首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marriott  C.A.  Hudson  G.  Hamilton  D.  Neilson  R.  Boag  B.  Handley  L.L.  Wishart  J.  Scrimgeour  C.M.  Robinson  D. 《Plant and Soil》1997,196(1):151-162
As preparation for a below ground food web study, the spatial variability of three soil properties (total N, total C and pH) and two stable isotopes (13C and 15N of whole soil) were quantified using geostatistical approaches in upland pastures under contrasting management regimes (grazed, fertilised and ungrazed, unfertilised) in Scotland. This is the first such study of upland, north maritime grasslands. The resulting patterns of variability suggest that to obtain statistically independent samples in this system, a sampling distance of 13.5 m is required. Additionally, temporal change (a decline of 1) was observed in whole soil 15N for the grazed, fertilised plot. This may have been caused by new inputs of symbiotically-fixed atmospheric N2.  相似文献   

2.
Wilsey BJ  Polley HW 《Oecologia》2006,150(2):300-309
Plant species in grasslands are often separated into groups (C4 and C3 grasses, and forbs) with presumed links to ecosystem functioning. Each of these in turn can be separated into native and introduced (i.e., exotic) species. Although numerous studies have compared plant traits between the traditional groups of grasses and forbs, fewer have compared native versus introduced species. Introduced grass species, which were often introduced to prevent erosion or to improve grazing opportunities, have become common or even dominant species in grasslands. By virtue of their abundances, introduced species may alter ecosystems if they differ from natives in growth and allocation patterns. Introduced grasses were probably selected nonrandomly from the source population for forage (aboveground) productivity. Based on this expectation, aboveground production is predicted to be greater and root mass fraction to be smaller in introduced than native species. We compared root and shoot distribution and tissue quality between introduced and native C4 grass species in the Blackland Prairie region of Central Texas, USA, and then compared differences to the more well-studied divergence between C4 grasses and forbs. Comparisons were made in experimental monocultures planted with equal-sized transplants on a common soil type and at the same density. Aboveground productivity and C:N ratios were higher, on average, in native grasses than in native forbs, as expected. Native and introduced grasses had comparable amounts of shallow root biomass and tissue C:N ratios. However, aboveground productivity and total N were lower and deep root biomass and root mass fraction were greater in native than introduced grasses. These differences in average biomass distribution and N could be important to ecosystems in cases where native and introduced grasses have been exchanged. Our results indicate that native–introduced status may be important when interpreting species effects on grassland processes like productivity and plant N accumulation.  相似文献   

3.
Specific rates of growth (Cw) of Mesocyclops leuckarti, young male and female instars varied between 0.03–0.26 and 0.03–0.17 g(w.w.)/g(w.w.)/day respectively at 15° and 22°C, whilst at IV–V copepodid stages females showed a higher Cw values. During 1969–1975 the averages of productivity and monthly P/B ratios were 44 (±23) g(w.w.) (= 5g(w.w.)/m2/month) and 3.1 respectively. P/B ratios were highly correlated (r(sup2)=0.98) with temperature changes. Metabolic parameters and P/B ratios were found to be similar to other water bodies in the world indicating an adaptation of M. leuckarti to different conditions.  相似文献   

4.
Summary The intra-glandular vascular arrangement in the adrenal has been studied using non-radioactive microspheres injected by three different routes: in-vivo injection into the left ventricle under pentobarbital anesthesia, postmortem orthograde, and postmortem retrograde injection. The doses of microspheres were 105 (average size 24.7 m), 106 (15.8 m) and 107 (9.9 m). The entrapment rate of microspheres by the medulla as compared with the whole gland was measured in the serially sectioned tissue (section thickness 60 m).The entrapment rates of 25-m microspheres differed between the orthograde and retrograde injections, while the entrapment rates for 15-m microspheres were essentially similar irrespective of the route of injection.Our results support the conclusion from previous microangiographic studies that the adrenal cortex and medulla are supplied by different arteries but have a common venous outflow, and that direct communication between cortical and medullary sinusoids is not likely. The medullary blood flow per gram tissue weight is estimated to be larger than cortical blood flow.  相似文献   

5.
Determining underlying physiological patterns governing plant productivity and diversity in grasslands are critical to evaluate species responses to future environmental conditions of elevated CO2 and nitrogen (N) deposition. In a 9‐year experiment, N was added to monocultures of seven C3 grassland species exposed to elevated atmospheric CO2 (560 μmol CO2 mol?1) to evaluate how N addition affects CO2 responsiveness in species of contrasting functional groups. Functional groups differed in their responses to elevated CO2 and N treatments. Forb species exhibited strong down‐regulation of leaf Nmass concentrations (?26%) and photosynthetic capacity (?28%) in response to elevated CO2, especially at high N supply, whereas C3 grasses did not. Hence, achieved photosynthetic performance was markedly enhanced for C3 grasses (+68%) in elevated CO2, but not significantly for forbs. Differences in access to soil resources between forbs and grasses may distinguish their responses to elevated CO2 and N addition. Forbs had lesser root biomass, a lower distribution of biomass to roots, and lower specific root length than grasses. Maintenance of leaf N, possibly through increased root foraging in this nutrient‐poor grassland, was necessary to sustain stimulation of photosynthesis under long‐term elevated CO2. Dilution of leaf N and associated photosynthetic down‐regulation in forbs under elevated [CO2], relative to the C3 grasses, illustrates the potential for shifts in species composition and diversity in grassland ecosystems that have significant forb and grass components.  相似文献   

