首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
Changes in body temperature and cell infiltration, mediated by cytokines including tumor necrosis factor-alpha (TNF-alpha), occur during inflammation, but a role of body temperature on inflammatory responses remains obscure. Intraperitoneal injection of 10% casein to mice resulted in transient hypothermia followed by neutrophil accumulation in peritoneal cavities. Peritoneal TNF-alpha was rapidly raised, and pretreatment of mice with an anti-TNF-alpha antibody promoted temperature restoration and partially inhibited neutrophil accumulation. To investigate direct effects of body temperature on neutrophils, peritoneal or peripheral blood neutrophils were cultured at 35 degrees C or 37 degrees C with or without recombinant murine TNF-alpha (100 ng/ml) or a protein synthesis inhibitor cycloheximide (1 microg/ml). Significant inhibition of spontaneous and TNF-alpha-induced apoptosis was obtained at 35 degrees C compared with 37 degrees C, an effect that was not altered by the addition of cycloheximide. Moreover, phagocytic ability of peritoneal neutrophils was significantly enhanced by incubating them at the lower temperature. These results indicate that mild hypothermia induced by endogenous TNF-alpha has enhancing roles on neutrophil survival and function during peritoneal inflammation.  相似文献   

2.
When human neutrophils are incubated with LPS, they become primed for enhanced release of O2- in response to stimulation by FMLP. We investigated two aspects of LPS priming: 1) whether priming depends on secretion of TNF-alpha by monocytes present in neutrophil preparations, and 2) whether plasma is required for priming. Using plasma-Percoll gradients, we isolated neutrophils that contained only 0.1% monocytes. At 37 degrees C, these neutrophils were significantly primed by LPS (100 ng/ml) within 30 min. In contrast, LPS-treated monocytes required 60 min to secrete significant neutrophil-priming activity, the major component of which was TNF-alpha. Further, antibody against TNF-alpha failed to inhibit priming of neutrophils by LPS at 15, 30, and 45 min, and inhibited only 15% at 60 min. The results suggested that TNF-alpha or other factors from monocytes were not essential for priming of neutrophils by LPS. Neutrophils that had been washed free of plasma by centrifugation through 50% Percoll responded only weakly to LPS with respect to priming for enhanced O2- release and increased expression of alkaline phosphatase activity on the cell surface. Priming of washed neutrophils could be restored by adding back plasma (0.1 to 1.0%). This effect of plasma was not blocked by heating the plasma to 56 degrees C but was blocked at 100 degrees C. LPS priming could be blocked by polymyxin B, even in the presence of plasma. Thus, priming required both LPS and plasma. Neutrophils incubated with LPS in the absence of plasma were not primed by subsequent addition of plasma, but were primed by addition of plasma and LPS. Culture supernatants from neutrophils incubated with 20 ng/ml LPS in the absence of plasma failed to prime fresh neutrophils, but supernatants from neutrophils incubated with LPS in the presence of 1% plasma were able to prime fresh neutrophils. These results implied that neutrophils inactivated LPS and that plasma protected LPS from inactivation. Nevertheless, such inactivated LPS retained the ability to gel Limulus lysate at 10 pg/ml, and the ability to prime monocytes at 100 pg/ml. Thus, plasma prevented a neutrophil-specific inactivation of LPS.  相似文献   

3.
Macrophage migration inhibitory factor (MIF) is an important cytokine involved in the regulation of innate immunity and present at increased levels during inflammatory responses. Here we demonstrate that mature blood and tissue neutrophils constitutively express MIF as a cytosolic protein not associated with azurophil granules. Functionally active MIF, but not proteases stored in azurophil granules, was released from apoptotic neutrophils following short term tumor necrosis factor (TNF)-alpha stimulation in a caspase-dependent manner and prior to any detectable phagocytosis by monocyte-derived macrophages. Moreover, TNF-alpha-mediated MIF release was blocked by glyburide and propenicide, both inhibitors of ATP-binding cassette-type transporters, suggesting that this transporter system is activated during neutrophil apoptosis. Taken together, apoptotic mature neutrophils release MIF upon short term TNF-alpha stimulation. Therefore, apoptosis may not always occur without the induction of pro-inflammatory mechanisms.  相似文献   

