首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two metabolism trials (experiments 1 and 2) were conducted to examine the effect of the organic S compound, sodium 3-mercapto-1-propane sulfonic acid (MPS) on feed intake, fiber digestibility, rumen fermentation and abundance of cellulolytic rumen microorganisms in cattle fed low S (<0.11%) roughages. Urea was provided in all treatments to compensate for the N deficiency (<0.6%) in the roughages. In experiment 1, steers (333 ± 9.5 kg liveweight) were fed Angleton grass (Dicanthium aristatum) supplemented with S in equivalent amounts as either MPS (6.0 g/day) or sodium sulfate (9.56 g/day). Supplementation of Angelton grass with either sulfate or MPS resulted in an apparent increase in flow of rumen microbial protein from the rumen. Sulfur supplementation did not significantly change whole tract dry matter digestibility or intake, even though sulfate and MPS supplementation was associated with an increase in the relative abundance of the fibrolytic bacteria Fibrobacter succinogenes and anaerobic rumen fungi. Ruminal sulfide levels were significantly higher in the sulfate treatment, which indicated that the bioavailability of the two S atoms in the MPS molecule may be low in the rumen. Based on this observation, experiment 2 was conducted in which twice the amount of S was provided in the form of MPS (8.0 g/day) compared with sodium sulfate (6.6 g/day) to heifers (275 ± 9 kg liveweight) fed rice straw. Supplementation with MPS compared with sulfate in experiment 2 resulted in an increase in concentration of total volatile fatty acids, and ammonia utilization without a change in feed intake or whole tract fiber digestibility even though S and N were above requirement for growing cattle in both these treatment groups. In conclusion, supplementation of an S deficient low-quality roughage diet with either MPS or sodium sulfate, in conjunction with urea N, improved rumen fermentation, which was reflected in an increase in urinary purine excretion. However, MPS appeared to have a greater effect on stimulating short-chain fatty acid production and ammonia utilization when provided at higher concentrations than sulfate. Thus, the metabolism of MPS in the rumen needs to be investigated further in comparison with inorganic forms of S as it may prove to be more effective in stimulating fermentation of roughage diets.  相似文献   

2.
The effect of fibrolytic and saccharolytic rumen bacteria on xylanolysis by the rumen fungus Neocallimastix frontalis has been investigated. In cocultivations N. frontalis interacted synergistically with Bacteroides ruminicola, Succinivibrio dextrin-osolvens and Selenomonas ruminantium during xylan utilization. Xylan utilization decreased in cocultures containing Lachnospira multiparus or Streptococcus bovis. Ruminococcus flavefaciens appeared to inhibit fungal growth.  相似文献   

3.
Traditional methods for enumerating and identifying microbial populations within the rumen can be time consuming and cumbersome. Methods that involve culturing and microscopy can also be inconclusive, particularly when studying anaerobic rumen fungi. A real-time PCR SYBR Green assay, using PCR primers to target total rumen fungi and the cellulolytic bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes, is described, including design and validation. The DNA and crude protein contents with respect to the fungal biomass of both polycentric and monocentric fungal isolates were investigated across the fungal growth stages to aid in standard curve generation. The primer sets used were found to be target specific with no detectable cross-reactivity. Subsequently, the real-time PCR assay was employed in a study to detect these populations within cattle rumen. The anaerobic fungal target was observed to increase 3.6-fold from 0 to 12 h after feeding. The results also indicated a 5.4-fold increase in F. succinogenes target between 0 and 12 h after feeding, whereas R. flavefaciens was observed to maintain more or less consistent levels. This is the first report of a real-time PCR assay to estimate the rumen anaerobic fungal population.  相似文献   

