首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Magnetic circular dichroism spectra are reported for the visible and near ultraviolet spectral regions of liver microsomes from dimethylbenzanthracene-treated rats. The sequential addition of NADH, dithionite, and carbon monoxide enables us to determine contributions to the magnetic circular dichroism by cytochromes b-5 and P-450, which dominate the spectra. The magnetic circular dichroism of the microsomal preparation is compared with that of purified oxidized and reduced cytochrome -b-5 from pig liver and with the camphor-complexed and camphor-free oxidized, reduced, and reduced carbonmonoxy cytochrome P-450-cam from Pseudomonas putida. The magnetic circular dichroism spectra of the membrane bound cytochrome -b-5 are similar to those of the purified protein, indicating that little or no alteration in the environment of the heme occurs during the isolation procedure. The soluble bacterial cytochrome P-450 also appears to be a suitable model for microsomal P-450, although differences in the magnetic circular dichroism intensity are observed for the two enzymes. No effect of dimethylbenzanthracene on the magnetic circular dichroism spectra of induced compared to control rat microsomes could be observed.  相似文献   

2.
Binding to cytochrome c oxidase induces a conformational change in the cytochrome c molecule. This conformational change has been characterized by comparing the binding of native cytochrome c and chemically modified cytochrome c derivatives to bovine cytochrome c oxidase by using absorption, circular dichroism (CD), and magnetic circular dichroism (MCD) spectroscopy. The following derivatives were analyzed: (i) cytochrome c modified at all 19 lysine residues to yield the (N epsilon-acetimidyl)19 cytochrome c, (N epsilon-isopropyl)19 cytochrome c, and (N epsilon,N epsilon-dimethyl)19 cytochrome c; (ii) cytochrome c in which Met65 and Met80 are converted to the methionine sulfoxide; (iii) cytochrome c with a single break in the polypeptide chain at Arg38 or Gly37. The derivatives bind to cytochrome c oxidase at a ratio of one heme c per heme aa3. The association constants are similar to that of native cytochrome c except for (N epsilon-isopropyl)19 and (N epsilon,N epsilon-dimethyl)19 cytochromes c, which bind respectively four times and six times less strongly. The derivatives are good substrates for the cytochrome c oxidase reaction. The spectral changes accompanying the binding of the modified cytochromes c to cytochrome c oxidase are quite different from the spectral changes observed with native cytochrome c. The different optical absorption and MCD changes are explained by a polarity change around the exposed heme edge in the cytochrome c-cytochrome c oxidase complex. The CD changes indicate a conformational rearrangement restricted to the surface area surrounding the exposed heme edge. The rearrangement may involve a movement of the evolutionarily conserved Phe82 out of the vicinity of the heme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Circular dichroism spectra of cytochrome c peroxidase from baker's yeast, those of the reduced enzyme, the carbonyl, cyanide and fluoride derivatives and the hydrogen peroxide compound, Compound I, have been recorded in the wavelength range 200 to 660 nm. All derivatives show negative Soret Cotton effects. The results suggest that the heme group is surrounded by tightly packed amino acid sidechains and that there is a histidine residue bound to the fifth coordination site of the heme iron. The native ferric enzyme is probably pentacoordinated. The circular dichroism spectra of the ligand compounds indicate that the ligands form a nonlinear bond to the heme iron as a result of steric hindrance in the vicinity of the heme. The spectrum of Compound I shows no perturbation of the porphyrin symmetry. The dichroic spectrum of the native enzyme in the far-ultraviolet wave-length region suggests that the secondary structure consists of roughly equal amounts of alpha-helical, beta-structure and unordered structure. After the removal of the heme group no great changes in the secondary structure can be observed.  相似文献   

