首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The vitamins p-aminobenzoic acid, thiamine, biotin, nicotinamide, and B12 were tested for their ability to stimulate growth. Only vitamin B12 was required. Urea and NaNO2 supported excellent growth, although sodium nitrite, ammonium nitrate, and the Casamino acids supported only fair growth. Platydorina grew aerobically in the absence of an exogenous source of carbon; however a carbon source was required for anaerobic growth. Of 25 carbon compounds examined, isocitrate supported anaerobic growth in the light equalling the aerobic controls. Growth did not occur aerobically or anaerobically in the dark with any carbon source examined. Growth was excellent at pH values in excess of 7.0. Growth at pH 10.0 was 4 times that at 7.0 in strain I.U. 850 and twice that at 7.0 in strain Kan-3E. Growth was accelerated with the increase in temperatures but this increase may well be due to the increased intensity of light to which the cultures were exposed at the higher terperatures.  相似文献   

2.
SYNOPSIS. Vitamin B12, biotin and thiamine requirements of 10 strains of Volvulina steinii and 1 strain of V. pringsheimii were studied. Vitamin B12 is required for growth of both species, thiamine stimulates growth slightly, and biotin has no discernible effect on growth. The minimum concentration of vitamin B12 giving a growth response in V. steinii, strain SC-2, was 10?8 g/ml, and maximum growth response was obtained with 1.1 × 10?7 g/ml. An organic carbon source is required for growth of V. steinii but not of V. pringsheimii. Growth of V. steinii, strain SC-2, occurred in 20 of 21 carbon sources tested. Optimal growth with each carbon source was largely dependent upon pH. Except for pyruvate, acetate, and ethanol, carbon source utilization was light-dependent, and growth in ethanol was reduced in the dark. Isocitric lyase activity was detected in V. steinii grown on acetate medium.  相似文献   

3.
An extraction procedure was developed for determining vitamin B12, thiamine, and biotin contents of marine phytoplankton. Phytoplankters were collected either by centrifugation or by retention on a glass fiber filter, then heated at 100 C for I hr in 100 ml of vitamin-free seawater acidified to pH 3.5 with HCl. The extract, after debris removal, was filter-sterilized and analyzed, for vitamin B12, thiamine, and biotin with standard vitamin assay procedures. The vitamin contents of haeodactylum tricornutum, Skeletonema costatum, Stephanopyxis turris, and occolithus liuxleyi were determined during growth in batch cultures. P. tricornutum (non-vitamin requirer) growing in aerated cultures contained 0.29–0.96 ng B12, 5–15 ng thiamine, and 0.45–1.70 ng biotin/mg C. Under similar conditions S. costatum (B12-requirer) contained about 0.06 ng B12, 5–36 ng thiamine, and 0.16–2.10 ng biotin/mg C. The concentrations of vitamin were generally similar during some portion of the growth curve, eg, logarithmic growth. The vitamin B12, content of S. costatum growing under nonaerated conditions decreased when medium B12, was reduced. The biotin content did not change when medium B12 was decreased. The thiamine content per unit weight of C. huxleyi (thiamine-requirer) growing with either 10 or 120 ng/liter thiamine decreased under both medium concentrations, indicating no net synthesis of the vitamin.  相似文献   

4.
The accumulation of vitamin B12 by Bacillus badins grown on hydrocarbon was investigated. The bacterium could assimilate n-alkanes of C11–C18, ethanol, fumarate, α-ketoglutarate and malate. n-Alkanes of C16–C18, were the best for vitamin B12 production. The bacterium utilized well all of the nitrogen sources tested. Above all, ammonium dihydrogen phosphate was the best for the bacteria] growth and vitamin B12 production. Addition of organic nutrients such as malt extract and meat extract, and addition of metal ions such as ferrous and cobalt promoted the growth and vitamin B12 production. Interestingly, vitamin B12 was produced mostly in the supernatant. The cyanoform of the corrinoid predominantly formed in the supernatant would confirm the identity with cobalamin.  相似文献   