4.
An D  Dong X  Dong Z 《Anaerobe》2005,11(4):207-215
Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) was estimated by 16S rDNA homology analysis. Two rumen 16S rDNA libraries were constructed. Of the 194 clones in the library of yak rumen, the sequences were mainly clustered to two phyla, low G+C Gram-positive bacteria (LGCGPB, 54.12% total clones) and Bacteroidetes (30.93%), respectively. While in the 197 clone-library of the cattle rumen, the sequences were mainly related to three phyla, Bacteroidetes (39.59%), gamma-Proteobacteria (26.9%) and LGCGPB (22.34%), respectively. The sequence analysis indicated that more than half of the species harbored in yak rumen belonged to the not-yet-cultured groups at <90% 16S rDNA similarity levels with cultured species, while 36% 16S rDNA sequences amplified from the rumen of Jinnan cattle fell in these catalogues. By comparing the uncultured sequences in yak rumen with those in Jinnan cattle and cow, the former formed distinct clusters loosely related to the later, implying that yak rumen could harbor some special prokaryote phyla. 10.8% sequences retrieved in yak rumen were related to the known rumen fibrolytic bacterial species; however none was related to the known amylolysis species. While 4% and 17.8% sequences retrieved from Jinnan cattle rumen were related to cultured fibrolytic and amylolysis species, respectively. The bacterial structures seemed to be in accordance with the feed of the two kinds of animals. In both rumens, retrieved methanogenic Archaea-related 16S rDNA sequences were at an unreasonable low level; in addition, none sequence was related to Ruminococcus albus, a classical rumen fibrolytic species. The reason can be due to the experimental biases.  相似文献   

5.
AIM: To examine the effect of concentrate and yeast additive on the number of cellulolytic bacteria in the rumen of sheep. METHODS AND RESULTS: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens were quantified using real-time PCR (targeting 16S rDNA) in parallel to cellulolytic flora enumeration with cultural techniques. Whatever the conditions tested, R. flavefaciens was slightly more abundant than F. succinogenes, with both species outnumbering R. albus. Before feeding, the shift from hay to hay plus concentrate diet had no effect on rumen pH and on the number of the three specie; while after feeding, the concentrate-supplemented diet induced a decrease (-1 log) of the number of the three species concomitant with the rumen acidification. Overall, the presence of the live yeast resulted in a significant increase (two- to fourfold) of the Ruminococci. CONCLUSION: The use of real-time PCR allowed us to show changes in the number of cellulolytic bacterial species in vivo in response to diet shift and additives that could not be as easily evidenced by classical microbial methods. SIGNIFICANCE AND IMPACT OF THE STUDY: This study contributes to the understanding of the negative impact of readily fermentable carbohydrates on rumen cellulolysis and the beneficial effect of yeast on rumen fermentation.  相似文献   

6.
We investigated the influence of the composition of the fibrolytic microbial community on the development and activities of hydrogen-utilizing microorganisms in the rumens of gnotobiotically reared lambs. Two groups of lambs were reared. The first group was inoculated with Fibrobacter succinogenes, a non-H(2)-producing species, as the main cellulolytic organism, and the second group was inoculated with Ruminococcus albus, Ruminococcus flavefaciens, and anaerobic fungi that produce hydrogen. The development of hydrogenotrophic bacterial communities, i.e., acetogens, fumarate and sulfate reducers, was monitored in the absence of methanogens and after inoculation of methanogens. Hydrogen production and utilization and methane production were measured in rumen content samples incubated in vitro in the presence of exogenous hydrogen (supplemented with fumarate or not supplemented with fumarate) or in the presence of ground alfalfa hay as a degradable substrate. Our results show that methane production was clearly reduced when the dominant fibrolytic species was a non-H(2)-producing species, such as Fibrobacter succinogenes, without significantly impairing fiber degradation and fermentations in the rumen. The addition of fumarate to the rumen contents stimulated H(2) utilization only by the ruminal microbiota inoculated with F. succinogenes, suggesting that these communities could play an important role in fumarate reduction in vivo.  相似文献   

7.
AIMS: To identify dominant bacteria in grain (barley)-fed cattle for isolation and future use to increase the efficiency of starch utilization in these cattle. METHODS AND RESULTS: Total DNA was extracted from samples of the rumen contents from eight steers fed a barley diet for 9 and 14 days. Bacterial profiles were obtained using denaturing gradient gel electrophoresis (DGGE) of the PCR-amplified V2/V3 region of the 16S rRNA genes from total bacterial DNA. Apparently dominant bands were excised and cloned, and the clone insert sequence was determined. One of the most common and dominant bacteria present was identified as Ruminococcus bromii. This species was subsequently isolated using traditional culture-based techniques and its dominance in the grain-fed cattle was confirmed using a real-time Taq nuclease assay (TNA) designed for this purpose. In some animals, the population of R. bromii reached densities above 10(10)R. bromii cell equivalents per ml or approximately 10% of the total bacterial population. CONCLUSIONS: Ruminococcus bromii is a dominant bacterial population in the rumen of cattle fed a barley-based diet. SIGNIFICANCE AND IMPACT OF THE STUDY: Ruminococcus bromii YE282 may be useful as a probiotic inoculant to increase the efficiency of starch utilization in barley-fed cattle. The combination of DGGE and real-time TNA has been an effective process for identifying and targeting for isolation, dominant bacteria in a complex ecosystem.  相似文献   

