首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The differential loss of higher trophic levels in the face of natural habitat loss can result in the disruption of important trophic interactions, such as biological control. Natural enemies of herbivorous pests in cropping systems often benefit from the presence of natural habitats in surrounding landscapes, as they provide key resources such as alternative hosts. However, any benefits from a biological control perspective may be dampened if this also enhances enemies at the fourth trophic level. Remarkably, studies of the influence of landscape structure on diversity and interactions of fourth trophic‐level natural enemies are largely lacking. We carried out a large‐scale sampling study to investigate the effects of landscape complexity (i.e. the proportion of non‐crop habitat in the landscapes surrounding focal study areas) on the parasitoid communities of aphids in wheat and on an abundant extra‐field plant, stinging nettle. Primary parasitoid communities (3rd trophic level) attacking the cereal aphid, Sitobion avenae, had little overlap with the communities attacking the nettle aphid, Microlophium carnosum, while secondary parasitoids (4th trophic level) showed high levels of species overlap across these two aphids (25 vs 73% shared species respectively), resulting in significantly higher linkage density and lower specialization for secondary than primary parasitoid webs. In wheat, parasitoid diversity was not related to landscape complexity for either primary or secondary parasitoids. Rates of primary parasitism were generally low, while secondary parasitism rates were high (37–94%) and increased significantly with increasing landscape complexity, although this pattern was driven by a single secondary parasitoid species. Overall, our results demonstrate that extra‐field habitats and landscape complexity can differentially benefit fourth, over third, trophic level natural enemies, and thereby, could dampen biological control. Our results further suggest that fourth trophic‐level enemies may play an important, yet understudied, role in linking insect population dynamics across habitat types.  相似文献   

2.
Food web complexity and higher-level ecosystem services   总被引:2,自引:1,他引:1  
Studies mostly focused on communities of primary producers have shown that species richness provides and promotes fundamental ecosystem services. However, we know very little about the factors influencing ecosystem services provided by higher trophic levels in natural food webs. Here we present evidence that differences in food web structure and the richness of herbivores in 19 plant‐herbivore‐parasitoid food webs influence the service supplied by natural enemies, namely, the parasitism rates on hosts. Specifically, we find that parasitoids function better in simple food webs than in complex ones, a result relevant to biological control practice. More generally, we show that species richness per se only contributes partially to the understanding of higher‐level ecosystem services in multitrophic communities, and that changes in food web complexity should also be taken into account when predicting the effects of human‐driven disturbances in natural communities.  相似文献   

3.
Agricultural intensification (AI) is currently a major driver of biodiversity loss and related ecosystem functioning decline. However, spatio-temporal changes in community structure induced by AI, and their relation to ecosystem functioning, remain largely unexplored. Here, we analysed 16 quantitative cereal aphid–parasitoid and parasitoid–hyperparasitoid food webs, replicated four times during the season, under contrasting AI regimes (organic farming in complex landscapes vs. conventional farming in simple landscapes). High AI increased food web complexity but also temporal variability in aphid–parasitoid food webs and in the dominant parasitoid species identity. Enhanced complexity and variability appeared to be controlled bottom-up by changes in aphid dominance structure and evenness. Contrary to the common expectations of positive biodiversity–ecosystem functioning relationships, community complexity (food-web complexity, species richness and evenness) was negatively related to primary parasitism rates. However, this relationship was positive for secondary parasitoids. Despite differences in community structures among different trophic levels, ecosystem services (parasitism rates) and disservices (aphid abundances and hyperparasitism rates) were always higher in fields with low AI. Hence, community structure and ecosystem functioning appear to be differently influenced by AI, and change differently over time and among trophic levels. In conclusion, intensified agriculture can support diverse albeit highly variable parasitoid–host communities, but ecosystem functioning might not be easy to predict from observed changes in community structure and composition.  相似文献   

4.
The landscape context of cereal aphid-parasitoid interactions   总被引:10,自引:0,他引:10  
Analyses at multiple spatial scales may show how important ecosystem services such as biological control are determined by processes acting on the landscape scale. We examined cereal aphid-parasitoid interactions in wheat fields in agricultural landscapes differing in structural complexity (32-100% arable land). Complex landscapes were associated with increased aphid mortality resulting from parasitism, but also with higher aphid colonization, thereby counterbalancing possible biological control by parasitoids and lastly resulting in similar aphid densities across landscapes. Thus, undisturbed perennial habitats appeared to enhance both pests and natural enemies. Analyses at multiple spatial scales (landscape sectors of 0.5-6 km diameter) showed that correlations between parasitism and percentage of arable land were significant at scales of 0.5-2 km, whereas aphid densities responded to percentage of arable land at scales of 1-6 km diameter. Hence, the higher trophic level populations appeared to be determined by smaller landscape sectors owing to dispersal limitation, showing the 'functional spatial scale' for species-specific landscape management.  相似文献   

