首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
整理燕麦属(Avena L.)细胞遗传学研究文献,总结相关研究进展。燕麦属有7组29种植物,分属5个基因组类型(A、C、AB、AC、ACD)。基于荧光原位杂交技术和种间杂交实验表明,A、C基因组染色体结构差异较大,A基因组二倍体物种具有等臂染色体,C基因组二倍体物种具有不等臂染色体。燕麦属植物D基因组和A基因组间分化程度较小,B基因组有可能是A基因组的变型——A′基因组。普遍观点认为A基因组二倍体物种可能是燕麦属六倍体物种母系亲本,砂燕麦(A.strigosa)为该属多倍体物种A基因组祖先的假说备受争议,有学者认为加那利燕麦(A.canariensis)可能是多倍体物种A或D基因组的供体。燕麦属多倍体物种基因组互换及染色体重排事件,增加燕麦属种间亲缘关系、多倍体物种基因组起源研究的困难。结合基因组学、分子细胞遗传学技术,有望为上述问题提供新证据。  相似文献   

2.
为探讨我国芸薹属蔬菜的起源及遗传多样性,克隆、测序芸薹属不同种的Chs基因序列。A基因组二倍体、A基因组多倍体、B基因组多倍体和C基因组二倍体的Chs基因突变位点数分别为120、172、194和25个,Chs基因多态性表现为:B基因组多倍体A基因组二倍体A基因组多倍体C基因组多倍体。Tajima'D、Fu and Li'D和Fu and Li'F检验表明A基因组二倍体、C基因组二倍体Chs基因是中性进化基因。HKA平衡检验及误配分析表明A基因组多倍体和B基因组多倍体Chs基因进化中存在选择作用。A基因组和B基因组间存在较低的共有差异和较高的共有多态性,C基因组与A、B基因组存在较高的共有差异和较低的共有多态性。系统发育树将芸薹属Chs基因序列分成4个亚支、10个支系。网状分析表明,白菜可能是四倍体A基因组的供体,黑芥可能是四倍体B基因组的供体,甘蓝可能是四倍体C基因组的供体。中国芸薹属蔬菜在Chs基因位点有较高的遗传多态性,不同基因组间分化程度不一样,B基因组分化较大,A和C基因组分化较小。A和B基因组的亲缘关系较A和C基因组以及B和C基因组更为接近。建议根据基因组的不同将中国芸薹蔬菜分成白菜组、芥菜组和甘蓝组,研究结果支持芸薹属进化的禹式三角模型。  相似文献   

3.
悬钩子属植物种类繁多,类群复杂,而且多为多倍体和杂种。该文就近年来国内外有关DNA序列在悬钩子属植物分子系统学研究中的应用现状和进展进行了综述,并对中国悬钩子属植物系统发育研究进行了展望。研究认为:叶绿体DNA序列多应用非编码区,且多与ITS序列联合分析;核基因组中ITS序列应用最为广泛,主要用于研究悬钩子属空心莓组与木莓组的进化关系、栽培品种间亲缘关系及部分杂种和多倍体的起源等;在该属植物中发现了ITS个体内多态性,但未进行ITS假基因检测,其系统学应用价值需重新评价;低拷贝核基因只有GBSSI和LEAFY有相关应用。同时认为,悬钩子属植物系统学研究中应用的DNA序列及研究类群均较少,缺乏对整个悬钩子属全面而系统的研究。指出应进一步选择具有代表性的样本、筛选合适的DNA片段,并结合形态学、孢粉学和细胞学等手段对中国悬钩子属植物系统关系进行深入研究。  相似文献   