4.
Human CMV (HCMV) retinitis frequently leads to blindness in iatrogenically immunosuppressed patients and in the end stage of AIDS. Despite the general proinflammatory potential of HCMV, virus infection is associated with a rather mild cellular inflammatory response in the retina. To investigate this phenomenon, the influence of HCMV (strains AD169 or Hi91) infection on C-X-C chemokine secretion, ICAM-1 expression, and neutrophil recruitment in cultured human retinal pigment epithelial (RPE) cells was studied. Supernatants from infected cultures contained enhanced levels of IL-8 and melanoma growth-stimulating activity/Gro alpha and induced neutrophil chemotaxis compared with supernatants from uninfected RPE cells. Despite HCMV-induced ICAM-1 expression on RPE cells, binding of activated neutrophils to HCMV-infected RPE cells and subsequent transepithelial penetration were significantly reduced. Reduced neutrophil adhesion to infected RPE cells correlated with HCMV-induced up-regulation of constitutive Fas ligand (FasL) expression. Functional blocking of FasL on RPE cells with the neutralizing mAbs NOK-1 and NOK-2 or of the Fas receptor on neutrophils with mAbB-D29 prevented the HCMV-induced impairment of neutrophil/RPE interactions. Fas-FasL-dependent impairment of neutrophil binding had occurred by 10 min after neutrophil/RPE coculture without apoptotic signs. Neutrophil apoptosis was first detected after 4 h. Treatment of neutrophils with a specific inhibitor of caspase-8 suppressed apoptosis, whereas it did not prevent impaired neutrophil binding to infected RPE. The current results suggest a novel role for FasL in the RPE regulation of neutrophil binding. This may be an important feature of virus escape mechanisms and for sustaining the immune-privileged character of the retina during HCMV ocular infection.  相似文献   

5.
The aim of the study was to evaluate the effect of selected temperatures on viability (apoptosis and necrosis) of bovine blood neutrophil granulocytes (neutrophils) in vitro. The following temperatures were tested: -80, -20, 4, 23, 37 degrees C. Heparinised bovine blood was incubated for 1, 4 and 24 h under respective temperature. Apoptosis and necrosis of neutrophils were detected by light microscopy, transmission electron microscopy (TEM) and flow cytometry (FCM). From selected temperatures, 4 degrees C impaired the neutrophil viability least. The proportion of apoptotic and necrotic neutrophils amounted to (mean +/- SD) 5.25 +/- 3.53% and 0.83 +/- 0.38%; 7.09 +/- 2.07% and 1.64 +/- 0.50%; 35.39 +/- 12.53% and 5.46 +/- 1.46%; after 1, 4 and 24 h incubation, respectively. The temperature (4 degrees C) is the best alternative for short-term storage.  相似文献   

6.
Extracellular signal-regulated kinase and p38 have been shown to be cleaved in human neutrophils undergoing apoptosis induced by tumor necrosis factor-α and cycloheximide. However, the cleavage products of these molecules were undetected when apoptotic neutrophils were pretreated with phenylmethylsulfonyl fluoride or disrupted by nitrogen cavitation before preparation of cell lysates. The electron microscopy revealed that granules in apoptotic neutrophils were significantly swollen than those in control cells. These findings suggest that granule membrane may become destabilized during neutrophil apoptosis, leading to rapid proteolysis of these molecules by granule-derived serine proteases during preparation of cell lysates with the conventional lysis buffer.  相似文献   

7.
Pro-inflammatory cytokines are known to affect apoptosis in human peripheral blood cells. Neutrophils, which are an essential component of the immune response and usually undergo apoptosis rapidly, are greatly affected by these cytokines. In this study, the effect of varying concentrations of TNF-alpha, IL-1beta and IL-6 on the apoptotic response of leukocytes and their sub-sets in cultured whole blood were studied over a 48 h culture period. At clinically relevant concentrations, it was found that these pro-inflammatory cytokines reduced the amount of spontaneous apoptosis in neutrophils in culture, but had little effect on the lymphocyte population. Distinct differences in the sensitivity of neutrophils to cytokine-mediated protection against spontaneous apoptosis were apparent when compared to previous studies conducted using purified or enriched neutrophil cultures. IL-1beta, at a dose of 0.01 pg/mL, was observed to significantly inhibit spontaneous neutrophil apoptosis by approximately 90% and 65% at 24 and 48 h of culturing, respectively. This concentration used in whole blood is dramatically lower than that required to elicit similar protection in neutrophil-enriched cell cultures. Higher concentrations of TNF-alpha (1.0 pg/mL) and IL-6 (125 pg/mL) were also found to significantly inhibit neutrophil apoptosis, at levels much lower than previously published using neutrophil-enriched cultures. Furthermore, each cytokine displayed a unique signature with respect to the optimal applied doses required to elicit maximal protection against spontaneous neutrophil apoptosis. These results demonstrate the dramatic differences in cellular responses that exist between neutrophil-enriched cultures and whole blood culture systems, where multiple blood cell types provide a much more complex environment.  相似文献   