5.
Summary To extend the use of industrial wastes, we have studied the growth of Euglena cells on demineralized whey powder, an industrial dairy waste from cheese making. The demineralized whey powder was solubilized (15 g/l) in 0.04 N HCl and autoclaved for two hours at 120°C. The solution was then brought to pH 3.5 with NH4OH and tested for its ability to support Euglena growth. In the dark, cell densities of 4.5 to 5.5×106 cells/ml were obtained when vitamin B12, thiamine and minerals were added to the hydrolyzed whey solution. Although growth of Euglena is possible on whey, the industrial application may be limited due to the need to hydrolyze the whey and to the low utilization of carbon (20%) as the glucose, but not the galactose, released during hydrolysis is used.  相似文献   

6.
A defined medium (MAM) simulating acid mine drainage waters was developed which supported reproducible growth rates of three axenic strains of Euglena mutabilis Schmitz. Growth responses to various pHs and carbon sources were examined under defined culture conditions. A lab strain and two 5eld isolates, tested over pH range 1.5-9.0, grew best under acidic conditions (pH < 5.5) with highest growth rates at pH 3-4. Photoauxotrophic growth rates of all strains at pH 3 were improved significantly over unstirred batch controls by bubbling with air and even more by enrichment with 5% CO2 in air. These results confirmed inorganic carbon limitation in batch culture. Organic carbon substrates were tested as possible carbon supplements in batch culture at pH 3. None of the strains survived in the dark on any of the twenty organic sources added. In the light, the lab strain exhibited some photoheterotrophic growth potential on glucose, sucrose, ethanol, and amino acids but growth was inhibited by acetate. Field strains showed little or no growth improvement with any organic substrate addition. Under simultaneous enrichment with acetate and 5% CO2 acetate continued to be inhibitory. Simultaneous enrichment with glucose and 5% CO2 gave higher yields of the lab strain than with CO2 alone but did not enhance growth of the field strain. We conclude that E. mutabilis is an acidophilic photoauxotroph which appears unable to use organic carbon supplements for growth even under conditions of carbon limitation.  相似文献   

7.
The nutritional requirements forPrevotella sp. 4PCCNB2 isolated from the rumen of a native goat in Korea and those of the ATCC 19189 strain isolated from the bovine rumen were investigated. The two strains grew well with ammonium sulfate as the sole added nitrogen source. However, neither a complex of amino acids nor casein hydrolysate effectively replaced ammonium sulfate. Biotin,p-aminobenzoic acid, and vitamin B12 were essential to culture the ATCC 19189 strain. Unlike the ATCC 19189 strain, however, B12 was only stimulatory for the growth of the 4PCCNB2 strain. The 4PCCNB2 strain grew well in the basal medium without an individual acid such as acetic acid or valeric acid. In contrast, either acetic or valeric acid was absolutely required for the growth of the ATCC 19189 strain.  相似文献   

8.
The accumulation of vitamin B6 by Pichia guilliermondii Wickerham NK–2 strain grown on hydrocarbon was investigated. Ammonium acetate was more effective than other nitrogen sources tested. Satisfactory utilization by the yeast strain was observed in n-alkanes of C10–C18, and n-pentadecane was the best for vitamin B6 production. Vitamin B6 was excreted in the cultural broth mainly in the form of pyridoxal, The maximal vitamin B6 production was approximately 25 mg per liter of the culture broth.  相似文献   

9.
A defined minimal medium was developed for an axenic strain of Peridinium (Indiana Culture No. LB 1336). Thiamine, biotin, and vitamin B12 did not stimulate growth. Of 15 organic carbon sources tried in light, fructose, galactose, glucose, malate, malonate, and pyruvate enhanced growth but propionate retarded growth. In dark-grown cultures only media with succinate permitted growth above the survival level. Stimulation of growth by organic carbon sources was markedly pH dependent.  相似文献   

10.
Coenzymes are essential across all domains of life. B vitamins (B1‐thiamin, B2‐riboflavin, B3‐niacin, B5‐pantothenate, B6‐pyridoxine, B7‐biotin, and B12‐cobalamin) represent the largest class of coenzymes, which participate in a diverse set of reactions including C1‐rearrangements, DNA repair, electron transfer, and fatty acid synthesis. B vitamin structures range from simple to complex heterocycles, yet, despite this complexity, multiple lines of evidence exist for their ancient origins including abiotic synthesis under putative early Earth conditions and/or meteorite transport. Thus, some of these critical coenzymes likely preceded life on Earth. Some modern organisms can synthesize their own B vitamins de novo while others must either scavenge them from the environment or establish a symbiotic relationship with a B vitamin producer. B vitamin requirements are widespread in some of the most ancient metabolisms including all six carbon fixation pathways, sulfate reduction, sulfur disproportionation, methanogenesis, acetogenesis, and photosynthesis. Understanding modern metabolic B vitamin requirements is critical for understanding the evolutionary conditions of ancient metabolisms as well as the biogeochemical cycling of critical elements such as S, C, and O.  相似文献   

