首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Methyl tert-butyl ether (MTBE) degradation by a microbial consortium   总被引:3,自引:0,他引:3  
The widespread use of methyl tert-butyl ether (MTBE) as a gasoline additive has resulted in a large number of cases of groundwater contamination. Bioremediation is often proposed as the most promising alternative after treatment. However, MTBE biodegradation appears to be quite different from the biodegradation of usual gasoline contaminants such as benzene, toluene, ethyl benzene and xylene (BTEX). In the present paper, the characteristics of a consortium degrading MTBE in liquid cultures are presented and discussed. MTBE degradation rate was fast and followed zero order kinetics when added at 100 mg l(-1). The residual MTBE concentration in batch degradation experiments ranged from below the detection limit (1 microg l(-1)) to 50 microg l(-1). The specific activity of the consortium ranged from 7 to 52 mgMTBE g(dw)(-1) h(-1) (i.e. 19-141 mgCOD g(dw) (-1) h(-1)). Radioisotope experiments showed that 79% of the carbon-MTBE was converted to carbon-carbon dioxide. The consortium was also capable of degrading a variety of hydrocarbons, including tert-butyl alcohol (TBA), tert-amyl methyl ether (TAME) and gasoline constituents such as benzene, toluene, ethylbenzene and xylene (BTEX). The consortium was also characterized by a very slow growth rate (0.1 d(-1)), a low overall biomass yield (0.11 gdw g(-1)MTBE; i.e. 0.040 gdw gCOD(-1)), a high affinity for MTBE and a low affinity for oxygen, which may be a reason for the slow or absence of MTBE biodegradation in situ. Still, the results presented here show promising perspectives for engineering the in situ bioremediation of MTBE.  相似文献   

2.
Biodegradation of methyl tert-butyl ether (MTBE) by cometabolism has shown to produce recalcitrant metabolic intermediates that often accumulate. In this work, a consortium containing Pseudomonads was studied for its ability to fully degrade oxygenates by cometabolism. This consortium mineralized MTBE and TBA with C3-C7 n-alkanes. The highest degradation rates for MTBE (75 +/- 5 mg g(protein) (-1) h(-1)) and TBA (86.9 +/- 7.3 mg g(protein) (-1) h(-1)) were obtained with n-pentane and n-propane, respectively. When incubated with radiolabeled MTBE and n-pentane, it converted more than 96% of the added MTBE to (14)C-CO(2). Furthermore, the consortium degraded tert-amyl methyl ether, tert-butyl alcohol (TBA), tert-amyl alcohol, ethyl tert-butyl ether (ETBE) when n-pentane was used as growth source. Three Pseudomonads were isolated but only two showed independent MTBE degradation activity. The maximum degradation rates were 101 and 182 mg g(protein) (-1) h(-1) for Pseudomonas aeruginosa and Pseudomonas citronellolis, respectively. The highest specific affinity (a degrees (MTBE)) value of 4.39 l g(protein) (-1) h(-1) was obtained for Pseudomonas aeruginosa and complete mineralization was attained with a MTBE: n-pentane ratio (w/w) of 0.7. This is the first time that Pseudomonads have been reported to fully mineralize MTBE by cometabolic degradation.  相似文献   

3.
A new aerobic bacterial strain, CIP 1-2052, isolated from an activated sludge sample, was able to use tert-butyl alcohol (TBA), a product of methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE) degradation, as its sole carbon and energy source. Cobalt ions stimulated TBA mineralization. The maximum growth and TBA degradation rates were 0.032 +/- 0.004 h(-1) and 35.8 +/- 8.5 mg TBA x g(-1) (cell dry mass) per h, respectively. The growth yield on TBA was 0.54 +/- 0.02 g x g(-1). Strain CIP 1-2052 exhibited a particular substrate specificity towards alcohols. It degraded tertiary alcohols, TBA and tert-amyl alcohol (TAA), but neither their primary and secondary alcohol homologues, nor ethanol. However, one-carbon compounds, namely methanol and formate, were degraded by strain CIP 1-2052, showing the methylotrophic nature of this isolate. The properties of this new strain suggest that it could be used for bioremediation of contaminated aquifers.  相似文献   