4.
适应辐射类群穇属的系统学研究进展   总被引:1,自引:1,他引:0  
综合花序拓扑学、比较形态学、分子系统发育、细胞遗传学等资料,对适应辐射类群穆属(Eleusine Gaertn.)的系统学研究进展进行了述评.穆属系统位置--Eleusiinae亚族成员得到分子系统发育证据的支持.该属具有3种花序类型、7个基因组类型、多倍体均由二倍体杂交起源、C4植物高度适应半湿润-半干旱镶嵌气候等特征.据可靠化石记载和现代地理分布推断,穆属很可能起源于东非,时间是晚中新世,而适应辐射则发生在上新世-中新世间隔.总的来说,分子系统发育、细胞遗传学、古地质、古气候数据的整合研究能够为穆属多倍体起源和谱系多样化历史提供令人信服的证据.  相似文献   

5.
角蟾科Megophryidae是原始无尾两栖类中分化最多的科,分布于亚洲东部、南部及东南部.但角蟾科各类群的分类地位长期以来存在较大争议.本文从形态、染色体、DNA水平方面详细介绍了角蟾科系统学研究的进展;从科的建立、亚科的分类、属的争议、种的争议等各级分类阶元讨论了其研究历史,包括不同阶元的订正、类群的系统发育关系、起源与分化等不同学者的见解;展望了将来的一些研究方向.  相似文献   

6.
植物多倍体研究的回顾与展望   总被引:12,自引:0,他引:12  
多倍化是促进植物进化的重要力量。多倍体主要是通过未减数配子融合,体细胞染色体加倍以及多精受精三种方式起源的。其中,不减数配子是多倍体形成的主要机制。三倍体可能在四倍体的进化中起了重要作用。过去认为多倍体只能是进化的死胡同,现在发现很多多倍体类群都是多元起源的而不是单元起源的。当多倍体形成后,基因组中的重复基因大部分保持原有的功能,也有相当比例的基因发生基因沉默。多倍体通常表现出不存在于二倍体祖先的表型,并且超出了其祖先的分布范围,因为在多倍体中发生了很多基因表达的变化。主要从多倍体的起源、影响多倍体发生的因素及多倍体基因组的进化等方面回顾并展望多倍体的研究。  相似文献   

7.
燕麦具有较高的营养价值和保健功能,是一种可用于均衡营养、科学饮食的健康食品,正逐渐受到人们的青睐和认可。基因组学研究有助于燕麦重要农艺性状的定位和克隆,对开发利用燕麦优质种质资源具有重要意义。本文从以下几个方面对燕麦基因组学研究进展进行综述:(1)燕麦属基因组类型、大小及染色体倍性研究;(2)基于多种分子标记手段构建燕麦基因组遗传图谱进展;(3)二倍体、六倍体燕麦基因组测序进展;(4)基于数量性状基因座定位和全基因组关联性分析手段对燕麦基因组功能基因的注释研究;(5)燕麦群体基因组/泛基因组学研究。同时对燕麦基因组学研究方向进行了探讨,以期为今后燕麦遗传育种提供参考信息。  相似文献   

8.
多倍体生物研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
多倍体是含有3套或3套以上完整染色体组的生物体,在动植物中广泛存在,是物种发生的一种重要方式.近年来的动植物基因组测序结果及相关分子系统学、生物信息学的研究,支持物种在演化过程中经历过全基因组复制的观点.多倍体的稳定性依赖于其形成后发生的基因组快速重组和基因表达调控的变化;多倍体的形成及其二倍体化过程是物种长期演化过程中的重要组成部分.多倍体可通过多种方式形成,其中,通过远缘杂交形成能产生不减数配子的杂交生物体,导致其后代染色体加倍,是快速、高效的形成多倍体的途径之一.可育多倍体的形成不仅促进了物种间的遗传物质交流,丰富了物种多样性,而且为多倍体育种奠定了基础.对多倍体生物的研究不仅具有重要的理论意义,而且有重要的应用价值.动植物多倍体育种在生产上的应用带来了显著的经济效益和社会效益.  相似文献   