5.
Food web structure in riverine landscapes   总被引:7,自引:0,他引:7  
1. Most research on freshwater (and other) food webs has focused on apparently discrete communities, in well-defined habitats at small spatial and temporal scales, whereas in reality food webs are embedded in complex landscapes, such as river corridors. Food web linkages across such landscapes may be crucial for ecological pattern and process, however. Here, we consider the importance of large scale influences upon lotic food webs across the three spatial dimensions and through time.
2. We assess the roles of biotic factors (e.g. predation, competition) and physical habitat features (e.g. geology, land-use, habitat fragmentation) in moulding food web structure at the landscape scale. As examples, external subsidies to lotic communities of nutrients, detritus and prey vary along the river corridor, and food web links are made and broken across the land–water interface with the rise and fall of the flood.
3. We identify several avenues of potentially fruitful research, particularly the need to quantify energy flow and population dynamics. Stoichiometric analysis of changes in C : N : P nutrient ratios over large spatial gradients (e.g. from river source to mouth, in forested versus agricultural catchments), offers a novel method of uniting energy flow and population dynamics to provide a more holistic view of riverine food webs from a landscape perspective. Macroecological approaches can be used to examine large-scale patterns in riverine food webs (e.g. trophic rank and species–area relationships). New multivariate statistical techniques can be used to examine community responses to environmental gradients and to assign traits to individual species (e.g. body-size, functional feeding group), to unravel the organisation and trophic structure of riverine food webs.  相似文献   

6.
不同农业景观结构对麦蚜种群动态的影响   总被引:4,自引:0,他引:4  
赵紫华  石云  贺达汉  杭佳  赵映书  王颖 《生态学报》2010,30(23):6380-6388
研究表明农业景观结构的复杂性与害虫种群发生强度关系密切,然而在不同农业景观结构下研究麦蚜的发生、种群及寄生蜂的变化还不多。设计了不同的麦田景观结构,调查研究了不同麦田景观结构对麦蚜种群的影响。在简单与复杂两种农业景观结构下,分析了不同种类麦蚜的入田时间、入田量、种群增长率、种群密度及寄生性天敌的多样性与寄生率。结果表明:景观结构对不同种类麦蚜影响不同,但复杂农业景观下麦蚜迁飞入田时间都要晚于简单农业景观(连片种植)下的入田时间,复杂农业景观下有翅蚜的迁入量显著低于简单景观下有翅蚜的迁入量,并且复杂农业景观下麦蚜种群增长速率高于简单农业景观下的增长速率。不同种类麦蚜对景观结构的不同反应可能与形态学与生活史特征有关,两种不同农业景观结构下寄生性天敌的多样性与寄生率无显著差异。复杂景观结构下的麦蚜有翅蚜低的迁入量、高的增长速率可能与生境高度破碎化有关,其中与温室大棚塑料白色反光有的很大的影响。生境破碎化影响了麦蚜对寄主植物寻找以及天敌对猎物的寻找效应。  相似文献   

7.
Plant and pollinator diversity have declined concurrently in Europe in the last half century. We studied plant–bumblebee food webs to understand the effects of two agri-environmental schemes (AES, organic farming and environmentally-friendly management practice) vs. conventional farming as control group, landscape structure (heterogeneous vs. homogeneous landscapes) and seasonality (June, July, and August) interactions using Estonian AES monitoring data. In the summer of 2014, we observed foraging bumblebees (20 species) on 64 farms that varied in agricultural management and landscape structure, yielding a total of 2303 flower visits on 76 plant species. We found that both management practice and landscape structure influenced the generality (redundancy in the use of flower resources) of food webs. In homogeneous landscapes, environmentally-friendly management practices, including restrictions on the application of glyphosates, enhancement of bumblebee habitats, such as permanent grassland field margins, the allocation of a minimum of 15% of arable land (including rotational grasslands) to legumes, contributed to a higher number of visited plant species (generality) in July, whereas organic farming did so in August. Therefore, both environmentally-friendly and organic management practices are needed to support plant–bumblebee food webs in agricultural landscapes. Food web generality and diversity (Shannon index) are affected by a significant interaction between landscape structure and seasonality: food web diversity varied in homogeneous landscapes between the three different survey months, whereas food webs were more diverse in heterogeneous landscapes. We did not find any significant interaction effect of management, landscape structure and seasonality on linkage density and vulnerability. A full list of the most visited plant species by bumblebees based on species-specific flower visitation was also assembled. In homogeneous landscapes, resource limitation is an issue for bumblebees in certain time periods. For supporting bumblebees in the agricultural landscapes, avoiding resource limitation is important and this can be secured with a combination of AES management practices.  相似文献   