8.
ADAM17 is a membrane-associated metalloprotease that cleaves proteins from the surface of neutrophils and modulates the density of various receptors and adhesion molecules. The protease activity of ADAM17 is highly inducible and occurs upon neutrophil activation as well as apoptosis. At this time, little is known about the signal transduction pathway that promotes ADAM17 activity in neutrophils upon the induction of apoptosis. We show that caspase-8 activation, Bid cleavage, and the release of mitochondrial reactive oxygen species are sequential transduction components of the Fas signaling cascade that induces ADAM17. This is different from ADAM17 stimulation upon overt neutrophil activation, which requires MAPK p38 or ERK, but not caspases and reactive oxygen species. ADAM17 activity in apoptotic neutrophils may serve to inactivate select effector molecules that promote the pro-inflammatory activity of recruited neutrophils. For instance, TNFα receptors TNF-RI and TNF-RII are substrates of ADAM17, and we show that they are shed during apoptosis, decreasing neutrophil sensitivity to TNFα. Altogether, our findings provide significant new insights into the signal transduction pathway that stimulates ADAM17 during induced neutrophil apoptosis. ADAM17 induction during apoptosis may rapidly diminish neutrophil sensitivity to the inflammatory environment, complementing other anti-inflammatory activities by these cells during inflammation resolution.  相似文献   

9.
We have previously shown that the absence of Fas/Fas ligand significantly reduced tissue damage and intestinal epithelial cell (IEC) apoptosis in an in vivo model of T cell-mediated enteropathy. This enteropathy was more severe in IL-10-deficient mice, and this was associated with increased serum levels of IFN-gamma and TNF-alpha and an increase in Fas expression on IECs. In this study, we investigated the potential of IL-10 to directly influence Fas expression and Fas-induced IEC apoptosis. Mouse intestinal epithelial cell lines MODE-K and IEC4.1 were cultured with IFN-gamma, TNF-alpha, or anti-Fas monoclonal antibody (mAb) in the presence or absence of IL-10. Fas expression and apoptosis were determined by FACScan analysis of phycoerythrin-anti-Fas mAb staining and annexin V staining, respectively. Treatment with a combination of IFN-gamma and TNF-alpha induced significant apoptosis. Anti-Fas mAb alone did not induce much apoptosis unless cells were pretreated with IFN-gamma and TNF-alpha. These IECs constitutively expressed low levels of Fas, which significantly increased by preincubation of the cells with IFN-gamma and TNF-alpha. Treatment with cytokine or cytokine plus anti-Fas mAb increased apoptosis, which correlated with a decreased Fas-associated death domain IL-1-converting enzyme-like inhibitory protein (FLIP) level, increased caspase-8 activity, and subsequently increased caspase-3 activity. IL-10 diminished both cytokine- and anti-Fas mAb-induced apoptosis, and this was correlated with decreased cytokine-induced Fas expression, increased FLIP, and decreased caspase-8 and caspase-3 activity. In conclusion, IL-10 modulated cytokine induction of Fas expression on IEC cell lines and regulated IEC susceptibility to TNF-alpha, IFN-gamma, and Fas-mediated apoptosis. These findings suggest that IL-10 directly modulates IEC responses to T cell-mediated apoptotic signals.  相似文献   

10.
During luteolysis, luteal cell apoptosis is induced by the Fas ligand (FasL)/Fas system. In murine luteal bodies, we demonstrated the expression of mRNA of soluble form of Fas (FasB), which binds to FasL and prevents apoptosis induction. By in situ hybridization, strong expression of FasB mRNA was observed in normal luteal bodies, in which no apoptotic cells were detected, but negative/trace expression in regressing luteal bodies, in which many apoptotic cells were observed. Immunohistochemical staining revealed that Fas and TNF-alpha were localized in both normal and regressing luteal bodies, but IFN-gamma was localized only in regressing luteal bodies. Apoptosis was induced in primary cultured luteal cells, when they were pretreated with TNF-alpha and IFN-gamma and then incubated with TNF-alpha, IFN-gamma, and mouse recombinant FasL (rFasL). However, no apoptosis was detected in the cells, when they were treated with rFasL alone, TNF-alpha alone, IFN-gamma alone, TNF-alpha and rFasL, IFN-gamma and rFasL, or TNF-alpha and IFN-gamma. Fas mRNA expression in cultured luteal cells was up-regulated by the treatment of TNF-alpha, IFN-gamma, or TNF-alpha and IFN-gamma. The expression of FasB mRNA was down-regulated, when the cells were treated with TNF-alpha and IFN-gamma, but its expression was not changed by the treatment of TNF-alpha alone or IFN-gamma alone. We conclude that FasB inhibits the apoptosis induction in luteal cells of normal luteal bodies, and that decreased FasB production induced by TNF-alpha and IFN-gamma made possible the apoptosis induction in the luteal cells of regressing luteal bodies.  相似文献   