8.
Feed-efficient animals have lower production costs and reduced environmental impact. Given that rumen microbial fermentation plays a pivotal role in host nutrition, the premise that rumen microbiota may contribute to host feed efficiency is gaining momentum. Since diet is a major factor in determining rumen community structure and fermentation patterns, we investigated the effect of divergence in phenotypic residual feed intake (RFI) on ruminal community structure of beef cattle across two contrasting diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were performed to profile the rumen bacterial population and to quantify the ruminal populations of Entodinium spp., protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus, Prevotella brevis, the genus Prevotella, and fungi in 14 low (efficient)- and 14 high (inefficient)-RFI animals offered a low-energy, high-forage diet, followed by a high-energy, low-forage diet. Canonical correspondence and Spearman correlation analyses were used to investigate associations between physiological variables and rumen microbial structure and specific microbial populations, respectively. The effect of RFI on bacterial profiles was influenced by diet, with the association between RFI group and PCR-DGGE profiles stronger for the higher forage diet. qPCR showed that Prevotella abundance was higher (P < 0.0001) in inefficient animals. A higher (P < 0.0001) abundance of Entodinium and Prevotella spp. and a lower (P < 0.0001) abundance of Fibrobacter succinogenes were observed when animals were offered the low-forage diet. Thus, differences in the ruminal microflora may contribute to host feed efficiency, although this effect may also be modulated by the diet offered.  相似文献   

9.
Physically effective fiber is needed by dairy cattle to prevent ruminal acidosis. This study aimed to examine the effects of different sources of physically effective fiber on the populations of fibrolytic bacteria and methanogens. Five ruminally cannulated Holstein cows were each fed five diets differing in physically effective fiber sources over 15 weeks (21 days/period) in a Latin Square design: (1) 44.1% corn silage, (2) 34.0% corn silage plus 11.5% alfalfa hay, (3) 34.0% corn silage plus 5.1% wheat straw, (4) 36.1% corn silage plus 10.1% wheat straw, and (5) 34.0% corn silage plus 5.5% corn stover. The impact of the physically effective fiber sources on total bacteria and archaea were examined using denaturing gradient gel electrophoresis. Specific real-time PCR assays were used to quantify total bacteria, total archaea, the genus Butyrivibrio, Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and three uncultured rumen bacteria that were identified from adhering ruminal fractions in a previous study. No significant differences were observed among the different sources of physical effective fiber with respect to the microbial populations quantified. Any of the physically effective fiber sources may be fed to dairy cattle without negative impact on the ruminal microbial community.  相似文献   

10.
AIMS: To investigate the short- and long-term effects of an extract of Sapindus rarak saponins (SE) on the rumen fibrolytic enzyme activity and the major fibrolytic micro-organisms. METHODS AND RESULTS: Two feeding trials were conducted. In the short-term trial, four fistulated goats were fed a basal diet containing sugar cane tops and wheat pollard (65:35, w/w) and were supplemented for 7 days with SE at a level of 0.6 g kg(-1) body weight. Rumen liquor was taken before, during and after SE feeding. In the long-term trial, 28 sheep were fed the same basal diet as the goats and were supplemented for 105 days with 0.24, 0.48 and 0.72 g kg(-1) body mass of the extract. Rumen liquor was taken on days 98 and 100. Protozoal numbers were counted under the microscope. Cell wall degradation was determined by enzyme assays and the major fibrolytic micro-organisms were quantified by dot blot hybridization. Sapindus extract significantly depressed rumen xylanase activity in both trials and carboxymethylcellulase activity in the long-term trial (P < 0.01). Fibrobacter sp. were not affected by the SE in both trials, while ruminococci and the anaerobic fungi showed a short-term response to the application of saponins. Protozoal counts were decreased only in the long-term trial with sheep. CONCLUSION: These data suggest that there is an adaptation of Ruminococcus albus, Ruminococcus flavefaciens and Chytridiomycetes (fungi) to saponin when fed over a long period. The fact that no correlation between the cell wall degrading enzyme activities and the cell wall degrading micro-organisms was observed suggests that the organisms tracked in this experiment are not the only key players in ruminal cell wall degradation. SIGNIFICANCE AND IMPACT OF THE STUDY: Sapindus rarak saponins partially defaunate the rumen flora. Their negative effect on cell wall degradation, however, is not related to rumen organisms currently recognized as the major cell wall degrading species. The adaptation of microbes in the long-term feeding experiment suggests that the results from short-term trial on the ruminal microbial community have to be interpreted carefully.  相似文献   