11.
Euglena gracilis Klebs, Poterioochromonas malhamensis (Pringsheim) Peterfi, Monochrysis lutheri Droop, Isochrysis galbana Parke and Phaeodactylum tricornutum Bohlin are known to release into the medium a substance which binds free vitamin B12. The binder, apparently a glycoprotein, makes vitamin B12 unavailable and inhibits growth of vitamin B12-requiring microorganisms. Culture filtrates of selected marine diatoms, chrysophytes, cryptophytes, dinoflagellates and green algae contained the binder, indicating that binder release was not restricted to any algal group. However the three prokaryotic bluegreens tested do not produce B12-binder. Production is also independent of the nutritional requirements of the donor, being produced by autotrophs and auxotrophs. The binders produced by these marine species have similar properties: they are heat labile; inhibition is not species-specific; it is competitive, being reversed by adding B12. Production increases with density of the culture and is not restricted to stationary or scenescent cells. The marine species tested produced much less B12 than the freshwater Euglena and Poterioochromonas; the inhibition is reversed by 20–50 ng · 1?1 of B12 for marine species which reach moderate densities and by 150–300 ng · 1?1 B12 for the densely growing species. Consequently the binder may affect the growth of B12-requiring species only in environments like the open ocean poor in B12. By contrast, the marine algae produce other inhibitors which are often heat stable and very inhibitory. These inhibitors, being species-specific and less labile, may be more important in affecting the succession of algal species in natural waters.  相似文献   

12.
Bud formation in the moss Pylaisiella selwynii is greatly enhanced by cytokinins at concentrations as low as 10−12m , yet these buds usually fail to develop into normal gametophores. Various ratios at different concentrations of the cytokinin N-6-γ,γ-dimethylallylaminopurine to indoleacetic acid failed to enhance bud initiation over that obtained with cytokinin alone or to permit normal gametophore development. Deletion of the cobaltous ions from the culture medium prevented the appearance of the few gametophores usually formed in the complete medium, but different amounts of cobaltous ion did not significantly enhance initiation of gametophore development. Bud initiation was enhanced 3- to 20-fold by vitamin B12 at 10−5m or by B12 coenzyme at 10−4m , and the time of appearance of these buds was advanced by 6–12 days compared to control plants. At these concentrations of the B12 compounds the buds formed normal gametophores, but at 10−4m vitamin B12 they grew into callus-like masses similar to those obtained with cytokinins. Although the effects of B12 on bud initiation and development mimicked those of cytokinins, except in permitting normal development, no additive or synergistic effects were observed when they were tested together. It is suggested that B12 may play a regulatory role in the control of gametophore initiation and development in mosses.  相似文献   

13.
Datura innoxia Mill. callus cultures formed shoots in 2–4 weeks on media containing; a) gibberellic acid, b) indoleacetic acid, c) low concentrations of naphthylacetic acid, d) low concentrations of 2,4-dichlorophenoxyacetic acid, e) benzylaminopurine, f) no growth substance. Benzylaminopurine promoted shoot differentiation. Gibberellic acid inhibited shoot formation weakly, but inhibited proper leaf blade formation. Root differentiation was rare. The callus cultures of Datura innoxia grew rapidly (100-fold in 4 weeks) on a slightly modified Murashige and Skoog medium (0.5 mg/l thiamin · HCl, pH 5.5, no glycine) in light at 30°C. Callus grew well on any single one of the growth substances NAA (10?5M), 2,4-D (10?6M) or BAP (3 × 10?6M). Growth was less and more erratic on GA or IAA. The callus cultures did not grow significantly better when BAP was combined with one of the auxins or with GA.  相似文献   

