首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A new protein (EnPo 1 antigen) abundant on endothelial cells and glomerular podocytes has been characterized by means of the mouse monoclonal antibody EnPo 1. Following electrophoretical separation of rabbit kidney homogenates EnPo 1 recognized a protein with a molecular weight of 110 kDa and an isoelectric point of 5.9 in Western blots. Using immunohistological techniques, the EnPo 1 antigen has been localized in high concentrations on glomerular podocytes of different developmental stages. Furthermore, the EnPo 1 antigen was expressed on endothelial cells of all adult rabbit organs tested so far. Detailed analysis of neonatal rabbit kidney revealed the abundance of EnPo 1 antigen on both differentiated vessels as well as on immature endothelial cells and endothelium of the microvasculature. Thus, for the first time a marker for in situ investigations of angiogenic processes within the mammalian kidney is available. Analysis of kidney cryosections by confocal laser scan microscopy revealed a direct connection between mature and differentiating vessels in the outer kidney cortex. Furthermore, two differentially organized cell populations discriminated by their EnPo 1 binding pattern were localized in the embryonic renal cortex. Morphologically, these cells were not distinguishable from other mesenchymal cells.  相似文献   

2.
Direct cell contact influences bone marrow mesenchymal stem cell fate   总被引:32,自引:0,他引:32  
Adult bone marrow-derived mesenchymal stem cells (MSC) can differentiate into various cell types of mesenchymal origin, but mechanisms regulating such cellular changes are unclear. We have conducted co-culture experiments to examine whether mesenchymal stem cell differentiation is influenced by indirect or direct contact with differentiated cells. Cultured adult mesenchymal stem cells showed some characteristics of synthetic state vascular smooth muscle cells (SMC). When co-cultured with vascular endothelial cells (EC) without cell contact, they exhibited abundant well-organised smooth muscle alpha-actin (alpha-actin) filaments. Direct co-culture with endothelial cells resulted in increased smooth muscle alpha-actin mRNA and protein, yet also comprehensive disruption of smooth muscle alpha-actin filament organisation. In order to assess whether these cell contact effects on mesenchymal stem cells were cell type specific, we also analysed direct co-cultures of mesenchymal stem cells with dermal fibroblasts. However, these experiments were characterised by the appearance of abundant spindle-shaped myofibroblast-like cells containing organised smooth muscle alpha-actin filaments. Thus, direct contact with distinct differentiated cells may be a critical determinant of mesenchymal stem cell fate in blood vessels and other connective tissues.  相似文献   

3.
Pericytes have been suggested to play a role in regulation of vessel stability; one mechanism for this stabilization may be via pericyte-derived vascular endothelial growth factor (VEGF). To test the hypothesis that differentiation of mesenchymal cells to pericytes/smooth muscle cells (SMC) is accompanied by VEGF expression, we used endothelial cell (EC) and mesenchymal cell cocultures to model cell-cell interactions that occur during vessel development. Coculture of EC and 10T1/2 cells, multipotent mesenchymal cells, led to induction of VEGF expression by 10T1/2 cells. Increased VEGF expression was dependent on contact between EC-10T1/2 and was mediated by transforming growth factorbeta (TGFbeta). A majority of VEGF produced in coculture was cell- and/or matrix-associated. Treatment of cells with high salt, protamine, heparin, or suramin released significant VEGF, suggesting that heparan sulfate proteoglycan might be sequestering some of the VEGF. Inhibition of VEGF in cocultures led to a 75% increase in EC apoptosis, indicating that EC survival in cocultures is dependent on 10T1/2-derived VEGF. VEGF gene expression in developing retinal vasculature was observed in pericytes contacting newly formed microvessels. Our observations indicate that differentiated pericytes produce VEGF that may act in a juxtacrine/paracrine manner as a survival and/or stabilizing factor for EC in microvessels.  相似文献   