8.
Most food webs use taxonomic or trophic species as building blocks, thereby collapsing variability in feeding linkages that occurs during the growth and development of individuals. This issue is particularly relevant to integrating parasites into food webs because parasites often undergo extreme ontogenetic niche shifts. Here, we used three versions of a freshwater pond food web with varying levels of node resolution (from taxonomic species to life stages) to examine how complex life cycles and parasites alter web properties, the perceived trophic position of organisms, and the fit of a probabilistic niche model. Consistent with prior studies, parasites increased most measures of web complexity in the taxonomic species web; however, when nodes were disaggregated into life stages, the effects of parasites on several network properties (e.g., connectance and nestedness) were reversed, due in part to the lower trophic generality of parasite life stages relative to free-living life stages. Disaggregation also reduced the trophic level of organisms with either complex or direct life cycles and was particularly useful when including predation on parasites, which can inflate trophic positions when life stages are collapsed. Contrary to predictions, disaggregation decreased network intervality and did not enhance the fit of a probabilistic niche model to the food webs with parasites. Although the most useful level of biological organization in food webs will vary with the questions of interest, our results suggest that disaggregating species-level nodes may refine our perception of how parasites and other complex life cycle organisms influence ecological networks.  相似文献   

9.
Global environmental changes threaten biodiversity and the interactions between species, and food-web approaches are being used increasingly to measure their community-wide impacts. Here we review how parasitoid–host food webs affect biological control, and how their structure responds to environmental change. We find that land-use intensification tends to produce webs with low complexity and uneven interaction strengths. Dispersal, spatial arrangement of habitats, the species pool and community differences across habitats have all been found to determine how webs respond to landscape structure, though clear effects of landscape complexity on web structure remain elusive. The invasibility of web structures and response of food webs to invasion have been the subject of theoretical and empirical work respectively, and nutrient enrichment has been widely studied in the food-web literature, potentially driving dynamic instability and altering biomass ratios of different trophic levels. Combined with food-web changes observed under climate change, these responses of food webs could signal changes to biological control, though there have been surprisingly few studies linking food-web structure to pest control, and these have produced mixed results. However, there is strong potential for food-web approaches to add value to biological control research, as parasitoid–host webs have been used to predict indirect effects among hosts that share enemies, to study non-target effects of biological control agents and to quantify the use of alternative prey resources by enemies. Future work is needed to link food-web interactions with evolutionary responses to the environment and predator–prey interactions, while incorporating recent advances in predator biodiversity research. This holistic understanding of agroecosystem responses and functioning, made possible by food-web approaches, may hold the key to better management of biological control in changing environments.  相似文献   

10.
The stoichiometry of trophic interactions has mainly been studied in simple consumer–prey systems, whereas natural systems often harbour complex food webs with abundant indirect effects. We manipulated the complexity of trophic interactions by using simple laboratory food webs and complex field food webs in enclosures in Lake Erken. In the simple food web, one producer assemblage (periphyton) and its consumers (benthic snails) were amended by perch, which was externally fed by fish food. In the complex food web, two producer assemblages (periphyton and phytoplankton), their consumers (benthic invertebrates and zooplankton) and perch feeding on zooplankton were included. In the simple food web perch affected the stoichiometry of periphyton and increased periphyton biomass and the concentration of dissolved inorganic nitrogen. Grazers reduced periphyton biomass but increased its nutrient content. In the complex food web, in contrast to the simple food web, perch affected periphyton biomass negatively but increased phytoplankton abundance. Perch had no influence on benthic invertebrate density, zooplankton biomass or periphyton stoichiometry. Benthic grazers reduced periphyton biomass and nutrient content. The difference between the simple and the complex food web was presumably due to the increase of pelagic cyanobacteria ( Gloeotrichia sp.) with fish presence in the complex food web, thus fish had indirect negative effects on periphyton biomass through nutrient competition and shading by cyanobacteria. We conclude that the higher food web complexity through the presence of pelagic primary producers (in this case Gloeotrichia sp.) influences the direction and strength of trophic and stoichiometric interactions.  相似文献   