14.
A morpholinepropanesulfonic acid (MOPS)-buffered rich defined medium (RDM) was optimized to support a reproducible 2.6-h doubling time at 35 °C for Deinococcus radiodurans R1 and used to gain insight into vitamin and carbon metabolism. D. radiodurans was shown to require biotin and niacin for growth in this medium. A glutamine–serine simple defined medium (SDM) was developed that supported a 4-h doubling time, and this medium was used to probe sulfur and methionine metabolism. Vitamin B12 was shown to alleviate methionine auxotrophy, and under these conditions, sulfate was used as the sole sulfur source. Phenotypic characterization of a methionine synthase deletion mutant demonstrated that the B12 alleviation of methionine auxotrophy was due to the necessity of the B12-dependent methionine synthase in methionine biosynthesis. Growth on ammonium as the sole nitrogen source in the presence of vitamin B12 was demonstrated, but it was not possible to achieve reproducibly good growth in the absence of at least one amino acid as a nitrogen source. Growth on sulfate, cysteine, and methionine as sulfur sources demonstrated the function of a complete sulfur recycling pathway in this strain. These studies have demonstrated that rapid growth of D. radiodurans R1 can be achieved in a MOPS-based medium solely containing a carbon source, salts, four vitamins, and two amino acids.  相似文献   

15.
Summary This investigation includes a study of the effect of ammonium salt, nitrate and urea as nitrogen sources; vitamin B6 as cofactor in transamination, and of acetate, pyruvate and glucose as carbon sources on the dry weight, total nitrogen and amino acid synthesis in Ulva, Dictyota and Pterocladia. The results showed that urea and to a lesser extent ammonium salt were better nitrogen sources for either Ulva or Pterocladia, while ammonium salt was best for Dictyota. Vitamin B6 was effective in transaminations and resynthesis of amino acids in the three marine algae, especially Ulva. Pyruvate was a better carbon source than either acetate or glucose in increasing dry weights, total nitrogen and amino acid synthesis in Ulva and Dictyota, whereas acetate was best in Pterocladia.  相似文献   

16.
A 2 M sodium acetate buffer at pH 4.2 was tried to simplify the step of pH adjustment in a laboratory dry-grind procedure. Ethanol yields or conversion efficiencies of 18 sorghum hybrids improved significantly with 2.0–5.9% (3.9% on average) of relative increases when the method of pH adjustment changed from traditional HCl to the acetate buffer. Ethanol yields obtained using the two methods were highly correlated (R 2 = 0.96, P < 0.0001), indicating that the acetate buffer did not influence resolution of the procedure to differentiate sorghum hybrids varying in fermentation quality. Acetate retarded the growth of Saccharomyces cerevisiae, but did not affect the overall fermentation rate. With 41–47 mM of undissociated acetic acid in mash of a sorghum hybrid at pH 4.7, rates of glucose consumption and ethanol production were inhibited during exponential phase but promoted during stationary phase. The maximum growth rate constants (μ max) were 0.42 and 0.32 h−1 for cells grown in mashes with pH adjusted by HCl and the acetate buffer, respectively. Viable cell counts of yeast in mashes with pH adjusted by the acetate buffer were 36% lower than those in mashes adjusted by HCl during stationary phase. Coupled to a 5.3% relative increase in ethanol, a 43.6% relative decrease in glycerol was observed, when the acetate buffer was substituted for HCl. Acetate helped to transfer glucose to ethanol more efficiently. The strain tested did not use acetic acid as carbon source. It was suggested that decreased levels of ATP under acetate stress stimulate glycolysis to ethanol formation, increasing its yield at the expense of biomass and glycerol production. Names are necessary to report factually on available data; however, the U.S. Department of Agriculture neither guarantees nor warrants the standard of the product, and use of the name by the U.S. Department of Agriculture implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