11.
BRE, brain and reproductive organ-expressed protein, was found previously to bind the intracellular juxtamembrane domain of a ubiquitous death receptor, tumor necrosis factor receptor 1 (TNF-R1), and to down-regulate TNF-alpha-induced activation of NF-kappaB. Here we show that BRE also binds to another death receptor, Fas, and upon overexpression conferred resistance to apoptosis induced by TNF-alpha, anti-Fas agonist antibody, cycloheximide, and a variety of stress-related stimuli. However, down-regulation of the endogenous BRE by small interfering RNA increased apoptosis to TNF-alpha, but nottoetoposide, indicating that the physiological antiapoptotic role of this protein is specific to death receptor-mediated apoptosis. We further demonstrate that BRE mediates antiapoptosis by inhibiting the mitochondrial apoptotic machinery but without translocation to the mitochondria or nucleus or down-regulation of the cellular level of truncated Bid. Dissociation of BRE rapidly from TNF-R1, but not from Fas, upon receptor ligation suggests that this protein interacts with the death inducing signaling complex during apoptotic induction. Increased association of BREwith phosphorylated, sumoylated, and ubiquitinated proteins after death receptor stimulation was also detected. We conclude that in contrast to the truncated Bid that integrates mitochondrial apoptosis to death receptor-triggered apoptotic cascade, BRE inhibits the integration. We propose that BRE inhibits, by ubiquitination-like activity, components in or proximal to the death-inducing signaling complexes that are necessary for activation of the mitochondria.  相似文献   

12.
Neutrophil influx to sites of mycobacterial infections is one of the first events of tuberculosis pathogenesis. However, the role of early neutrophil recruitment in mycobacterial infection is not completely understood. We investigated the rate of neutrophil apoptosis and the role of macrophage uptake of apoptotic neutrophils in a pleural tuberculosis model induced by BCG. Recruited neutrophils were shown to phagocyte BCG and a large number of neutrophils undergo apoptosis within 24 h. Notably, the great majority of apoptotic neutrophils were infected by BCG. Increased lipid body (lipid droplets) formation, accompanied by prostaglandin E(2) (PGE(2)) and TGF-beta1 synthesis, occurred in parallel to macrophage uptake of apoptotic cells. Lipid body and PGE(2) formation was observed after macrophage exposure to apoptotic, but not necrotic or live neutrophils. Blockage of BCG-induced lipid body formation significantly inhibited PGE(2) synthesis. Pre-treatment with the pan-caspase inhibitor zVAD inhibited BCG-induced neutrophil apoptosis and lipid body formation, indicating a role for apoptotic neutrophils in macrophage lipid body biogenesis in infected mice. In conclusion, BCG infection induced activation and apoptosis of infected neutrophils at the inflammatory site. The uptake of apoptotic neutrophils by macrophages leads to TGF-beta1 generation and PGE(2)-derived lipid body formation, and may have modulator roles in mycobacterial pathogenesis.  相似文献   

13.
Peptide antibiotics possess the potent antimicrobial activities against invading microorganisms and contribute to the innate host defense. An antibacterial cathelicidin, human cationic antibacterial protein of 18 kDa/LL-37, not only exhibits potent bactericidal activities against Gram-negative and Gram-positive bacteria, but also functions as a chemoattractant for immune cells, including neutrophils. During bacterial infections, the life span of neutrophils is regulated by various pathogen- and host-derived substances. In this study, to further evaluate the role of LL-37 in innate immunity, we investigated the action of LL-37 on neutrophil apoptosis. Neutrophil apoptosis was assessed using human blood neutrophils based on the morphological changes. Of note, LL-37 dose dependently (0.01-5 microg/ml) suppressed neutrophil apoptosis, accompanied with the phosphorylation of ERK-1/2, expression of Bcl-x(L) (an antiapoptotic protein), and inhibition of caspase 3 activity. Interestingly, LL-37-induced suppression of neutrophil apoptosis was attenuated by the antagonists for formyl-peptide receptor-like 1 (FPRL1) and P2X7 nucleotide receptor. Of importance, the agonists for FPRL1 and P2X7 apparently suppressed neutrophil apoptosis. Collectively, these observations indicate that LL-37 cannot only kill bacteria, but also modulate (suppress) neutrophil apoptosis via the activation of FPRL1 and P2X7 in bacterial infections. Suppression of neutrophil apoptosis results in the prolongation of their life span, and may be advantageous for host defense against bacterial invasion.  相似文献   