9.
中国姬鼠属的系统学研究述评   总被引:13,自引:0,他引:13  
姬鼠属分布在欧亚大陆及其邻近的岛屿上, 种类及数量均较多。但对该属的分类和系统发育关系一直存在争议, 尤其近几年对姬鼠属分子系统学的研究, 产生了一些与形态学、生物地理学等研究不同的结果。文章综述了姬鼠属系统学研究的一些工作, 根据所归纳的初步论点, 试拟定了中国现生种类的系谱; 并对中国姬鼠属系统学的进一步研究, 提出了一些建议。  相似文献   

10.
禺毛茛多倍体复合体及其近缘种系统进化关系复杂,杂交与多倍化现象同时存在。该复合体内高倍性植物的形成及扩散过程仍需进一步研究。首次克隆了毛茛属植物低拷贝核基因颗粒结合型淀粉合成酶 I (GBBSI )基因,并利用其构建禺毛茛多倍体复合体及其近缘种的系统进化树和网状进化关系,进而证明其适合于研究毛茛属植物种下系统发育研究。结果表明:匍枝毛茛与多倍体复合体关系密切,参与了该多倍体复合体的起源和进化;禺毛茛起源于茴茴蒜和卷喙毛茛,扬子毛茛起源于茴茴蒜和匍枝毛茛;在该类群中茴茴蒜是个关键种,它在多倍体复合体中可能起着枢纽基因组的重要作用。  相似文献   

11.
Summary Starch and polyacrylamide gel electrophoresis of seven isozyme systems was investigated as a means of identifying wild and cultivated species of Avena with different ploidy levels. By examining the characteristic isoenzymatic patterns, it was shown that there was considerable variability within the different species. However, it was nevertheless possible to unequivocally identify the species of wild oats and to distinguish between the different species belonging to the same genomic set, thus providing a definitive reference technique for the identification of Avena species in seed-testing laboratories. The relationships between Avena species were inferred from the electrophoresis data. The divergence of the A. maroccanaA. murphyi complex and its contribution to the AACC genomes are emphasized.  相似文献   

12.
The development and application of molecular methods in oats has been relatively slow compared with other crops. Results from the previous analyses have left many questions concerning species evolutionary relationships unanswered, especially regarding the origins of the B and D genomes, which are only known to be present in polyploid oat species. To investigate the species and genome relationships in genus Avena, among 13 diploid (A and C genomes), we used the second intron of the nuclear gene FLORICAULA/LEAFY (FL int2) in seven tetraploid (AB and AC genomes), and five hexaploid (ACD genome) species. The Avena FL int2 is rather long, and high levels of variation in length and sequence composition were found. Evidence for more than one copy of the FL int2 sequence was obtained for both the A and C genome groups, and the degree of divergence of the A genome copies was greater than that observed within the C genome sequences. Phylogenetic analysis of the FL int2 sequences resulted in topologies that contained four major groups; these groups reemphasize the major genomic divergence between the A and C genomes, and the close relationship among the A, B, and D genomes. However, the D genome in hexaploids more likely originated from a C genome diploid rather than the generally believed A genome, and the C genome diploid A. clauda may have played an important role in the origination of both the C and D genome in polyploids.  相似文献   

13.
Summary The genetic control of diploid-like chromosome pairing in Avena is discussed and compared with the diploidizing mechanisms in the hexaploid breadwheat and the hexaploid tall fescue. An examination of the published literature reveals that there is a remarkable similarity in these three regulatory mechanisms (Table 3). It is further concluded that the diploidizing gene system in the polyploid species of Avena is as complex as in wheat. A reappraisal of the published information on Avena and other polyploids, followed by further studies, might yield more information about the functional aspects of the diploidizing mechanisms.  相似文献   