4.
During kidney morphogenesis, the formation of nephrons begins when mesenchymal nephron progenitor cells aggregate and transform into epithelial vesicles that elongate and assume an S-shape. Cells in different regions of the S-shaped body subsequently differentiate into the morphologically and functionally distinct segments of the mature nephron. Here, we have used an allelic series of mutations to determine the role of the secreted signaling molecule FGF8 in nephrogenesis. In the absence of FGF8 signaling, nephron formation is initiated, but the nascent nephrons do not express Wnt4 or Lim1, and nephrogenesis does not progress to the S-shaped body stage. Furthermore, the nephron progenitor cells that reside in the peripheral zone, the outermost region of the developing kidney, are progressively lost. When FGF8 signaling is severely reduced rather than eliminated, mesenchymal cells differentiate into S-shaped bodies. However, the cells within these structures that normally differentiate into the tubular segments of the mature nephron undergo apoptosis, resulting in the formation of kidneys with severely truncated nephrons consisting of renal corpuscles connected to collecting ducts by an abnormally short tubular segment. Thus, unlike other FGF family members, which regulate growth and branching morphogenesis of the collecting duct system, Fgf8 encodes a factor essential for gene regulation and cell survival at distinct steps in nephrogenesis.  相似文献   

5.
The development of vessel-like structures in vitro to mimic as well as to realize the possibility of tissue-engineered small vascular networks presents a major challenge to cell biologists and biotechnologists. We aimed to establish a three-dimensional (3-D) culture system with an endothelial network that does not require artificial substrates or ECM compounds. By using human skin fibroblasts and endothelial cells (ECs) from the human umbilical vein (HUVECs) in diverse spheroid coculture strategies, we verified that fibroblast support and modulate EC migration, viability, and network formation in a 3-D tissue-like stromal environment. In mixed spheroid cultures consisting of human ECs and fibroblasts, a complex 3-D network with EC tubular structures, lumen formation, pinocytotic activity, and tight junction complexes has been identified on the basis of immunohistochemical and transmission electron microscopic imaging. Tubular networks with extensions up to 400 µm were achieved. When EC suspensions were used, EC migration and network formation were critically affected by the status of the fibroblast. However, the absence of EC migration into the center of 14-day, but not 3-day, precultured fibroblast spheroids could not be attributed to loss of F viability. In parallel, it was also confirmed that migrated ECs that entered cluster-like formations became apoptotic, whereas the majority of those forming vessel-like structures remained viable for >8 days. Our protocols allow us to study the nature of tubule formation in a manner more closely related to the in vivo situation as well as to understand the basis for the integration of capillary networks in tissue grafts and develop methods of quantifying the amount of angiogenesis in spheroids using fibroblast and other cells isolated from the same patient, along with ECs. endothelium; angiogenesis; human umbilical vein endothelial cell; multicellular spheroid; coculture; tubular structures  相似文献   

6.
Prolyl 4-hydroxylase plays a central role in the synthesis of all collagens. We have previously reported that the recently identified Type II isoenzyme is its main form in chondrocytes and possibly in capillary endothelial cells, while Type I is the main form in many other cell types. We report here that the Type II isoenzyme is clearly the main form in capillary endothelial cells and also in cultured umbilical vein endothelial cells, whereas no Type I isoenzyme could be detected in these cells by immunostaining or Western blotting. The Type II isoenzyme was also the main form in cells of the developing glomeruli in the fetal kidney and tubular structures of collecting duct caliber in both fetal and adult kidney, in occasional sinusoidal structures and epithelia of the bile ducts in the liver, and in some cells of the decidual membrane that probably represented invasive cytotrophoblasts in the placenta. Osteoblasts in a fetal calvaria, i.e., a bone developing by intramembranous ossification, stained strongly for both types of isoenzyme. The Type I isoenzyme was the main form in undifferentiated interstitial mesenchymal cells of the developing kidney, for example, and in fibroblasts and fibroblastic cells in many tissues. Skeletal myocytes and smooth muscle cells appeared to have the Type I isoenzyme as their only prolyl 4-hydroxylase form. Hepatocytes expressed small amounts of the Type I enzyme and very little if any Type II, the Type I expression being increased in malignant hepatocytes and cultured hepatoblastoma cells. The data suggest that the Type I isoenzyme is expressed especially by cells of mesenchymal origin and in developing and malignant tissues, whereas the Type II isoenzyme is expressed, in addition to chondrocytes and osteoblasts, by more differentiated cells, such as endothelial cells and cells of epithelial structures. (J Histochem Cytochem 49:1143-1153, 2001)  相似文献   