4.
A strain that efficiently degraded methyl tert-butyl ether (MTBE) was obtained by initial selection on the recalcitrant compound tert-butyl alcohol (TBA). This strain, a gram-positive methylotrophic bacterium identified as Mycobacterium austroafricanum IFP 2012, was also able to degrade tert-amyl methyl ether and tert-amyl alcohol. Ethyl tert-butyl ether was weakly degraded. tert-Butyl formate and 2-hydroxy isobutyrate (HIBA), two intermediates in the MTBE catabolism pathway, were detected during growth on MTBE. A positive effect of Co2+ during growth of M. austroafricanum IFP 2012 on HIBA was demonstrated. The specific rate of MTBE degradation was 0.6 mmol/h/g (dry weight) of cells, and the biomass yield on MTBE was 0.44 g (dry weight) per g of MTBE. MTBE, TBA, and HIBA degradation activities were induced by MTBE and TBA, and TBA was a good inducer. Involvement of at least one monooxygenase during degradation of MTBE and TBA was shown by (i) the requirement for oxygen, (ii) the production of propylene epoxide from propylene by MTBE- or TBA- grown cells, and (iii) the inhibition of MTBE or TBA degradation and of propylene epoxide production by acetylene. No cytochrome P-450 was detected in MTBE- or TBA-grown cells. Similar protein profiles were obtained after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of crude extracts from MTBE- and TBA-grown cells. Among the polypeptides induced by these substrates, two polypeptides (66 and 27 kDa) exhibited strong similarities with known oxidoreductases.  相似文献   

5.
Several propane-oxidizing bacteria were tested for their ability to degrade gasoline oxygenates, including methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME). Both a laboratory strain and natural isolates were able to degrade each compound after growth on propane. When propane-grown strain ENV425 was incubated with 20 mg of uniformly labeled [14C]MTBE per liter, the strain converted > 60% of the added MTBE to 14CO2 in < 30 h. The initial oxidation of MTBE and ETBE resulted in the production of nearly stoichiometric amounts of tert-butyl alcohol (TBA), while the initial oxidation of TAME resulted in the production of tert-amyl alcohol. The methoxy methyl group of MTBE was oxidized to formaldehyde and ultimately to CO2. TBA was further oxidized to 2-methyl-2-hydroxy-1-propanol and then 2-hydroxy isobutyric acid; however, neither of these degradation products was an effective growth substrate for the propane oxidizers. Analysis of cell extracts of ENV425 and experiments with enzyme inhibitors implicated a soluble P-450 enzyme in the oxidation of both MTBE and TBA. MTBE was oxidized to TBA by camphor-grown Pseudomonas putida CAM, which produces the well-characterized P-450cam, but not by Rhodococcus rhodochrous 116, which produces two P-450 enzymes. Rates of MTBE degradation by propane-oxidizing strains ranged from 3.9 to 9.2 nmol/min/mg of cell protein at 28 degrees C, whereas TBA was oxidized at a rate of only 1.8 to 2.4 nmol/min/mg of cell protein at the same temperature.  相似文献   