14.
The genus Triticum L. includes the major cereal crop, common or bread wheat (hexaploid Triticum aestivum L.), and other important cultivated species. Here, we conducted a phylogenetic analysis of all known wheat species and the closely related Aegilops species. This analysis was based on chloroplast matK gene comparison along with trnL intron sequences of some species. Polyploid wheat species are successfully divided only into two groups – Emmer (sections Dicoccoides and Triticum) and Timopheevii (section Timopheevii). Results reveal strictly maternal plastid inheritance of synthetic wheat amphiploids included in the study. A concordance of chloroplast origin with the definite nuclear genomes of polyploid species that were inherited at the last hybridization events was found. Our analysis suggests that there were two ancestral representatives of Aegilops speltoides Tausch that participated in the speciation of polyploid wheats with B and G genome in their genome composition. However, G genome species are younger in evolution than ones with B genome. B genome-specific PCR primers were developed for amplification of Acc-1 gene.  相似文献   

15.
Cultivated barley,Hordeum vulgare L., has a single NADH nitrate reductase (NR) gene while diploid wheat,Triticum monococcum, and cultivated hexaploid wheat,Triticum aestivum L., have two NADH NR genes. To determine whether the NADH NR gene was duplicated since the divergence ofTriticum fromHordeum or was deleted from barley, theT. Monococcum NADH NR gene heme-hinge regions were sequenced and compared with the barley NADH NR gene sequence. Sequence identity and phylogenetic analyses showed that one of theT. Monococcum NADH NR genes is more-closely related to the barley NADH NR gene than to the otherT. Monococcum NADH NR gene. The heme-hinge region of all three NR genes appeared to have evolved at a constant rate. These results suggest that the NADH NR gene duplicated before the divergence ofTriticum andHordeum and that a deletion resulted in the loss of one NADH NR gene from cultivated barley.  相似文献   

16.
Using C-banding method and in situ hybridizatiion with the 45S and 5S rRNA gene probes, six hexaploid species of the genus Avena L. with the ACD genome constitution were studied to reveal evolutionary karyotypic changes. Similarity in the C-banding patterns of chromosomal patterns and in the patterns of distribution of the rRNA gene families suggests a common origin of all hexaploid species. Avena fatua is characterized by the broadest intraspecific variation of the karyotype; this species displays chromosomal variants typical of other hexaploid species of Avena. For instance, a translocation with the involvement of chromosome 5C marking A. occidentalis was discovered in many A. fatua accessions, whereas in other representatives of this species this chromosome is highly similar to the chromosome of A. sterilis. Only A. fatua and A. sativa show slight changes in the morphology and in the C-banding pattern of patterns of chromosome 2C. These results can be explained either by a hybrid origin of A. fatua or by the fact that this species is an intermediate evolutionary form of hexaploid oats. The 7C–17 translocation was identified in all studied accessions of wild and weedy species (A. sterilis, A. fatua, A. ludoviciana, and A. occidentalis) and in most A. sativa cultivars, but it was absent in A. byzantina and in two accessions of A. sativa. The origin and evolution of the Avena hexaploid species are discussed in context of the results.  相似文献   

17.
We investigated the evolutionary dynamics of duplicated copies of the granule-bound starch synthase I gene (GBSSI or Waxy) within polyploid Spartina species. Molecular cloning, sequencing, and phylogenetic analyses revealed incongruences between the expected species phylogeny and the inferred gene trees. Some genes within species were more divergent than expected from ploidy level alone, suggesting the existence of paralogous sets of Waxy loci in Spartina. Phylogenetic analyses indicate that this paralogy originated from a duplication that occurred prior to the divergence of Spartina from other Chloridoideae. Gene tree topologies revealed three divergent homoeologous sequences in the hexaploid S. alterniflora that are consistent with the proposal of an allopolyploid origin of the hexaploid clade. Waxy sequences differ in insertion–deletion events in introns, which may be used to diagnose gene copies. Both paralogous and homoeologous coding regions appear to evolving under selective constraints.  相似文献   