11.
The fibrolytic activities of rumen fungi were studied in terms of dry matter loss, plant cell wall degradation and enzyme (cellulase and xylanase) activities, when grown in vitro on either untreated or sodium hydroxide treated stems of barley straw over a 12 day period. Changes in fungal growth, development and overall biomass were followed using chitin assay and scanning electron microscopy. Treatment with sodium hydroxide resulted in a decrease in the NDF content together with the disruption of cuticle and the loosening and separation of the plant cells within the straw fragments. The enzyme activities of the anaerobic fungi have a high positive correlation (R(2)=0.99) with their biomass concentration assessed by chitin assay indicating that chitin is a valuable index for the estimation of the fungal biomass in vitro. The anaerobic fungi produced very extensive rhizoidal systems in these in vitro cultures. After incubation with rumen fungi, dry matter losses were, respectively, 35% and 38% for the untreated and treated straw samples and the overall fungal biomass, determined by chitin assay, was significantly higher in the treated samples. In vitro degradation of cellulose and hemicellulose was also higher in the treated than that of untreated cultures. Although, comparatively, xylanase activity was higher than that of cellulase, the cellulose fraction of the straw was degraded more than hemicellulose in both treated and untreated straw.  相似文献   

12.
4 ruminally cannulated cows were fed a forage diet (93% hay + 7% straw) and a mixed diet (33 % hay + 7% straw + 40% barley) in a 2 x 2 crossover experimental design. In sacco degradation of forage, fibrolytic activities (polysaccharidases and glycosidases) of the solid-associated bacteria (SAB), and distribution of the 3 main cellulolytic bacterial species (Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens) were determined for both diets. Barley supplementation decreased the hay degradation rate and mainly the polysaccharidase activities of the SAB (30% on average). The sum of rRNA of the 3 cellulolytic bacterial species represented on average 17% of the total bacterial signal and R. albus was the dominant cellulolytic bacterial species of the 3 studied. Barley supplementation did not modify the proportion of the 3 cellulolytic bacteria attached to plant particles. The negative effect of barley on the ruminal hay degradation rate is due to a decrease in fibrolytic activity of the SAB, and not to a modification of the balance of the three cellulolytic bacterial species examined.  相似文献   

13.
Competitive PCR assays were developed for the enumeration of the rumen cellulolytic bacterial species: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. The assays, targeting species-specific regions of 16S rDNA, were evaluated using DNA from pure culture and rumen digesta spiked with the relevant cellulolytic species. Minimum detection levels for F. succinogenes, R. albus and R. flavefaciens were 1-10 cells in pure culture and 10(3-4) cells per ml in mixed culture. The assays were reproducible and 11-13% inter- and intra-assay variations were observed. Enumeration of the cellulolytic species in the rumen and alimentary tract of sheep found F. succinogenes dominant (10(7) per ml of rumen digesta) compared to the Ruminococcus spp. (10(4-6) per ml). The population size of the three species did not change after the proportion of dietary alfalfa hay was increased. All three species were detected in the rumen, omasum, caecum, colon and rectum. Numbers of the cellulolytic species at these sites varied within and between animals.  相似文献   