6.
Mycobacterium austroafricanum IFP 2012 is a Gram-positive strain able to grow on methyl tert-butyl ether (MTBE) as a sole carbon and energy source. The effect of two downstream metabolites of MTBE, tert-butyl formate (TBF) and tert-butyl alcohol (TBA) on MTBE degradation was investigated using resting cells. The addition of low concentrations of TBF decreased the MTBE degradation rate by about 30%. In contrast, the addition of TBA did not have a significant effect on MTBE degradation rate, even at high concentrations; and it was also shown that TBA degradation occurred only once MTBE was exhausted. At neutral pH, TBF hydrolysis involved mainly an esterase-type activity regulated by the presence of TBA. The TBF degradation rate was about four times lower than the MTBE degradation rate. Furthermore, acetone was identified as an intermediate during TBA degradation. An acetone mono-oxygenase activity, inhibited by methimazole but not by acetylene, was suggested. It was different from the MTBE/TBA mono-oxygenase and, thus, acetone did not appear to compete with MTBE and TBA for the same enzyme. These new results show that the metabolic regulation of the early steps of MTBE degradation by M. austroafricanum IFP 2012 is complex, involving inhibition and competition phenomena.  相似文献   

7.
In this study, evidence for two novel metabolic processes catalyzed by a filamentous fungus, Graphium sp. strain ATCC 58400, is presented. First, our results indicate that this Graphium sp. can utilize the widely used solvent diethyl ether (DEE) as the sole source of carbon and energy for growth. The kinetics of biomass accumulation and DEE consumption closely followed each other, and the molar growth yield on DEE was indistinguishable from that with n-butane. n-Butane-grown mycelia also immediately oxidized DEE without the extracellular accumulation of organic oxidation products. This suggests a common pathway for the oxidation of both compounds. Acetylene, ethylene, and other unsaturated gaseous hydrocarbons completely inhibited the growth of this Graphium sp. on DEE and DEE oxidation by n-butane-grown mycelia. Second, our results indicate that gaseous n-alkane-grown Graphium mycelia can cometabolically degrade the gasoline oxygenate methyl tert-butyl ether (MTBE). The degradation of MTBE was also completely inhibited by acetylene, ethylene, and other unsaturated hydrocarbons and was strongly influenced by n-butane. Two products of MTBE degradation, tert-butyl formate (TBF) and tert-butyl alcohol (TBA), were detected. The kinetics of product formation suggest that TBF production temporally precedes TBA accumulation and that TBF is hydrolyzed both biotically and abiotically to yield TBA. Extracellular accumulation of TBA accounted for only a maximum of 25% of the total MTBE consumed. Our results suggest that both DEE oxidation and MTBE oxidation are initiated by cytochrome P-450-catalyzed reactions which lead to scission of the ether bonds in these compounds. Our findings also suggest a potential role for gaseous n-alkane-oxidizing fungi in the remediation of MTBE contamination.  相似文献   

8.
A strain that efficiently degraded methyl tert-butyl ether (MTBE) was obtained by initial selection on the recalcitrant compound tert-butyl alcohol (TBA). This strain, a gram-positive methylotrophic bacterium identified as Mycobacterium austroafricanum IFP 2012, was also able to degrade tert-amyl methyl ether and tert-amyl alcohol. Ethyl tert-butyl ether was weakly degraded. tert-Butyl formate and 2-hydroxy isobutyrate (HIBA), two intermediates in the MTBE catabolism pathway, were detected during growth on MTBE. A positive effect of Co2+ during growth of M. austroafricanum IFP 2012 on HIBA was demonstrated. The specific rate of MTBE degradation was 0.6 mmol/h/g (dry weight) of cells, and the biomass yield on MTBE was 0.44 g (dry weight) per g of MTBE. MTBE, TBA, and HIBA degradation activities were induced by MTBE and TBA, and TBA was a good inducer. Involvement of at least one monooxygenase during degradation of MTBE and TBA was shown by (i) the requirement for oxygen, (ii) the production of propylene epoxide from propylene by MTBE- or TBA- grown cells, and (iii) the inhibition of MTBE or TBA degradation and of propylene epoxide production by acetylene. No cytochrome P-450 was detected in MTBE- or TBA-grown cells. Similar protein profiles were obtained after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of crude extracts from MTBE- and TBA-grown cells. Among the polypeptides induced by these substrates, two polypeptides (66 and 27 kDa) exhibited strong similarities with known oxidoreductases.  相似文献   