17.
Many algae are auxotrophs for vitamin B12 (cobalamin), which they need as a cofactor for B12‐dependent methionine synthase (METH). Because only prokaryotes can synthesize the cobalamin, they must be the ultimate source of the vitamin. In the laboratory, a direct interaction between algae and heterotrophic bacteria has been shown, with bacteria supplying cobalamin in exchange for fixed carbon. Here we establish a system to study this interaction at the molecular level. In a culture of a B12‐dependent green alga Chlamydomonas nivalis, we found a contaminating bacterium, identified by 16S rRNA analysis as Mesorhizobium sp. Using the sequenced strain of M. loti (MAFF303099), we found that it was able to support the growth of B12‐dependent Lobomonas rostrata, another green alga, in return for fixed carbon. The two organisms form a stable equilibrium in terms of population numbers, which is maintained over many generations in semi‐continuous culture, indicating a degree of regulation. However, addition of either vitamin B12 or a carbon source for the bacteria perturbs the equilibrium, demonstrating that the symbiosis is mutualistic and facultative. Chlamydomonas reinhardtii does not require B12 for growth because it encodes a B12‐independent methionine synthase, METE, the gene for which is suppressed by addition of exogenous B12. Co‐culturing C. reinhardtii with M. loti also results in reduction of METE expression, demonstrating that the bacterium can deliver the vitamin to this B12‐independent alga. We discuss the implications of this for the widespread distribution of cobalamin auxotrophy in the algal kingdom.  相似文献   

18.
Electrochemically active composite film containing multiwalled carbon nanotubes (MWCNTs) and vitamin B12 was synthesized on glassy carbon, gold, and indium tin oxide electrodes by the potentiodynamic method. The presence of MWCNTs in the composite film (MWCNT–B12) modified electrode mediates vitamin B12’s redox reaction, whereas vitamin B12’s redox reaction does not occur at bare electrode. The electrochemical impedance spectroscopy studies reveal that MWCNTs present in MWCNT–B12 film enhance electron shuttling between the reactant and electrode surface. The surface morphology of bare electrode, MWCNT film. and MWCNT–B12 composite film was studied using atomic force microscopy, which reveals vitamin B12 incorporated with MWCNTs. The MWCNT–B12 composite film exhibits promising enhanced electrocatalysis toward hydrazine. The electrocatalysis response of hydrazine at MWCNT film and MWCNT–B12 composite film was measured using cyclic voltammetry and amperometric current–time (it) curve techniques. The linear concentration range of hydrazine obtained at MWCNT–B12 composite film using the it curve technique is 2.0 μM–1.95 mM. Similarly, the sensitivity of MWCNT–B12 composite film for hydrazine determination using the it curve technique is 1.32 mA mM−1 cm−2, and the hydrazine’s limit of detection at MWCNT–B12 composite film is 0.7 μM.  相似文献   

19.
Twelve clones (seven species) representative of centric diatoms dominant in the spring phytoplankton bloom in the Gulf of Maine were isolated and rendered axenic. Genera included were Thalassiosira, Porosira and Chaetoceros. Unlike most centric diatoms studied previously, none of these has an absolute requirement for vitamin B12. However, B12 (5 ng.l-1) stimulated growth of most clones by eliminating or reducing the lag phase and increasing the growth rate. Bloom population densities developed 4–54 days earlier with B12 present. Several clones grown with B12 removed more than 80% of the vitamin from the medium. When grown in vitamin-free medium the cells put 0.01–0.7 ng.l-1 B12 into the medium. We conclude that vitamin B12 is of ecological significance even though the requirement for it is not absolute.  相似文献   

20.
The vitamin B12 requirement of Rhodocyclus purpureus 6770, Rhodospirillum tenue 1/67, and Rhodopseudomonas palustris G 53/2 was determined. A wide variety of biogenetic precursors of the vitamin including cobinamide, cobyric acid, cobinic acid and several partially amidated cobyrinic acids showed growth-promoting activity in all three strains. In R. purpureus vitamin B12 could even be substituted by cobyrinic acid which is the first cobalt-containing precursor of vitamin B12 so far established. Neither methionine, deoxynucleosides, dimethylbenzimidazole nor increased amounts of cobalt could replace vitamin B12 as growth factor.Cupribalamin, which is a strong antimetabolite of vitamin B12 in Escherichia coli 113-3 and Lactobacillus leichmannii ATCC 7830, exhibited only a weak antagonistic effect on growth of R. purpureus and R. tenue. Growth of R. palustris was not inhibited by cupribalamin. The cells of all three strains were shown to contain metal-free corrinoids in addition to cobalt-containing corrinoids. The principal products were identified as 5-deoxyadenosylcobalamin and hydrogenobalamin, the metal free analogue of vitamin B12. The latter does not originate from the vitamin by removal of cobalt but is de novo biosynthesized as could be demonstrated in the case of R. purpureus by a labelling experiment with [13C] methyl-l-methionine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号