanesulfonate, pH 6.0, 3 mM MgCl2, 20 mM CaCl2, 20% glycerol, 3 mM NaN3, 5 mM dithiothreitol, 25 IU/ml Trasylol, 2 micrograms/ml 1,6-di-tert-butyl-p-cresol, 2 mg/ml protein, and 2-4 mg of detergent/mg of protein. Preparations stored under these conditions at 2 degrees C in a nitrogen atmosphere retain significant Ca2+-stimulated ATPase activity for periods of 5-6 months or longer when assayed in the presence of asolectin. The same conditions are also conducive for the formation of three-dimensional microcrystals of Ca2+-ATPase. Of the 49 detergents tested for solubilization, optimal crystallization of Ca2+-ATPase was obtained in sarcoplasmic reticulum solubilized with octaethylene glycol dodecyl ether at a detergent/protein weight ratio of 2, and with Brij 36T, Brij 56, and Brij 96 at a detergent/protein ratio of 4. Similar Ca2+-induced crystals of Ca2+-ATPase were obtained with purified or purified delipidated ATPase preparations at lower detergent/protein ratios. The stabilization of the ATPase activity in the presence of detergents is the combined effect of high Ca2+ (20 mM) and a relatively high glycerol concentration (20%). Ethylene glycol, glucose, sucrose, or myoinositol can substitute for glycerol with preservation of ATPase activity for several weeks in the presence of 20 mM Ca2+.Ca2+-induced association between ATPase molecules may be an essential requirement for preservation of enzymatic activity, both in intact sarcoplasmic reticulum and in solubilized preparations.  相似文献   

19.
The aim of the present study was to provide a mechanistic insight into how 20-hydroxyeicosatetraenoic acid (20-HETE) relaxes distal human pulmonary arteries (HPAs). This compound is produced by omega-hydroxylase from free arachidonic acid. Tension measurements, performed on either fresh or 1 day-cultured pulmonary arteries, revealed that the contractile responses to 1 microM 5-hydroxytryptamine were largely relaxed by 20-HETE in a concentration-dependent manner (0.01-10 microM). Iberiotoxin pretreatments (10 nM) partially decreased 20-HETE-induced relaxations. However, 10 microM indomethacin and 3 microM SC-560 pretreatments significantly reduced the relaxations to 20-HETE in these tissues. The relaxing responses induced by the eicosanoid were likely related to a reduced Ca2+ sensitivity of the myofilaments since free Ca2+ concentration ([Ca2+])-response curves performed on beta-escin-permeabilized cultured explants were shifted toward higher [Ca2+]. 20-HETE also abolished the tonic responses induced by phorbol-ester-dibutyrate (a PKC-sensitizing agent). Western blot analyses, using two specific primary antibodies against the PKC-potentiated inhibitory protein CPI-17 and its PKC-dependent phosphorylated isoform pCPI-17, confirmed that 20-HETE interferes with this intracellular process. We also investigated the effect of 20-HETE on the activation of Rho-kinase pathway-induced Ca2+ sensitivity. The data demonstrated that 20-HETE decreased U-46619-induced Ca2+ sensitivity on arteries. Hence, this observation was correlated with an increased staining of p116(Rip), a RhoA-binding protein. Together, these results strongly suggest that the 20-hydroxyarachidonic acid derivative is a potent modulator of tone in HPAs in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号