9.
The release of methyl tert-butyl ether (MTBE) to the environment, mainly from damaged gasoline underground storage tanks or distribution systems spills, has provoked extended groundwater pollution. Biological treatments are, in general, a good alternative for bioremediation of polluted sites; however, MTBE elimination from environment has constituted a challenge because of its chemical structure and physicochemical properties. The combination of a stable ether link and the branched moiety hinder biodegradation. Initial studies found MTBE to be highly recalcitrant but, in the last decade, reports of its biodegradation have been published first under aerobic conditions and just recently under anaerobic conditions. Microbial MTBE degradation is characterized by bacteria having low growth rates (0.35 day−1) and biomass yields (average value 0.24 g biomass/g MTBE). Alternatively, cometabolism (defined as the transformation of a non-growth substrate in the obligate presence of a growth substrate), has been considered since it uncouples biodegradation of the contaminant from growth, reducing the long adaptation and propagation period. This period has been reported to be of several months in systems where it is degraded as sole carbon source. Cometabolic degradation rates are between 0.3 and 61 nmol/min/mg protein (in the same range of direct aerobic metabolism). However, a major concern in MTBE cometabolism is that the accumulation of tert-butyl alcohol (TBA) may, under certain cases, result in an incomplete site cleanup. This paper reviews in detail the implicated enzymes and field treatments for the cometabolism of MTBE degradation with alkanes as growth substrates.  相似文献   

10.
Contamination of groundwater with the gasoline additive methyl tert-butyl ether (MTBE) is often accompanied by many aromatic components such as benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene (BTEX). In this study, a laboratory-scale biotrickling filter for groundwater treatment inoculated with a microbial consortium degrading MTBE was studied. Individual or mixtures of BTEX compounds were transiently loaded in combination with MTBE. The results indicated that single BTEX compound or BTEX mixtures inhibited MTBE degradation to varying degrees, but none of them completely repressed the metabolic degradation in the biotrickling filter. Tert-butyl alcohol (TBA), a frequent co-contaminant of MTBE had no inhibitory effect on MTBE degradation. The bacterial consortium was stable and showed promising capabilities to remove TBA, ethylbenzene and toluene, and partially degraded benzene and xylenes without significant lag time. The study suggests that it is feasible to deploy a mixed bacterial consortia to degrade MTBE, BTEX and TBA at the same time.  相似文献   

11.
《Process Biochemistry》2007,42(8):1211-1217
Biodegradation of MTBE under various multi-substrate conditions by Pseudomonas aeruginosa was investigated in this research. The addition of BTEX in various combinations significantly inhibited MTBE biodegradation. This result was mainly due to the non-competitive inhibition between MTBE and BTEX compounds. The rate of MTBE biodegradation decreased with the increasing substrate number for multi-substrate conditions. Additionally, the kinetic models developed in this research successfully simulate the degradation of MTBE under various multi-substrate conditions. However, the accumulation of TBA during MTBE biodegradation revealed that P. aeruginosa was unable to degrade TBA during the period of time tested.  相似文献   