11.
稻田节肢动物群落的营养联系   总被引:7,自引:0,他引:7  
根据田间调查和室内饲养观察的资料,研究了稻田节肢动物群落的营养结构及类型。在稻田生态系统中,物种之间由于取食与被取食、寄生与被寄生、捕食与被捕食的营养联系,形成了复杂的食物链和食物网。依据物种在食物网中的位置和功能,可将福州市郊区稻田节肢动物群落的营养结构分为3种类型:1)食物网中尚未发现有重寄生环节;2)食物网中有重寄生环节;3)食物网中有兼寄生环节。为了探讨定量研究生物群落营养联系的可能性,本文运用图论的知识把食物网的结构描述为标向图、集合或邻接矩阵,同时用图论的运算法则解决了各种类型的食物网的合并问题,为研究复杂群落的营养关系提供了一种新方法。  相似文献   

12.
1. Many taxa can be found in food webs that differ in trophic complexity, but it is unclear how trophic complexity affects the performance of particular taxa. In pond food webs, larvae of the salamander Ambystoma opacum occupy the intermediate predator trophic position in a partial intraguild predation (IGP) food web and can function as keystone predators. Larval A. opacum are also found in simpler food webs lacking either top predators or shared prey. 2. We conducted an experiment where a partial IGP food web was simplified, and we measured the growth and survival of larval A. opacum in each set of food webs. Partial IGP food webs that had either a low abundance or high abundance of total prey were also simplified by independently removing top predators and/or shared prey. 3. Removing top predators always increased A. opacum survival, but removal of shared prey had no effect on A. opacum survival, regardless of total prey abundance. 4. Surprisingly, food web simplification had no effect on the growth of A. opacum when present in food webs with a low abundance of prey but had important effects on A. opacum growth in food webs with a high abundance of prey. Simplifying a partial IGP food web with a high abundance of prey reduced A. opacum growth when either top predators or shared prey were removed from the food web and the loss of top predators and shared prey influenced A. opacum growth in a non-additive fashion. 5. The non-additive response in A. opacum growth appears to be the result of supplemental prey availability augmenting the beneficial effects of top predators. Top predators had a beneficial effect on A. opacum populations by reducing the abundance of A. opacum present and thereby reducing the intensity of intraspecific competition. 6. Our study indicates that the effects of food web simplification on the performance of A. opacum are complex and depend on both how a partial IGP food web is simplified and how abundant prey are in the food web. These findings are important because they demonstrate how trophic complexity can create variation in the performance of intermediate predators that play important roles in temporary pond food webs.  相似文献   

13.
Ecosystem processes in agricultural landscapes are often triggered by resource availability in crop and noncrop habitats. We investigated how oilseed rape (OSR; Brassica napus, Brassicaceae) affects noncrop plants in managed systems and semi-natural habitat, using trophic interactions among wild mustard (Sinapis arvensis, Brassicaceae), rape pollen beetles (Meligethes aeneus, Nitidulidae) and their parasitoids (Tersilochus heterocerus, Ichneumonidae). We exposed wild mustard as phytometer plants in two cropland habitat types (wheat field, field margin) and three noncrop habitat types (fallow, grassland, wood margin) across eight landscapes along a gradient from simple to complex (quantified as % arable land). Both landscape and local factors affected the abundance of rape pollen beetles and parasitoids. Rape pollen beetle infestation and parasitism rates on these plants were lower in noncrop habitats and higher in wheat fields and field margins, whereas beetles and parasitoids responded differently to landscape scale parameters. We found the hypothesized spillover from OSR crop onto wild plants in surrounding habitats only for parasitoids, but not for pollen beetles. Parasitism rates were not related to landscape simplification, but benefited from increasing proportions of OSR. In contrast, rape pollen beetles benefited from simple landscape structures, presumably due to multi-annual population build-ups resulting from long-term OSR planting (as part of the crop rotation). In conclusion, we showed that spillover from cropland affects parasitism rates on related wild plants outside cropland, which has not been shown so far, but can be expected to be a widespread effect shaping noncrop food webs.  相似文献   