4.
Magnetic circular dichroism (MCD) spectra were observed for native (Fe(III)) horseradish peroxidase (peroxidase, EC 1.11.1.7), its alkaline form and fluoro- and cyano-derivatives, and also for reduced (Fe(II)) horseradish peroxidase and its carbonmonoxy-- and cyano- derivatives. MCD spectra were obtained for the cyano derivative of Fe(III) horseradish peroxidase, and reduced horseradish peroxidase and its carbonmonoxy- derivative nearly identical with those for the respective myoglobin derivatives. The alkaline form of horseradish peroxidase exhibits a completely different MCD spectrum from that of myoglobin hydroxide. Thus it shows an MCD spectrum which falls into the ferric low-spin heme grouping. Native horseradish peroxidase and its fluoro derivatives show almost identical MCD spectra with those for the respective myoglobin derivatives in the visible region, though some changes were detected in the Soret region. Therefore it is concluded that the MCD spectra on the whole are sensitive to the spin state of the heme iron rather than to the porphyrin structures. The cyanide derivative of reduced horseradish peroxidase exhibited a characteristic MCD spectrum of the low-spin ferrous derivative like oxy-myoglobin.  相似文献   

5.
Porphyrins c have been obtained from Rhodospirillum rubrum cytochrome c2, yeast cytochrome c, and horse heart cytochrome c and compared using proton magnetic resonance and circular dichroism. Identity of the spectra establishes that chemically and stereochemically the three porphyrins c are identical. Since the stereochemistry of the porphyrin alpha-thioether linkage is not affected in the conversion to porphyrin c, the stereochemistry at the porphyrin alpha-thioether bonds among the corresponding cytochromes c also must be the same. Differences between the proton magnetic resonance of R. rubrum cytochrome c2 and horse heart cytochrome c which were rationalized by invoking an opposite stereochemistry at these condensation sites (Smith, G. M., and Kamen, M. D. (1974), Proc. Natl. Acad. Sci. U.S.A. 71, 4303) must therefore be attributed to other factors.  相似文献   

6.
Sharonov IuA 《Biofizika》1999,44(6):1001-1009
Magnetic circular dichroism spectra of fluoride complexes of metmyoglobin, methemoglobin, and horseradish peroxidase in the region of 300-450 nm at temperatures from 300 to 2.1 K were measured and analyzed. The temperature dependence of magnetic circular dichroism in the Soret region was found to be different from that of other paramagnetic forms and from the theoretically predicted dependence. The difference is explained by the superposition of the pi-->pi*-transition of porphyrin with one (peroxidase) or two charge transfer transitions and by substantially different temperature dependences of magnetic circular dichroism for the transitions of the two types. By minimization of differences between the expected and observed temperature dependences of magnetic circular dichroism, the parameters of its temperature dependence for charge transfer transitions and the parameter D of the zero-field splitting of the electronic ground state of the heme were found. The values of D for the fluoride complexes of metmyoglobin (5.8 cm-1) and methemoglobin (6.1 cm-1) agree well with those obtained by other methods. The D value for the fluoride complex of horseradish peroxidase (8.8 cm-1) was determined for the first time.  相似文献   

7.
The kinetics of absorbance and fluorescence changes of cytochrome c as induced by an aqueous solution of the anionic surfactant sodium dodecyl sulfate (SDS) or sodium bis(2-ethylhexyl)sulfosuccinate (AOT) are studied. The results are compared with far-UV circular dichroism (CD) spectra. Both surfactants cause similar alterations in the secondary structure of cytochrome c, while their influence on the heme environment of cytochrome c is different. In the presence of AOT below and above critical micellar concentration a conversion of the low-spin native cytochrome c to a denatured low-spin protein not having methionine ligand takes place. In the presence of SDS micelles conversion of the native protein to a denatured mixed-spin form occurs. The changes in the heme group induced by both surfactants occur independently of the alterations in tertiary structure.  相似文献   