12.
The initial reactions in the cometabolic oxidation of the gasoline oxygenate, methyl tert-butyl ether (MTBE), by Mycobacterium vaccae JOB5 have been characterized. Two products, tert-butyl formate (TBF) and tert-butyl alcohol (TBA), rapidly accumulated extracellularly when propane-grown cells were incubated with MTBE. Lower rates of TBF and TBA production from MTBE were also observed with cells grown on 1- or 2-propanol, while neither product was generated from MTBE by cells grown on casein-yeast extract-dextrose broth. Kinetic studies with propane-grown cells demonstrated that TBF is the dominant (> or = 80%) initial product of MTBE oxidation and that TBA accumulates from further biotic and abiotic hydrolysis of TBF. Our results suggest that the biotic hydrolysis of TBF is catalyzed by a heat-stable esterase with activity toward several other tert-butyl esters. Propane-grown cells also oxidized TBA, but no further oxidation products were detected. Like the oxidation of MTBE, TBA oxidation was fully inhibited by acetylene, an inactivator of short-chain alkane monooxygenase in M. vaccae JOB5. Oxidation of both MTBE and TBA was also inhibited by propane (K(i) = 3.3 to 4.4 microM). Values for K(s) of 1.36 and 1.18 mM and for V(max) of 24.4 and 10.4 nmol min(-1) mg of protein(-1) were derived for MTBE and TBA, respectively. We conclude that the initial steps in the pathway of MTBE oxidation by M. vaccae JOB5 involve two reactions catalyzed by the same monooxygenase (MTBE and TBA oxidation) that are temporally separated by an esterase-catalyzed hydrolysis of TBF to TBA. These results that suggest the initial reactions in MTBE oxidation by M. vaccae JOB5 are the same as those that we have previously characterized in gaseous alkane-utilizing fungi.  相似文献   

13.
Fusarium solani degraded methyl tert-butyl ether (MTBE) and other oxygenated compounds from gasoline including tert-butyl alcohol (TBA). The maximum degradation rate of MTBE was 16 mg protein h and 46 mg/g protein h for TBA. The culture transformed 77% of the total carbon to 14CO2. The estimated yield for MTBE was 0.18 g dry wt/g MTBE.  相似文献   

14.
Biodegradation of methyl tert-butyl ether by a pure bacterial culture.   总被引:8,自引:0,他引:8  
Biodegradation of methyl tert-butyl ether (MTBE) by the hydrogen-oxidizing bacterium Hydrogenophaga flava ENV735 was evaluated. ENV735 grew slowly on MTBE or tert-butyl alcohol (TBA) as sole sources of carbon and energy, but growth on these substrates was greatly enhanced by the addition of a small amount of yeast extract. The addition of H(2) did not enhance or diminish MTBE degradation by the strain, and MTBE was only poorly degraded or not degraded by type strains of Hydrogenophaga or hydrogen-oxidizing enrichment cultures, respectively. MTBE degradation activity was constitutively expressed in ENV735 and was not greatly affected by formaldehyde, carbon monoxide, allyl thiourea, or acetylene. MTBE degradation was inhibited by 1-amino benzotriazole and butadiene monoepoxide. TBA degradation was inducible by TBA and was inhibited by formaldehyde at concentrations of >0.24 mM and by acetylene but not by the other inhibitors tested. These results demonstrate that separate, independently regulated genes encode MTBE and TBA metabolism in ENV735.  相似文献   

15.
Biodegradation of methyl tert-butyl ether (MTBE) by the hydrogen-oxidizing bacterium Hydrogenophaga flava ENV735 was evaluated. ENV735 grew slowly on MTBE or tert-butyl alcohol (TBA) as sole sources of carbon and energy, but growth on these substrates was greatly enhanced by the addition of a small amount of yeast extract. The addition of H2 did not enhance or diminish MTBE degradation by the strain, and MTBE was only poorly degraded or not degraded by type strains of Hydrogenophaga or hydrogen-oxidizing enrichment cultures, respectively. MTBE degradation activity was constitutively expressed in ENV735 and was not greatly affected by formaldehyde, carbon monoxide, allyl thiourea, or acetylene. MTBE degradation was inhibited by 1-amino benzotriazole and butadiene monoepoxide. TBA degradation was inducible by TBA and was inhibited by formaldehyde at concentrations of >0.24 mM and by acetylene but not by the other inhibitors tested. These results demonstrate that separate, independently regulated genes encode MTBE and TBA metabolism in ENV735.  相似文献   

16.