14.
Local community structure and interactions have been shown to depend partly on landscape context. In this paper we tested the hypothesis that the spatial scale experienced by an organism depends on its trophic level. We analyzed plant-herbivore and herbivore-parasitoid interactions in 15 agricultural landscapes differing in structural complexity using the rape pollen beetle ( Meligethes aeneus ), an important pest on oilseed rape ( Brassica napus ), and its parasitoids. In the very center of each landscape a patch of potted rape plants was placed in a grassy field margin strip for standardized measurement. Percent non-crop area of landscapes was negatively related to plant damage caused by herbivory and positively to the herbivores' larval mortality resulting from parasitism. In a geographic scale analysis, we quantified the structure of the 15 landscapes for eight circular sectors ranging from 0.5 to 6 km diameter. Correlations between parasitism and non-crop areas as well as between herbivory and non-crop area were strongest at a scale of 1.5 km, thereby not supporting the view that higher trophic levels experience the world at a larger spatial scale. However, the predictive power of non-crop area changed only slightly for herbivory, but greatly with respect to parasitism as scales from 0.5 to 1.5 km and from 1.5 to 6 km diameter increased. Furthermore, the effect of non-crop area tended to be stronger in parasitism than herbivory suggesting a greater effect of changes in landscape context on parasitoids. This is in support of the general idea that higher trophic levels should be more susceptible to disturbance.  相似文献   

15.
Abstract This study investigated the structure and properties of a tropical stream food web in a small spatial scale, characterizing its planktonic, epiphytic and benthic compartments. The study was carried out in the Potreirinho Creek, a second‐order stream located in the south‐east of Brazil. Some attributes of the three subwebs and of the conglomerate food web, composed by the trophic links of the three compartments plus the fish species, were determined. Among compartments, the food webs showed considerable variation in structure. The epiphytic food web was consistently more complex than the planktonic and benthic webs. The values of number of species, number of links and maximum food chain length were significantly higher in the epiphytic compartment than in the other two. Otherwise, the connectance was significantly lower in epiphyton. The significant differences of most food web parameters were determined by the increase in the number of trophic species, represented mainly by basal and intermediate species. High species richness, detritus‐based system and high degree of omnivory characterized the stream food web studied. The aquatic macrophytes probably provide a substratum more stable and structurally complex than the sediment. We suggest that the greater species richness and trophic complexity in the epiphytic subweb might be due to the higher degree of habitat complexity supported by macrophyte substrate. Despite differences observed in the structure of the three subwebs, they are highly connected by trophic interactions, mainly by fishes. The high degree of fish omnivory associated with their movements at different spatial scales suggests that these animals have a significant role in the food web dynamic of Potreirinho Creek. This interface between macrophytes and the interconnections resultant from fish foraging, diluted the compartmentalization of the Potreirinho food web.  相似文献   

16.
关晓庆  刘军和  赵紫华 《生态学报》2013,33(14):4468-4477
农业景观格局与过程能够强烈影响寄生蜂对寄主的寻找及寄生作用,寄主密度亦是影响寄生蜂分布的重要因素,然而农业景观的格局和寄主密度对寄生蜂寄生率的相互影响是一项值得研究的工作.在简单与复杂2种麦田农业景观结构下,调查了麦蚜的分布格局与2种寄主密度下麦蚜的初寄生率与重寄生率,分析了景观结构对麦蚜密度的影响、景观格局与麦蚜密度对寄生蜂寄生率与重寄生率的影响及交互作用.结果表明:景观结构的复杂性对麦蚜分布和寄生蜂初寄生率与重寄生率的影响均不明显,但寄主密度与景观结构的复杂性对寄生蜂的影响存在着明显的交互作用,寄主密度与寄生率呈正相关,寄主密度较低时烟蚜茧蜂为优势种,寄主密度较高时燕麦蚜茧蜂为优势种.麦蚜初寄生蜂与重寄生蜂对寄主密度的反应与其形态学、体型大小以及生活史特征相关,初寄生蜂与重寄生蜂的群落组成显著影响其对麦蚜的寄生率,而与景观结构的复杂性关系不大.  相似文献   