8.
To characterize changes to the heme and the influence of membrane lipids in the reaction of cytochrome c with peroxides, we studied the reaction of cytochrome c with tert-butyl hydroperoxide (tert-BuOOH) by magnetic circular dichroism (MCD) and direct electron paramagnetic resonance (EPR) in the presence and absence of different liposomes. Direct low-temperature (11 degrees K) EPR analysis of the cytochrome c heme iron on exposure to tert-BuOOH shows a gradual (180 s) conversion of the low-spin form to a high-spin Fe(III) species of rhombic symmetry (g = 4.3), with disappearance of a prior peroxyl radical signal (g(o) = 2.014). The conversion to high spin precedes Soret band bleaching, observable by UV/Vis spectroscopy and by magnetic circular dichroism (MCD) at room temperature, that indicates loss of iron coordination by the porphyrin ring. The presence of cardiolipin-containing liposomes delayed formation of the peroxyl radical and conversion to high-spin iron, while dicetylphosphate (DCP) liposomes accelerated these changes. Correspondingly, bleaching of cytochrome c by tert-BuOOH at room temperature was accelerated by several negatively charged liposome preparations, and inhibited by mitochondrial-mimetic phosphatidylcholinephosphatidylethanolaminecardiolipin (PCPECL) liposomes. Concomitant with bleaching, spin-trapping measurements with 5,5-dimethyl-1-pyroline-N-oxide showed that while the relative production of peroxyl, alkoxyl, and alkyl radicals was unaffected by DCP liposomes, PCPECL liposomes decreased the spin-trapped alkoxyl radical signal by 50%. The EPR results show that the primary initial change on exposure of cytochrome c to tert-BuOOH is a change to a high-spin Fe(III) species, and together with MCD measurements show that unsaturated cardiolipin-containing lipid membranes influence the interaction of tert-BuOOH with cytochrome c heme iron, to alter radical production and decrease damage to the cytochrome.  相似文献   

9.
We have examined the effects of eight inhibitors of the bovine-heart mitochondrial Complex III on the catalytic activity of the analogous complex from yeast mitochondria. All eight compounds were inhibitory, with potent inhibition being obtained with antimycin, myxothiazol and UHDBT (5-N-undecyl-6-hydroxy-4,7-dioxobenzothiazole). These three inhibitors, and also funiculosin, have been further studied by characterizing their effects on the visible absorbance, magnetic circular dichroism and EPR spectra of the complex and also on the potentiometric properties of the individual metal centers present in the complex. All four inhibitors had little or no effect on either the absorbance or magnetic circular dichroism spectra. Funiculosin produced a change in the EPR lineshape of the iron-sulfur cluster; EPR spectra recorded at 12 K also revealed complete reduction of cytochrome b-562 by ascorbate. UHDBT also changed the lineshape of the iron-sulfur cluster and this change could be partially reversed by myxothiazol. Neither antimycin nor myxothiazol affected the iron-sulfur cluster and produced only small changes in the EPR absorption envelope of the b cytochromes. Both funiculosin and UHDBT raised the midpoint potential of the iron-sulfur cluster, by about 150 and 70 mV, respectively. Only UHDBT changed the potential of c1, lowering it by about 30 mV. Funiculosin raised the potential of b-562 by about 30 mV, while myxothiazol had no effect; the other two compounds produced only small changes. All four compounds had only small effects on the midpoint potential of b-566. The relative contributions of the two b cytochromes to the magnetic circular dichroism amplitudes could be changed by the addition of inhibitors, even though the absolute magnetic circular dichroism spectra of oxidized and reduced complex were unaffected.  相似文献   

10.
Mutation of conserved Phe-82 of yeast iso-1 cytochrome c to Tyr, Gly, Ser, Leu, or Ile affects binding to and reaction with cytochrome-c oxidase from beef heart. The observed changes of binding and kinetic constants reflect mutation-induced rearrangements in the heme vicinity brought about by the replacement of Phe-82. Such conformational rearrangements are also revealed by altered circular dichroism spectra of the oxidase-bound mutant cytochromes c. Variations in Km for cytochrome c oxidation do not parallel variations in Kd, the dissociation constant for binding of cytochrome c to the oxidase. This observation does not support an enzymatic mechanism in which the rate of cytochrome c oxidation is governed by product dissociation.  相似文献   