14.
The effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes in microbial populations from the digesta solids and liquor fractions of rumen contents was examined after the refaunation of ciliate-free sheep with an A-type rumen protozoal population. Although the culturable rumen bacterial population was reduced after refaunation the number of fibrolytic micro-organisms detected was higher; the xylanolytic bacterial population and numbers of fungal zoospores were increased after refaunation. The proportion of propionic acid was lower in the refaunated animals, whereas the concentration of ammonia and the acidic metabolites acetate, butyrate and valerate were all increased. The range of enzyme activities present in the digesta subpopulations were the same in defaunated and refaunated animals. The activities of the polysaccharide-degrading enzymes, however, were increased in the microbial populations associated with the digesta solids after refaunation, and at 16 h after feeding the activities were 4-8 times (beta-D-xylosidase 20 times) higher than the levels detected in the adherent population from defaunated sheep. The protozoa, either directly through their own enzymes or indirectly as a consequence of their effects on the population size and activity of the other fibrolytic micro-organisms present, have an important role in determining the level of activity of polysaccharide-degrading enzymes in the rumen ecosystem. Although the extent of ryegrass (Lolium perenne) hay digestion was similar after 24 h in the absence or presence of protozoa, the initial ruminal degradation was higher in refaunated sheep.  相似文献   

15.
The effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes in microbial populations from the digesta solids and liquor fractions of rumen contents was examined after the refaunation of ciliate-free sheep with an A-type rumen protozoal population. Although the culturable rumen bacterial population was reduced after refaunation the number of fibrolytic micro-organisms detected was higher; the xylanolytic bacterial population and numbers of fungal zoospores were increased after refaunation. The proportion of propionic acid was lower in the refaunated animals, whereas the concentration of ammonia and the acidic metabolites acetate, butyrate and valerate were all increased. The range of enzyme activities present in the digesta subpopulations were the same in defaunated and refaunated animals. The activities of the polysaccharide-degrading enzymes, however, were increased in the microbial populations associated with the digesta solids after refaunation, and at 16 h after feeding the activities were 4–8 times (β-d-xylosidase 20 times) higher than the levels detected in the adherent population from defaunated sheep. The protozoa, either directly through their own enzymes or indirectly as a consequence of their effects on the population size and activity of the other fibrolytic micro-organisms present, have an important role in determining the level of activity of polysaccharide-degrading enzymes in the rumen ecosystem. Although the extent of ryegrass ( Lolium perenne ) hay digestion was similar after 24 h in the absence or presence of protozoa, the initial ruminal degradation was higher in refaunated sheep.  相似文献   

16.
AIMS: To investigate interactions between rumen protozoa and Shiga toxin-producing Escherichia coli (STEC) and to ascertain whether it is likely that rumen protozoa act as ruminant hosts for STEC. METHODS AND RESULTS: The presence of stx genes in different microbial fractions recovered from cattle and sheep rumen contents and faeces was examined using PCR. In animals shedding faecal STEC, stx genes were not detected in the rumen bacterial or rumen protozoal fractions. Direct interactions between ruminal protozoa and STEC were investigated by in vitro co-incubation. Rumen protozoa did not appear to ingest STEC, a STEC lysogen or non-STEC E. coli populations when co-incubated. CONCLUSIONS: The ruminal environment is unlikely to be a preferred habitat for STEC. Bacterial grazing by rumen protozoa appears to have little, if any, effect on STEC populations. SIGNIFICANCE AND IMPACT OF THE STUDY: This study indicates that ruminal protozoa are unlikely to be a major factor in the survival of STEC in ruminants. They appear as neither a host that protects STEC from the ruminal environment nor a predator that might reduce STEC numbers.  相似文献   

17.
A total of 20 fungal cultures were isolated from the rumen of cattle fed a high fibre-containing diet. All of the isolates showed polycentric growth patterns and were identified as different strains of Orpinomyces and Anaeromyces. Enzyme assays of most of the isolates showed the highest carboxymethylcellulase (CMCase) and xylanase activities after 96 h of growth and highest avicelase activity after 120 h. Among all enzymes tested, xylanase activity was the highest, followed by CMCase and avicelase. The results of the in vitro fibre digestibility and rumen fermentation analyses revealed that the addition of fungal cultures significantly increased acetate, in vitro dry matter digestibility, partition factor values and microbial biomass synthesis levels. Overall, Orpinomyces spp. were found to be the better enzyme producers and fibre degraders than Anaeromyces spp.  相似文献   