7.
1003 is a multipotential embryonal carcinoma (EC) clonal cell line which can be induced to follow different developmental pathways by altering the composition of the culture medium. When grown in serum-containing medium the great majority of 1003 cells remain undifferentiated; they express the ECMA 7 cell-surface embryonic antigen and very low amounts of vimentin. In serum-free medium, most 1003 cells differentiate into neuroepithelial cells. The majority of these cells are still labelled with ECMA 7 antibodies. They contain higher amounts of vimentin than EC cells, but no neurofilament proteins. Neuroepithelial cells then differentiate into neurons through a stage of preneurons containing both vimentin and the 70-K neurofilament protein. Fully differentiated neurons contain 70-K neurofilament protein but no vimentin. The 200-K neurofilament protein is detected later in the neurons. Mesenchymal cells (induced by re-adding serum) express high amounts of vimentin organized in networks. Preneurons , neurons, and mesenchymal cells do not express ECMA 7 antigen.  相似文献   

8.
The monoclonal antibody ECCD-1 recognizes the Ca2+-dependent cell-cell adhesion molecule of teratocarcinoma stem cells (EC cells) and of a certain class of differentiated epithelial cells. It actively disrupts cell-cell adhesion when added to monolayer cultures of these cells, but does not affect adhesion of mesenchymal or neuronal cells. When ECCD-1 was added to clonal cultures of EC cells (PCC3/A/1 line), all the cells were initially sensitive to the antibody, but after 5 to 6 days of culture a fraction of the cells in certain colonies no longer reacted with the antibody although they expressed alkaline phosphatase activity, which is a marker of undifferentiated EC cells. We isolated these ECCD-1-resistant cells by recloning and examined their differentiation by clonal culture. Most of them differentiated into fibroblastic cells and a few into skeletal muscle-like cells, but none differentiated into any other cell types. From these observations, we suppose that the ECCD-1-resistant population of EC cells are committed to mesenchymal differentiation. The use of ECCD-1, thus, permitted us to detect EC cells at the initial stage of a particular differentiation pathway.  相似文献   

9.
The MDR1 gene product, P-glycoprotein (P-gp), was shown to confer multidrug resistance to cancer cells, but its overexpression is also suggested to be involved in pharmacoresistance of epilepsy by acting as an energy-dependent drug-efflux pump in the blood-brain barrier (BBB). In normal brain tissue, P-gp is almost exclusively expressed by capillary endothelial cells (EC) of the BBB, whereas little or no expression is detected in other cell types. Increased P-gp expression was observed after seizures, but localization of this increase, i.e., within brain capillary EC or within parenchymal or perivascular astrocytes, which contribute to the BBB function, is controversial. To test whether these antithetic data arise from unusual properties of the antigen itself, we compared different immunohistochemical techniques and monoclonal or polyclonal antibodies to P-gp in normal rat brain and rat brain after kainate-induced seizures. Using acetone-fixed cryostat sections of snap-frozen tissue, strong P-gp labeling was detected in EC and, after seizures, in hippocampal neurons, but not in astrocytes. In contrast, EC and neuronal P-gp immunolabeling were not seen in paraformaldehyde-fixed sections, whereas both perivascular and parenchymal astrocytes exhibited strong P-gp labeling after seizures. The lack of P-gp labeling in EC by paraformaldehyde fixation, was reversed by treatment of the sections with acetate/ethanol. These experiments demonstrate that various fixation conditions have a striking effect on the immunohistochemical localization of P-gp in rat brain and detection of its increased expression by seizures. When data obtained from different immunohistochemical techniques are taken together, seizures seem to induce overexpression of P-gp in four different cell types, i.e., EC, perivascular astrocytes, parenchymal astrocytes, and neurons.  相似文献   

10.
The extent to which bone marrow (BM) contributes to physiological cell renewal is still controversial. Using the marker human placental alkaline phosphatase (ALPP) which can readily be detected in paraffin and plastic sections by histochemistry or immunohistochemistry, and in ultrathin sections by electron microscopy after pre-embedding staining, we examined the role of endogenous BM in physiological cell renewal by analysing tissues from lethally irradiated wild-type inbred Fischer 344 (F344) rats transplanted (BMT) with unfractionated BM from ALPP-transgenic F344 rats ubiquitously expressing the marker. Histochemical, immunohistochemical and immunoelectron microscopic analysis showed that the proportion of ALPP(+) capillary endothelial cells (EC) profoundly increased from 1 until 6 months after BMT in all organs except brain and adrenal medulla. In contrast, pericytes and EC in large blood vessels were ALPP(-) . Epithelial cells in kidney, liver, pancreas, intestine and brain were recipient-derived at all time-points. Similarly, osteoblasts, chondrocytes, striated muscle and smooth muscle cells were exclusively of recipient origin. The lack of mesenchymal BM-derived cells in peripheral tissues prompted us to examine whether BMT resulted in engraftment of mesenchymal precursors. Four weeks after BMT, all haematopoietic BM cells were of donor origin by flow cytometric analysis, whereas isolation of BM mesenchymal stem cells (MSC) failed to show engraftment of donor MSC. In conclusion, our data show that BM is an important source of physiological renewal of EC in adult rats, but raise doubt whether reconstituted irradiated rats are an apt model for BM-derived regeneration of mesenchymal cells in peripheral tissues.  相似文献   