18.
Summary Heterochromatin differentiation, including band size, sites, and Giemsa staining intensity, was analyzed by the HKG (HCl-KOH-Giemsa) banding technique in the A genomes of 21 diploid (Triticum urartu, T. boeoticum and T. monococcum), 13 tetraploid (T. araraticum, T. timopheevi, T. dicoccoides and T. turgidum var. Dicoccon, Polonicum), and 7 cultivars of hexaploid (T. aestivum) wheats from different germplasm collections. Among wild and cultivated diploid taxa, heterochromatin was located mainly at centromeric regions, but the size and staining intensity were distinct and some accessions' genomes had interstitial and telomeric bands. Among wild and cultivated polyploid wheats, heterochromatin exhibited bifurcated differentiation. Heterochromatinization occurred in chromosomes 4At and 7At and in smaller amounts in 2At, 3At, 5At, and 6At within the genomes of the tetraploid Timopheevi group (T. araraticum, and T. timopheevi) and vice versa within those of the Emmer group (T. dicoccoides and T. turgidum). Similar divergence patterns occurred among chromosome 4Aa and 7Aa of cultivars of hexaploid wheat (T. aestivum). These dynamic processes could be related to geographic distribution and to natural and artifical selection. Comparison of the A genomes of diploid wheats with those of polyploid wheats shows that the A genomes in existing diploid wheats could not be the direct donors of those in polyploid wheats, but that the extant taxa of diploids and polyploids probably have a common origin and share a common A-genomelike ancestor.Contribution of the College of Agricultural Sciences, Texas Tech Univ. Journal No. T-4-233.  相似文献   

19.
Summary The genus Avena consists of at least 23 species composed of three ploidy levels. Cytogenetic analysis has characterised four distinct karyotypes. These are the A, B, C and D genomes. We have isolated a repeated sequence clone that can be used for the detection of the C genome in Avena by filter hybridization techniques. This clone, termed RS-1, is a genomic DNA clone containing at least one highly repeated sequence that is abundant in Avena species containing the C genome. This sequence or a related sequence is also present, but at much reduced levels, in species that do not contain the C genome. Because of its abundance and the characteristic Southern blot pattern, we have termed this clone a C genome specific clone. We have also done similar analysis of the Avena genus using a rDNA clone from wheat. The results of these experiments demonstrate that clearly definable C genome-specific markers can be identified with both probes. These molecular probes can be useful in studying the genomic relationships of Avena and can provide some clues as to the origin of the cultivated Avena species. These results can, therefore, provide breeders with directions for the efficient transfer of desirable traits of wild Avena species into commencal varieties.  相似文献   

20.
The majority of tetraploid peonies are allopolyploids derived from crosses between phylogenetically distinct diploid lineages. Tetraploid Paeonia obovata was previously considered to be an autopolyploid because it is morphologically indistinguishable from the diploid of the same species. The presence of the Adh2 gene in tetraploid P. obovata but the inability to amplify the Adh2 gene from Chinese diploids of P. obovata, however, suggests that the tetraploid was not an autotetraploid derivative of the geographically adjacent diploid populations in China. The Adh gene phylogenies rather suggest that the tetraploid originated from crosses between two geographical races of diploid P. obovata distributed in China and Japan. The intermediate status of tetraploid P. obovata between auto‐ and allopolyploidy highlights the need for population genetic analyses of polyploid origins along the continuous range of genomic divergence. Here we present a model that describes the probabilities of polyploid formation and establishment as a function of genomic divergence between diploid progenitors. The probability of polyploid formation (Pf) is obtained from the multiplication of the probability of production of unreduced gametes (Pg) and the probability of ‘hybridization’ (Ph). Pf stays relatively stable when the genomic divergence is low, and then decreases progressively rapidly with the increase of genomic divergence between diploid progenitors. The probability of polyploid establishment (Pe), which depends on the rate of appearance of stable beneficial gene combinations and the rate of fertility restoration, is positively correlated with the genomic divergence of diploid parents. Multiplication of Pf and Pe gives an overall probability of polyploid origins (Po) that varies continuously along the genomic divergence between diploid progenitors. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 561–571.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号