17.
Diverse populations of invertebrates constitute the food web in detritus layers of a forest floor. Heterogeneity in trophic interactions within such a species-rich community food web may affect the dynamic properties of biological communities such as stability. To examine the vertical heterogeneity in trophic interactions among invertebrates in litter and humus layers, we studied differences in species composition and variations in carbon and nitrogen stable-isotope ratios (δ13C and δ15N) using community-wide metrics of the forest floors of temperate broadleaf forests in Japan. The species composition differed between the two layers, and the invertebrates in the litter layer were generally larger than those in the humus layer, suggesting that these layers harbored separate food webs based on different basal resources. However, the δ13C of invertebrates, an indicator of differences in the basal resources of community food webs, did not provide evidence for separate food webs between layers even though plant-derived organic matter showed differences in stable-isotope ratios according to decomposition state. The minimum δ15N of invertebrates also did not differ between layers, suggesting sharing of food by detritivores from the two layers at lower trophic levels. The maximum and range of δ15N were greater in the humus layer, suggesting more trophic transfers (probably involving microorganisms) than in the litter layer and providing circumstantial evidence for weak trophic interactions between layers at higher trophic levels. Thus, the invertebrate community food web was not clearly compartmentalized between the detrital layers but still showed a conspicuous spatial (vertical) heterogeneity in trophic interactions.  相似文献   

18.
Biological invasions are a key component of global change, and understanding the drivers of global invasion patterns will aid in assessing and mitigating the impact of invasive species. While invasive species are most often studied in the context of one or two trophic levels, in reality species invade communities comprised of complex food webs. The complexity and integrity of the native food web may be a more important determinant of invasion success than the strength of interactions between a small subset of species within a larger food web. Previous efforts to understand the relationship between food web properties and species invasions have been primarily theoretical and have yielded mixed results. Here, we present a synthesis of empirical information on food web connectance and species invasion success gathered from different sources (estimates of food web connectance from the primary literature and estimates of invasion success from the Global Invasive Species Database as well as the primary literature). Our results suggest that higher‐connectance food webs tend to host fewer invaders and exert stronger biotic resistance compared to low‐connectance webs. We argue that while these correlations cannot be used to infer a causal link between food web connectance and habitat invasibility, the promising findings beg for further empirical research that deliberately tests for relationships between food web connectance and invasion.  相似文献   

19.
Proportions of specialist and generalist primary parasitoids have been described by the resource breadth and the trade-off hypothesis. These alternative hypotheses predict either decreased or increased, respectively, parasitism rate of shared aphid species by specialist parasitoids. We tested both hypotheses and the confounding effects of landscape structure and agricultural intensification (AI) using extensive samplings of aphids and their parasitoids in Polish agricultural landscapes. Abundances, species composition of aphids, primary parasitoids, and parasitism rate of aphids by specialists and generalist parasitoids were analysed. Contrary to our expectations we found equally decreased parasitism rates by both types of primary parasitoids at higher aphid densities and thus proportion of specialists to generalists did not change with increasing host density. In line with the resource breadth hypothesis, specialist parasitoids had always lower abundances and parasitism rates than generalist parasitoids. Landscape diversity and agricultural intensification did not influence the host-parasitoid population dynamics. We speculate that these contrasting results could be caused by the additional density effects of secondary parasitoids. We conclude that simplistic two-trophic-level population models are not able to fully describe the complex dynamics of trophic networks. We also argue that agricultural intensification has lower effects on abundance and effectiveness of parasitoids than predicted by respective predator–prey models and empirical studies performed in controlled and artificial conditions.  相似文献   

20.
We determined major structural properties influencing the food webs of two sandy beaches with contrasting morphodynamics in the Atlantic coast of Uruguay: reflective (narrow and steep) and dissipative beaches (wide and flat). Furthermore, we evaluated how these characteristics could influence the stability of the local food webs. To this end, we examined the correlation of several food web properties with different ecosystem types (including freshwater habitats, estuary, marine, and terrestrial environments) using a principal components analysis. Sandy beach food web components included detritus, phytoplankton, zooplankton, benthic invertebrates, fishes, and seabirds. Our results revealed that the dissipative beach presented higher trophic levels, a higher number of trophic species, more links per species, as well as a higher proportion of intermediate trophic species, but lower connectance and proportion of omnivorous species than the reflective beach. The variation in the food web properties was explained by two principal components. Sandy beach food webs contribute mainly to one dimension of the principal components analysis that was determined by the number of trophic species, links per species, the trophic similarity, and the characteristic path length. We suggest that species and link characteristics, such as predominance of scavengers and detritivorous, the relatively high connectance and the short path length are drivers in the food web structure and may play a role in the community dynamic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号