11.
Teratocarcinomas are germ cell tumors in which pluripotent stem cells, embryonal carcinoma (EC) cells, undergo differentiation along the pathways resembling those occurring during early embryogenesis. Human EC cell lines established in vitro provide a model for studying embryonic cellular differentiation in a way that is pertinent to early human development. The predominant glycolipid antigens expressed by EC cells of both humans and mice have globoseries core structures; in humans they are terminally modified to yield the monoclonal antibody-defined stage-specific embryonic antigens SSEA-3 and SSEA-4, and also globo-ABH antigens; in the mouse terminal modification yields the Forssman antigen rather than SSEA-3 and -4. These observations focus attention on the possible role of the P-blood group system, which regulates synthesis of globoseries oligosaccharides, in the behavior of cells in the early embryo and in teratocarcinomas. Marked changes in the core structures of the cell surface glycolipids occur as the EC cells differentiate; thus globoseries structures rapidly diminish and are replaced by lactoseries and then by ganglioseries glycolipids. During differentiation of the NTERA-2 line of pluripotent human EC cells into neurons and other cell types, the various subsets of differentiated cells that arise are distinguished by their differential expression of new glycolipid antigens, particularly ganglioside GT3 (recognized by antibody A2B5), and ganglioside 9-0-acetyl GD3 (recognized by antibody ME311). Neurons are found among the A2B5+/ME311- cells.  相似文献   

12.
Fibroblasts with smooth muscle differentiation are frequently derived from human breast tissue. Immunofluorescence cytochemistry of a fibroblast-associated antigen recognized by a monoclonal antibody (MAb), 1B10, was analyzed with a view to discriminating smooth muscle differentiated fibroblasts from vascular smooth muscle cells. The antigen was detected on the cell surface and in cathepsin D-positive and acridine orange-accumulating vesicular compartments of fibroblasts. Ultrastructurally, the antigen was revealed in coated pits and in endosomal and lysosomal structures. 1B10 recognized three major brands migrating at apparent Mr of 38,000, 45,000, and 80,000, in addition to many minor bands between Mr 45,000 and 97,000, including Mr 52,000. The Mr 45,000 and 38,000 were associated with the cell membrane and Mr 52,000 as well as Mr 38,000 were associated with the lysosomes. The 1B10 immunoreactivity was specific to fibroblasts and smooth muscle differentiated fibroblasts within the context of vascular smooth muscle cells.  相似文献   

13.
The isolation and characterization of variant embryonal carcinoma (EC) cells possessing altered cell-surface structures is described. The lectin peanut agglutinin (PNA), which binds to EC cells but not their differentiated derivatives, was used to select the variants. Clones resistant to the cytotoxic effect of PNA were isolated at a frequency of 4 × 10–5 following mutagenesis. The resistant phenotype was stable in the absence of selection in all eight clones tested. The increased frequency of resistant clones following mutagenesis and the stability of the phenotype suggests a mutational origin. Somatic cell hybrids constructed between wild-type cells and two different PNA-resistant cell lines were sensitive to PNA; this suggests that the resistant phenotype is recessive. Binding assays demonstrated that resistant cells exhibited a twofold to fourfold reduction in the total amount of PNA bound. Together with the recessive behavior of the phenotype, this suggests that resistant cells are deficient for PNA receptors. The PNA-resistant cells also showed reduced binding of monoclonal antibody against stage-specific embryonic antigen 1 (SSEA–1) in indirect cytotoxicity tests. All eight PNA-resistant lines isolated were tumorigenic in syngeneic mice and gave rise to well-differentiated teratocarcinomas. The PNA-resistant cells behaved like their wild-type parents in a cell recognition assay; when incubated in suspension with endodermal cells, they sorted out to form simple embryoid bodies (a core of EC cells surrounded by an endodermal rind). Thus, EC cells can form tumors, differentiate, and recognize differentiated cells in a sorting assay despite a reduction in expression of the embryo-specific cell surface structures (s) that bind PNA and anti-SSEA-1 antibody.  相似文献   