Background  

Remediation of tert-butyl alcohol (TBA) in subsurface waters should be taken into consideration at reformulated gasoline contaminated sites since it is a biodegradation intermediate of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-butyl formate (TBF). The effect of temperature on TBA biodegradation has not been not been published in the literature.  相似文献   

17.
With the current practice of amending gasoline with up to 15% by volume MTBE, the contamination of groundwater by MTBE has become widespread. As a result, the bioremediation of MTBE-impacted aquifers has become an active area of research. A review of the current literature on the aerobic biodegradation of MTBE reveals that a number of cultures from diverse environments can either partially degrade or completely mineralize MTBE. MTBE is either utilized as a sole carbon and energy source or is degraded cometabolically by cultures grown on alkanes. Reported degradation rates range from 0.3 to 50 mg MTBE/g cells/h while growth rates (0.01–0.05 g MTBE/g cells/d) and cellular yields (0.1–0.2 g cells/g MTBE) are generally low. Studies on the mechanisms of MTBE degradation indicate that a monooxygenase enzyme cleaves the ether bond yielding tert-butyl alcohol (TBA) and formaldehyde as the dominant detectable intermediates. TBA is further degraded to 2-methyl-2-hydroxy-1-propanol, 2-hydroxyisobutyric acid, 2-propanol, acetone, hydroxyacteone and eventually, carbon dioxide. The majority of these intermediates are also common to mammalian MTBE metabolism. Laboratory studies on the degradation of MTBE in the presence of gasoline aromatics reveal that while degradation rates of other gasoline components are generally not inhibited by MTBE, MTBE degradation could be inhibited in the presence of more easily biodegradable compounds. Controlled field studies are clearly needed to elucidate MTBE degradation potential in co-contaminant plumes. Based on the reviewed studies, it is likely that a bioremediation strategy involving direct metabolism, cometabolism, bioaugmentation, or some combination thereof, could be applied as a feasible and cost-effective treatment method for MTBE contamination.  相似文献   

18.
Microbial consortia obtained from soil samples of gasoline-polluted sites were individually enriched with pentane, hexane, isooctane and toluene. Cometabolism with methyl tert-butyl ether, (MTBE), gave maximum degradation rates of 49, 12, 32 and 0 mg g(-1)protein h(-1), respectively. MTBE was fully degraded even when pentane was completely depleted with a cometabolic coefficient of 1 mgMTBE mg(-1)pentane. The analysis of 16S rDNA from isolated microorganisms in the pentane-adapted consortia showed that microorganisms could be assigned to Pseudomonas. This is the first work reporting the cometabolic mineralization of MTBE by consortium of this genus.  相似文献   

19.
Methylibium petroleiphilum PM1 is a well-characterized environmental strain capable of complete metabolism of the fuel oxygenate methyl tert-butyl ether (MTBE). Using a molecular genetic system which we established to study MTBE metabolism by PM1, we demonstrated that the enzyme MdpA is involved in MTBE removal, based on insertional inactivation and complementation studies. MdpA is constitutively expressed at low levels but is strongly induced by MTBE. MdpA is also involved in the regulation of tert-butyl alcohol (TBA) removal under certain conditions but is not directly responsible for TBA degradation. Phylogenetic comparison of MdpA to related enzymes indicates close homology to the short-chain hydrolyzing alkane hydroxylases (AH1), a group that appears to be a distinct subfamily of the AHs. The unique, substrate-size-determining residue Thr59 distinguishes MdpA from the AH1 subfamily as well as from AlkB enzymes linked to MTBE degradation in Mycobacterium austroafricanum.  相似文献   

20.
甲基叔丁基醚微生物降解研究进展   总被引:9,自引:0,他引:9  
汽油添加剂甲基叔丁基醚(Methyl tert—Butyl Ether,MTBE)的水体污染问题近年引起广泛关注,因而微生物降解MTBE的研究也渐成热点。对MTBE的微生物降解研究现状进行简要综述,总结好氧条件下降解菌对MTBE的降解情况,以关键中间代谢物-叔丁基醇(tert-butyl alcohol,TBA)为分界点探讨微生物降解MTBE的两步可能途径,浅论MTBE微生物降解的影响因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号