11.
Extensive spectroscopic investigations of chloroperoxidase and cytochrome P-450 have consistently revealed close similarities between these two functionally distinct enzymes. Although the CO-bound ferrous states were the first to display such resemblance, additional comparisons have focused on the native ferric and ferrous and the ligand-bound ferric derivatives of the enzymes. In order to test the extent to which the spectral properties of the two enzymes match each other, we have prepared the NO, alkyl isocyanide, and O2 adducts of ferrous chloroperoxidase, the latter two for the first time. As expected, the NO adducts of the two proteins have similar UV-visible absorption and magnetic circular dichroism spectra; the same behavior is observed for the alkyl isocyanide complexes. Unexpectedly, the dioxygen adduct of ferrous chloroperoxidase (i.e. Compound III), generated in cryogenic solvents at -30 degrees C by bubbling with O2, is spectrally distinct from oxy-P-450-CAM. Identification of this derivative as oxygenated chloroperoxidase is based on the following criteria: It is EPR-silent at 77 K. The bound O2 is dissociable as judged by the uniform conversion to the CO-bound form. Oxy-chloroperoxidase autoxidizes to form the native ferric enzyme without detectable intermediates at a rate comparable to that determined for oxy-P-450-CAM. Oxy-chloroperoxidase exhibits optical absorption (lambda nm (epsilon mM) = 354 (41), 430 (94), 554 (16.5), 587 (12.5)) and magnetic circular dichroism spectra that are clearly distinct from those of histidine-ligated heme proteins such as oxy-myoglobin or oxy-horseradish peroxidase. Surprisingly, several of its spectral properties, namely the red-shifted Soret peak and discrete alpha peak, are also unlike those of oxy-P-450-CAM. Since considerable evidence has accumulated supporting the ligation of an endogenous thiolate to the heme iron of chloroperoxidase, as has been established for the P-450 enzyme, the observed dissimilarities suggest that the electronic properties of the two dioxygen adducts are quite sensitive to differences in their active site heme environment. This, in turn may be related to the functional differences between the two enzymes.  相似文献   

12.
Horse heart cytochrome c was progressively maleylated, and fractions containing increasing numbers of modified lysines were obtained. The 695 nm band was present in derivatives containing up to 14 maleylated residues. Circular dichroic spectra showed minor changes beginning with 8 substituted lysines; in derivatives with 14 or more maleylated lysines, circular dichroism indicated total disruption of the native conformation. The ionic strength dependence of the measured oxidation reduction potentials and second order rate constants of reduction with ascorbate varied as expected from application of Debye-Huckel theory to the differently charged derivatives. The thermodynamic oxidation-reduction potentials decreased with the increase in the number of negatively charged groups, in a manner similar to that observed for simple iron complexes.  相似文献   

13.
A detailed study of the effect of temperature on the m.c.d. (magnetic circular dichroism) spectra of cytochrome c oxidase and some of its derivatives was undertaken to characterize the spin states of haem a and a(3). The fully reduced enzyme contains haem a(3) (2+) in its high-spin form and haem a(2+) in the low-spin state. This conclusion is reached by comparing the spectrum with that of the mixed-valence CO derivatives and its photolysis product. The cyanide derivative of the fully reduced enzyme contains both haem a and a(3) in the low-spin ferrous form. The m.c.d. spectra of the fully oxidized derivatives are consistent with the presence of one low-spin ferric haem group, assigned to a, which remains unaltered in the presence of ligands. Haem a(3) is high spin in the resting enzyme and the fluoride derivatives, and low spin in the cyanide form. The partially reduced formate and cyanide derivatives have temperature-dependent m.c.d. spectra due to the presence of high- and low-spin haem a(3) (3+) respectively. Haem a is low-spin ferrous in both. A comparison of the magnitude of the temperature-dependence of haem a(3) (3+) in the fully oxidized and partially reduced forms shows a marked difference which is tentatively ascribed to the presence of anti-ferromagnetic coupling in the fully oxidized form of the enzyme, and to its absence from the partially reduced derivatives, owing to the reduction of both Cu(2+) ions.  相似文献   