14.
Quaggin SE 《Cell Stem Cell》2008,3(2):123-124
In this issue of Cell Stem Cell, McMahon and coworkers (Kobayashi et al., 2008) characterize a subset of progenitor cells in the developing kidney. six2-expressing mesenchymal cells exhibit hallmark stem cell traits, in that they appear to self-renew and are clonally multipotent for a range of nephron epithelial cell types.  相似文献   

15.
Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during hantavirus infection and could have profound implications for treatment of hantavirus infections.  相似文献   

16.
Endothelial and mesothelial cells are mesodermally derived simple squamous epithelial cells. A controversy concerning the ontogenetic origin of neoplasms derived from these cell types, commonly cited in the literature, is whether Kaposi's sarcoma is a mesothelioma or an angioma. To assess the similarities and differences between these cell types, pulmonary microvascular endothelial cells (PMVEC) and pericardial mesothelial cells (PMC) were cultured in vitro. PMVEC and PMC were found to be difficult to distinguish from one another by histological criteria alone. Both cell types formed contact-inhibited, and 'cobblestone', monolayers typical of simple epithelial cells. PMVEC and PMC demonstrated positive immunoreactivity to Factor VIII-related antigen and angiotensin-converting enzyme (ACE) antigen. They also showed uptake of 1,1'-dioctacecyl-1,3,3,3',3-tetramethyl-indocarbocyanine perchlorate acetylated low density lipoprotein (DiI-Ac-LDL) in 4 h. Both PMVEC and PMC expressed low ACE activities when compared to macrovessel endothelial cells. PMVEC and PMC shared similar isoform profiles for vimentin and actin. Both cell types expressed the simple epithelial keratins, cytokeratins 8 and 19, though PMC contained 50% more cytokeratins than PMVEC. Additionally, PMC contained cytokeratin 18, an intermediate filament protein not detectable in PMVEC. PMC formed 15 times as many epithelial ringlets or "stomata" as PMVEC. PMVEC but not PMC could be induced in vitro to differentiate into branching tube-like structures in response to their culture environment. Reorganization of PMVEC into vessel-like structures was more rapid and complete than PMC when embedded in three-dimensional collagen I lattices, cultured on Matrigel or exposed to a shaped-pulsed electromagnetic field. The angiogenic response of PMVEC to specialized culture conditions in vitro may reflect their phenotypic differentiation state characterized by anastomosing vascular structures in vivo, whereas PMC remain differentiated into monolayer sheet-like structures.  相似文献   

17.
During angiogenesis, endothelial cells (ECs) degrade their surrounding extracellular matrix (ECM) to facilitate invasion. How interactions between ECs and other cells within their microenvironment facilitate this process is only partially understood. We have utilized a tractable 3D co-culture model to investigate the proteolytic mechanisms by which pre-committed or more highly committed mesenchymal cells stimulate capillary formation. On their own, ECs invade their surrounding matrix, but do not form capillaries. However, in the presence of either mesenchymal stem cells (MSCs) or fibroblasts, ECs form polarized, tubular structures that are intimately associated with mesenchymal cells. Further, ECs up-regulate gene expression of several extracellular proteases upon co-culture with either mesenchymal cell type. The administration of both broad spectrum and specific protease inhibitors demonstrated that MSC-stimulated capillary formation relied solely on membrane-type matrix metalloproteinases (MT-MMPs) while fibroblast-mediated sprouting proceeded independent of MMP inhibition unless the plasminogen activator/plasmin axis was inhibited in concert. While other studies have established a role for the ECM itself in dictating proteolysis and matrix degradation during capillary morphogenesis, the present study illustrates that heterotypic cellular interactions within the microenvironment can direct the proteolytic mechanisms required for capillary formation.  相似文献   