14.
Stimulant-induced viability of neutrophils, nuclear-fragmentation, increase in intracellular calcium ([Ca2+]i), expression of annexin V on neutrophils and proteolysis of a fluorogenic peptide substrate Ac-DEVD-MCA (acetyl Asp-Glu-Val-Asp alpha-[4-methyl-coumaryl-7-amide]) by neutrophil lysates from five normal calves and three calves with leucocyte adhesion deficiency were determined to evaluate the apoptosis of normal and CD18-deficient neutrophils. Viability was markedly decreased in control neutrophils stimulated with opsonized zymosan (OPZ), compared to CD18-deficient neutrophils at 37 degrees C after incubation periods of 6 and 24 hours. The rate of apoptosis of control neutrophils stimulated with OPZ increased significantly depending on the incubation time, whereas no apparent increase in apoptosis was found in CD18-deficient neutrophils under the same conditions. Aggregated bovine (Agg) IgG-induced apoptosis of control neutrophils was not significantly different from that of CD18-deficient neutrophils. The expression of annexin V on OPZ-stimulated control neutrophils was greater than that of unstimulated ones 6 h after stimulation. No apparent increase in annexin V expression on CD18-deficient neutrophils was found with OPZ stimulation. A delay in apoptosis was demonstrated in CD18-deficient bovine neutrophils and this appeared to be closely associated with lowered signalling via [Ca2+]i, diminished annexin V expression on the cell surface, and decreased caspase 3 activity in lysates.  相似文献   

15.
Acceleration of human neutrophil apoptosis by TRAIL   总被引:15,自引:0,他引:15  
Neutrophil granulocytes have a short lifespan, with their survival limited by a constitutive program of apoptosis. Acceleration of neutrophil apoptosis following ligation of the Fas death receptor is well-documented and TNF-alpha also has a transient proapoptotic effect. We have studied the role of the death receptor ligand TRAIL in human neutrophils. We identified the presence of mRNAs for TRAIL, TRAIL-R2, and TRAIL-R3, and cell surface expression of TRAIL-R2 and -R3 in neutrophil populations. Neutrophil apoptosis is specifically accelerated by exposure to a leucine zipper-tagged form of TRAIL, which mimics cell surface TRAIL. Using blocking Abs to TRAIL receptors, specifically TRAIL-R2, and a TRAIL-R1:FcR fusion protein, we have excluded a role for TRAIL in regulating constitutive neutrophil apoptosis. No additional proapoptotic effect of leucine zipper TRAIL was identified following TRAIL treatment of neutrophils in the presence of gliotoxin, an inhibitor of NF-kappaB, suggesting TRAIL does not activate NF-kappaB in human neutrophils. TRAIL treatment of human neutrophils did not induce a chemotactic response. The susceptibility of neutrophils to TRAIL-mediated apoptosis suggests a role for TRAIL in the regulation of inflammation and may provide a mechanism for clearance of neutrophils from sites of inflammation.  相似文献   

16.
17.
The effect of purified human interferon-gamma on the responsiveness of human neutrophils was investigated. Pre-incubation of neutrophils with 100 U interferon ml-1 for 10 min at 37 degrees C resulted in a 2.5-fold increase in N-formylmethionyl-leucyl-phenylalanine-stimulated reactive oxygen metabolite generation (as assayed by luminol-dependent chemiluminescence). Pre-treatment of neutrophils with interferon also potentiated their ability to kill Staphylococcus aureus, and thus it is proposed that this lymphokine may also enhance neutrophil function in vivo under certain pathological conditions.  相似文献   