14.
A series of ferric and ferrous derivatives of wild-type ascorbate peroxidase (APX) and of an engineered K+-site mutant of APX that has had its potassium cation binding site removed have been examined by electronic absorption and magnetic circular dichroism (MCD) spectroscopy at 4??°C. Wild-type ferric APX has spectroscopic properties that are very similar to those of ferric cytochrome c peroxidase (CCP) and likely exists primarily as a five-coordinate high-spin heme ligated on the proximal side by a histidine at pH 7. There is also evidence for minority contributions from six-coordinate high- and low-spin species (histidine-water, histidine-hydroxide, and bis-histidine). The K+-site mutant of APX varies considerably in the electronic absorption and MCD spectra in both the ferric and ferrous states when compared with spectra of the wild-type APX. The electronic absorption and MCD spectra of the engineered K+-site APX mutant are essentially identical to those of cytochrome b 5, a known bis-imidazole (histidine) ligated heme system. It therefore appears that the K+-site mutant of APX has undergone a conformational change to yield a bis-histidine coordination structure in both the ferric and ferrous oxidation states at neutral pH. This conformational change is the result of mutagenesis of the protein to remove the K+-binding site which is located ~8?Å from the peroxide binding pocket. Thus, mutations of protein residues on the proximal side of the heme cause changes in iron ligation on the distal side.  相似文献   

15.
The magnetic circular dichroism (MCD) properties of numerous oxidation and ligation state derivatives of myoglobin and horseradish peroxidase reconstituted with an iron octa-alkylporphyrin (mesoheme IX) have been investigated in order to establish the utility of such porphyrins as models for protoporphyrin IX-containing systems. The MCD spectra of the mesoheme-reconstituted proteins are blue-shifted (4-12 nm) and are somewhat more intense (1.5-2.5 fold) when compared to the spectra of analogous derivatives of native myoglobin and horseradish peroxidase. However, the spectral band patterns of the mesoheme-reconstituted proteins closely resemble those of the native proteins in essentially all cases. These data demonstrate that octa-alkylporphyrins can be productively used as models for protoporphyrin IX in studies of heme proteins with MCD spectroscopy.  相似文献   

16.
The visible and near infrared magnetic circular dichroism (MCD) spectra of equilibrium high-spin ferrous derivatives of myoglobin, hemoglobin, horseradish peroxidase and mitochondrial cytochrome c oxidase at 15 K are compared with those of the corresponding proteins in nonequilibrium conformations produced by low-temperature photodissociation of CO-complexes of these proteins as well as of O2-complexes of myoglobin and hemoglobin. Over all the spectral region (450-800 nm) the intensities of MCD bands of hemoproteins studied in equilibrium conformation are shown to be strongly temperature-dependent, including a negative band at ca. 630 nm and positive bands at ca. 690 nm and at ca. 760 nm. In contrast to the absorption spectra, the low-temperature MCD spectra of high-spin ferrous hemoproteins differ significantly, reflecting the peculiarities in the heme iron coordination sphere which are created by a protein conformation. The MCD spectra reveal clearly the structural changes in the heme environment which occur on ligand binding. On the basis of assignment of d leads to d and charge-transfer transitions in the near infrared region the correlation is suggested between the wavelength position of the MCD band at approx. 690 nm and the value of iron out-of-plane displacement as well as between the location of the band at approx. 760 nm and the Fe-N epsilon (proximal histidine) bond strength (length) in equilibrium and nonequilibrium conformations of the hemoproteins studied. The high sensitivity of low-temperature MCD spectra to geometry at heme iron is discussed.  相似文献   

17.
Compartmentation of ATP within renal proximal tubular cells   总被引:2,自引:0,他引:2  
Temperature-dependent spin changes of the heme iron atom on cytochrome P-450scc were studied by optical absorption and circular dichroism measurements. The optical absorption and circular dichroism spectra of cholesterol-free cytochrome P-450scc did not change between 10 and 26 degrees C. In contrast, the absorbance at 390 nm and the ellipticity at 330 nm of cholesterol-bound cytochrome P-450scc decreased upon temperature elevation, and the absorbance at 424 nm correspondingly increased. These spectral changes were reversible in respect of temperature. The far-ultraviolet circular dichroism spectra of both cholesterol-bound and -free cytochrome P-450scc were not affected by temperature. In addition, bound cholesterol molecule is not released from the cytochrome molecule by increasing temperature. From these results, we propose that temperature modulates specific interactions between the heme protein and bound cholesterol rather than the gross secondary structural changes of the protein.  相似文献   