18.
Stem cell self-renewal is controlled by concerted actions of niche signals and intrinsic factors in a variety of systems. In the Drosophila ovary, germline stem cells (GSCs) in the niche continuously self-renew and generate differentiated germ cells that interact physically with escort cells (ECs). It has been proposed that escort stem cells (ESCs), which directly contact GSCs, generate differentiated ECs to maintain the EC population. However, it remains unclear whether the differentiation status of germ cells affects EC behavior and how the interaction between ECs and germ cells is regulated. In this study, we have found that ECs can undergo slow cell turnover regardless of their positions, and the lost cells are replenished by their neighboring ECs via self-duplication rather than via stem cells. ECs extend elaborate cellular processes that exhibit extensive interactions with differentiated germ cells. Interestingly, long cellular processes of ECs are absent when GSC progeny fail to differentiate, suggesting that differentiated germ cells are required for the formation or maintenance of EC cellular processes. Disruption of Rho functions leads to the disruption of long EC cellular processes and the accumulation of ill-differentiated single germ cells by increasing BMP signaling activity outside the GSC niche, and also causes gradual EC loss. Therefore, our findings indicate that ECs interact extensively with differentiated germ cells through their elaborate cellular processes and control proper germ cell differentiation. Here, we propose that ECs form a niche that controls GSC lineage differentiation and is maintained by a non-stem cell mechanism.  相似文献   

19.
Morphological studies of developing capillaries and observations of alterations in capillaries associated with pathologic neovascularization indicate that pericytes may act as suppressors of endothelial cell (EC) growth. We have developed systems that enable us to investigate this possibility in vitro. Two models were used: a co-culture system that allowed direct contact between pericytes and ECs and a co-culture system that prevented physical contact but allowed diffusion of soluble factors. For these studies, co-cultures were established between bovine capillary ECs and the following growth-arrested cells (hereafter referred to as modulating cells): pericytes, smooth muscle cells (SMCs), fibroblasts, epithelial cells, and 3T3 cells. The modulating cell type was growth arrested by treatment with mitomycin C before co-culture with ECs. In experiments where cells were co-cultured directly, the effect of co-culture on EC growth was determined by comparing the mean number of cells in the co-cultures to the mean for each cell type (EC and modulating cell) cultured separately. Since pericytes and other modulating cells were growth arrested, any cell number change in co-cultures was due to EC growth. In the co-cultures, pericytes inhibited all EC proliferation throughout the 14-d time course; similar levels of EC inhibition were observed in SMC-EC co-cultures. Co-culture of ECs with fibroblasts, epithelial cells, and 3T3 cells significantly stimulated EC growth over the same time course (30-192% as compared to EC cultured alone). To determine if cell contact was required for inhibition, cells were co-cultured using Millicell chambers (Millipore Corp., Bedford, MA), which separated the cell types by 1-2 mm but allowed the exchange of diffusible materials. There was no inhibition of EC proliferation by pericytes or SMCs in this co-culture system. The influence of the cell ratios on observed inhibition was assessed by co-culturing the cells at EC/pericyte ratios of 1:1, 2:1, 5:1, 10:1, and 20:1. Comparable levels of EC inhibition were observed at ratios from 1:1 to 10:1. When the cells were co-cultured at a ratio of 20 ECs to 1 pericyte, inhibition of EC growth at 3 d was similar to that observed at other ratios. However, at higher ratios, the inhibition diminished so that by the end of the time course the co-cultured ECs were growing at the same rate as the controls. These results suggest that pericytes and SMCs can modulate EC growth by a mechanism that requires contact or proximity. We postulate that similar interactions may operate to modulate vascular growth in vivo.  相似文献   

20.
NTERA-2 cl.D1 human embryonal carcinoma (EC) cells were induced to differentiate by either bromodeoxyuridine (BUdR) or hexamethylene bisacetamide (HMBA), and also by retinoic acid. Following exposure to each of these inducers, the globoseries glycolipid antigens stage-specific embryonic antigens -3 and -4 (SSEA-3 and -4) and the glycoprotein antigen TRA-1-60, all characteristic of the human EC cell surface, underwent a marked reduction in expression within about 7 days. At the same time, the lactoseries glycolipid antigen SSEA-1, and ganglioseries antigens A2B5 (GT3) and ME311 (9-0-acetyl GD3) were induced in BUdR- and retinoic acid-treated cells. However, these antigens did not appear during the first 7-14 days of HMBA-induced differentiation. The observations of cell surface antigen expression were paralleled by analysis of glycolipids isolated from the cells by thin-layer chromatography. This analysis, in which the new monoclonal antibodies VINIS-56 and VIN-2PB-22 were included, also revealed expression of gangliosides GD3 and GD2 in all differentiated cultures, albeit at much lower levels following HMBA exposure than following retinoic acid or BUdR-exposure. Further, disialylparagloboside was detected in retinoic acid and BUdR-induced, but not HMBA-induced, cultures. Taken with morphological observations, the results suggest that HMBA induces differentiation of NTERA-2 cl.D1 EC cells along a pathway distinct from the pathway(s) induced by retinoic acid and BUdR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号