18.
The effects of supplementing a dairy cow diet with incremental levels of a fibrolytic enzyme preparation (preparation B) from Trichoderma longibrachiatum on the rumen microbial population were investigated. Two cows fitted with rumen cannulae were each fed a diet containing barley-based concentrate (52%), maize silage (29%), and chopped alfalfa hay (19%), supplemented with 0, 1, 2, 5, or 10 L of preparation B per tonne of dry matter (DM). Preparation B stimulated numbers of total viable bacteria in a quadratic manner (P < 0.05), to approximately 230, 330, 390, and 250% at 1, 2, 5, and 10 L x t(-1) DM, respectively. Preparation B increased the numbers of cellobiose-utilizing (P < 0.01), xylanolytic (P < 0.05), and amylolytic bacteria (P < 0.05), but had no effect (P > 0.05) on numbers of cellulolytic bacteria. However, when bacterial numbers enumerated on each substrate were expressed as a proportion of total viable bacterial numbers, only cellobiose utilizers were stimulated, and this stimulation was limited to the 1 L x t(-1) DM level of preparation B (P < 0.05). The results of this study demonstrate that the inclusion of an exogenous fibrolytic enzyme preparation in dairy cow diets increased the numbers of rumen bacteria that utilize hemicelluloses and secondary products of cellulose digestion.  相似文献   

19.
Aims: To determine the effects of the removal of forage in high‐concentrate diets on rumen fermentation conditions and rumen bacterial populations using culture‐independent methods. Methods and Results: Detectable bacteria and fermentation parameters were measured in the solid and liquid fractions of digesta from cattle fed two dietary treatments, high concentrate (HC) and high concentrate without forage (HCNF). Comparison of rumen fermentation conditions showed that duration of time spent below pH 5·2 and rumen osmolality were higher in the HCNF treatment. Simpson’s index of 16S PCR‐DGGE images showed a greater diversity of dominant species in the HCNF treatment. Real‐time qPCR showed populations of Fibrobacter succinogenes (P = 0·01) were lower in HCNF than HC diets. Ruminococcus spp., F. succinogenes and Selenomonas ruminantium were at higher (P 0·05) concentrations in the solid vs the liquid fraction of digesta regardless of diet. Conclusions: The detectable bacterial community structure in the rumen is highly diverse. Reducing diet complexity by removing forage increased bacterial diversity despite the associated reduction in ruminal pH being less conducive for fibrolytic bacterial populations. Quantitative PCR showed that removal of forage from the diet resulted in a decline in the density of some, but not all fibrolytic bacterial species examined. Significance and Impact of the Study: Molecular techniques such as DGGE and qPCR provide an increased understanding of the impacts of dietary changes on the nature of rumen bacterial populations, and conclusions derived using these techniques may not match those previously derived using traditional laboratory culturing techniques.  相似文献   

20.
AIMS: To determine the effect of condensed tannins in Calliandra calothyrsus (calliandra) on rumen microbial function. METHODS AND RESULTS: Microbial populations, ruminal protein synthesis and fermentation end-products were measured in sheep fed roughage hay supplemented with calliandra (30%), with and without inclusions of polyethylene glycol (PEG) to counteract the effect of tannin. Molecular and conventional enumeration techniques were used to quantify rumen bacteria, fungi and protozoa, and protein synthesis was predicted from estimates of urinary purine excretion. The total number of cellulolytic bacteria, including populations of Fibrobacter succinogenes and Ruminococcus spp., was significantly lower in sheep supplemented with calliandra and these populations increased when animals were treated with PEG. By contrast, protozoa and fungi and the microbial group containing Bacteroides-Porphyromonas-Prevotella bacteria appeared to be less affected. The efficiency of microbial protein synthesis in the rumen was not altered significantly. CONCLUSION: Calliandra caused significant shifts in rumen microbial populations without changing the efficiency of protein synthesis. SIGNIFICANCE AND IMPACT OF THE STUDY: The effect of calliandra tannins on rumen digestion may result more from complexing with nutrients than direct inhibition of micro-organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号