18.
C A Sprecher  W C Johnson 《Biopolymers》1977,16(10):2243-2264
Circular dichroism spectra of the nucleic acid monomers have been measured in aqueous solution and extended into the vacuum ultraviolet region to about 166 nm. Measurements were made on ribo and deoxyribo derivatives of adenine, guanine, hypoxanthine, cytosine, thymine, and uracil derivatives both with and without the 5′-phosphate (with the exception of ribosyl thymine 5′-phosphate). Absorption spectra of the deoxyribonucleotides measured to about 175 nm are also presented. The results demonstrate that both the circular dichroism and absorption spectra observed below 200 nm are no more complicated than the spectra normally recorded above 200 nm. In most cases, the circular dichroism spectra of the various derivatives of a given base are similar, indicating that the conformations are similar. On the other hand, the differences among the circular dichroism spectra of the various derivatives of a given base are sufficient to identify a particular derivative. The average circular dichroism for the deoxyribonucleotides is compared with the circular dichroism of native E. coli DNA. The comparison reveals that the circular dichroism of DNA below 200 nm is due principally to the interaction between the bases rather than the intrinsic circular dichroism of the monomers. The monomer transitions are discussed in relationship to the absorption and circular dichroism spectra presented.  相似文献   

19.
The vacuum ultraviolet circular dichroism (VUVCD) spectra of 15 globular proteins (myoglobin, hemoglobin, human serum albumin, cytochrome c, peroxidase, alpha-lactalbumin, lysozyme, ovalbumin, ribonuclease A, beta-lactoglobulin, pepsin, trypsinogen, alpha-chymotrypsinogen, soybean trypsin inhibitor, and concanavalin A) were measured in aqueous solutions at 25 degrees C in the wavelength region from 260 to 160 nm under a high vacuum, using a synchrotron-radiation VUVCD spectrophotometer. The VUVCD spectra below 190 nm revealed some characteristic bands corresponding to different secondary structures. The contents of alpha-helices, beta-strands, turns, and unordered structures were estimated using the SELCON3 program with VUVCD spectra data on the 15 proteins. Prediction of the secondary-structure contents was greatly improved by extending the circular dichroism spectra to 165 nm. The numbers of alpha-helix and beta-strand segments calculated from the distorted alpha-helix and beta-strand contents did not differ greatly from those obtained from X-ray crystal structures. These results demonstrate that synchrotron-radiation VUVCD spectroscopy is a powerful tool for analyzing the secondary structures of proteins.  相似文献   

20.
The heme iron coordination of unfolded ferric and ferrous cytochrome c in the presence of 7-9 M urea at different pH values has been probed by several spectroscopic techniques including magnetic and natural circular dichroism (CD), electrochemistry, UV-visible (UV-vis) absorption and resonance Raman (RR). In 7-9 M urea at neutral pH, ferric cytochrome c is found to be predominantly a low spin bis-His-ligated heme center. In acidic 9 M urea solutions the UV-vis and near-infrared (NIR) magnetic circular dichroism (MCD) measurements have for the first time revealed the formation of a high spin His/H(2)O complex. The pK(a) for the neutral to acidic conversion is 5.2. In 9 M urea, ferrous cytochrome c is shown to retain its native ligation structure at pH 7. Formation of a five-coordinate high spin complex in equilibrium with the native form of ferrous cytochrome c takes place below the pK(a) 4.8. The formal redox potential of the His/H(2)O complex of cytochrome c in 9 M urea at pH 3 was estimated to be -0.13 V, ca. 100 mV more positive than E degrees ' estimated for the bis-His complex of cytochrome c in urea solution at pH 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号