18.
Ingestion of aged or irradiated apoptotic neutrophils actively suppresses stimulation of macrophages (Mphi). Many bacterial pathogens can also provoke apoptosis in neutrophils, but little is known about how such apoptotic cells influence Mphi activation. We found that neutrophils undergoing apoptosis induced by UV irradiation, Escherichia coli, or Staphylococcus aureus could either stimulate or inhibit Mphi activation. In contrast to Mphi that had ingested irradiated apoptotic neutrophils, Mphi that had phagocytosed bacteria-induced apoptotic neutrophils exhibited markedly increased production of the proinflammatory cytokine TNF-alpha, but not the anti-inflammatory cytokine TGF-beta. Moreover, ingestion of bacteria, but not UV-induced apoptotic neutrophils, caused increased expression of FcgammaRI on Mphi, and this effect was not provoked directly by bacteria associated with the apoptotic neutrophils. Instead, we found that a link between pathogen-induced apoptotic neutrophils and up-regulation of the heat shock proteins HSP60 and HSP70, and we also observed that recombinant HSP60 and HSP70 potentiated LPS-stimulated production of TNF-alpha in Mphi. The opposing macrophage responses to neutrophils undergoing apoptosis induced in different ways may represent a novel mechanism that regulates the extent of the immune response to invading microbes in two steps: first by aiding the functions of Mphi at an early stage of infection, and subsequently by deactivating those cells through removal of uninfected apoptotic neutrophils. HSP induction in neutrophils may provide the danger signals required to generate a more effective macrophage response.  相似文献   

19.
Neutrophil apoptosis is important for the resolution of airway inflammation in a number of lung diseases. Inflammatory mediators, endogenous reactive oxygen and nitrogen species, and intracellular and extracellular antioxidants may all influence neutrophil apoptosis. This study investigated the involvement of these factors during apoptosis of neutrophils cultured in vitro. Neutrophils undergoing spontaneous apoptosis in culture as assessed by annexin V binding generated significant amounts of nitrite. Incubation with agonistic anti-Fas monoclonal antibody or tumor necrosis factor-alpha (TNF-alpha) enhanced neutrophil apoptosis at 6 h, although it decreased nitrite accumulation. Although granulocyte-macrophage colony-stimulating factor significantly reduced neutrophil apoptosis, this was also associated with decreased nitrite accumulation. In contrast, inhibition of apoptosis at 16 h by dibutyryl cyclic adenosine monophosphate was associated with increased nitrite accumulation. Exogenous glutathione (GSH) or N-acetylcysteine significantly enhanced neutrophil apoptosis at 6 h and stimulated the production of H(2)O(2), which may mediate apoptosis through intracellular hydroxyl radical production. Intracellular GSH concentrations decreased in neutrophils undergoing apoptosis, and this was more marked in neutrophils treated with anti-Fas or TNF-alpha. These results suggest a causal association between reduced endogenous nitric oxide production, reduced intracellular GSH, and Fas- and TNF-alpha-mediated neutrophil apoptosis, whereas enhanced neutrophil survival mediated by dibutyryl cyclic adenosine monophosphate is associated with increased nitrite generation and maintenance of intracellular GSH. The interaction of endogenous reactive oxygen species with extracellular antioxidants such as GSH could also contribute to the complex processes regulating neutrophil apoptosis and hence the resolution of inflammation in the lung.  相似文献   

20.
Apoptosis is essential for the resolution of neutrophilic inflammation. To define the mechanisms triggering the execution phase of apoptosis we developed and utilized a model in which culture of human neutrophils at 15 degrees C for 20 h arrested apoptosis and subsequent warming to 37 degrees C triggered a synchronous burst of apoptosis. Treatment of 15 degrees C cultured neutrophils with the pan-caspase inhibitor zVAD-fmk just before warming to 37 degrees C inhibited the morphological changes associated with apoptosis, but did not prevent the insertion of the proapoptotic protein Bax into mitochondria nor the inhibition of secretion and the externalization of phosphatidylserine, indices of neutrophil apoptosis. In both intact neutrophils and a cell-free extract, cytochrome c released from mitochondria induced proteolytic cleavage of procaspase-3. At 15 degrees C the binding of Bax to mitochondria was uncoupled from Bax insertion into the mitochondrial membrane required for the release of cytochrome c. Apoptosis was also inhibited by low pH during warming to 37 degrees C, suggesting that changes to the conformation of Bax, necessary for membrane insertion, were being inhibited. Bax insertion was only sensitive to zVAD-fmk when added at the start of the 15 degrees C culture period, suggesting that a cytoplasmic substrate of the effector caspases may mediate in the mechanism of Bax insertion into mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号