6.
Human-mediated nutrient amendments have widespread effects on plant communities. One of the major consequences has been the loss of species diversity under increased nutrient inputs. The loss of species can be functional group dependent with certain functional groups being more prone to decline than others. We present results from the sixth year of a long-term fertilization and litter manipulation study in an old-field grassland. We measured plant tissue chemistry (C:N ratio) to understand the role of plant physiological responses in the increase or decline of functional groups under nutrient manipulations. Fertilized plots had significantly more total aboveground biomass and live biomass than unfertilized plots, which was largely due to greater productivity by exotic C3 grasses. We found that both fertilization and litter treatments affected plant species richness. Species richness was lower on plots that were fertilized or had litter intact; species losses were primarily from forbs and non-Poaceae graminoids. C3 grasses and forbs had lower C:N ratios under fertilization with forbs having marginally greater %N responses to fertilization than grasses. Tissue chemistry in the C3 grasses also varied depending on tissue type with reproductive tillers having higher C:N ratios than vegetative tillers. Although forbs had greater tissue chemistry responses to fertilization, they did not have a similar positive response in productivity and the number of forb species is decreasing on our experimental plots. Overall, differential nutrient uptake and use among functional groups influenced biomass production and species interactions, favoring exotic C3 grasses and leading to their dominance. These data suggest functional groups may differ in their responses to anthropogenic nutrient amendments, ultimately influencing plant community composition.  相似文献   

7.
Rate equations for the gross influx of -aminoisobutyric acid (AIB) into mouse cerebrum slices containing AIB have a first-order term for unsaturable concentrative influx, identical to the corresponding term for unloaded slices, and a modified Michaelis-Menten term,Vmax/(1+K t /S), for saturable concentrative influx. [Vmax v L (1+K t /S), wherev L =saturable component of influx,S=AIB concentration in medium, andK t =Michaelis constant for unloaded slices.] Below a tissue AIB (T) of 19 µmol/g final wet weight,Vmax increases linearly followingVmax=V 1+m 1 T; above that value,V max is virtually constant. The transition is sharp. This equation is consistent with a carrier model for active transport. At the transition, intracellular AIB is about 1 molecule for every 70 amino acid residues of tissue protein, vastly more than could be accommodated by AIB-binding sites in cell membranes. The transition may come from a slow process that does not fill all sites when the tissue AIB is below the transition concentration, or from an AIB-induced phase transition in the membrane.Nomenclature AIB -aminoisobutyric acid - A radioactivity of reference; unspecified amino acid - C counts in tissue sample; carrier for transport - C i carrier in form that reacts with intracellular substrate - C o carrier in form that reacts with extracellular substrate - C R counts in reference - CS complex of substrate with carrier - (CS) i complex of substrate with carrier in formC i - (CS) o complex of substrate with carrier in formC o - G counts per gram of tissue - HEPES N-2-Hydroxyethylpiperazine-N-2-ethanesulfonic acid - k u rate constant for first-order unsaturable uptake - K,K ,K ,K ,K d adjustable parameters in Eqs. (9)–(13) for v, analogous to the Michaelis constant - K d dissociation constant - K t Michaelis constant for saturable uptake - K t Michaelis constant for gross saturable uptake by tissue containing substrate - m 1,m 2 slope in Eq. (5) or (6) expressing dependence ofVmax onT orT i w in Region 1 or 2 - M binding site for amino acid A - n number of data points - P number of parameters to be determined; parameter in Stein's (1981) equation, Eq. (17) in this paper - P 1,P 2,P 12 property of tissue with unoccupied binding sites, property of tissue with occupied binding sites, property of tissue with both unoccupied and occupied binding sites, respectively - Q parameter in Stein's (1981) equation, Eq. (17) in this paper - r Pearson's correlation coefficient - Relative error RE =100{[(observed quantity – calculated quantity)/calculated quantity]2/(nP)}1/2 - S concentration of substrate in medium; transport substrate - S i intracellular transport substrate - S int AIB in medium corresponding to intracellular AIB at intersection - S o extracellular transport substrate - T observed concentration of substrate in tissue including substrate in extracellular space and adherent fluids - T i intracellular concentration of substrate - T int tissue AIB corresponding to intracellular AIB at intersection - T i w ,T i /30 intracellular concentration of substrate withw% (30%) extracellular and adherent fluids - U observed uptake of labeled substrate by incubated tissue including substrate in extracellular and adherent fluids - U R observed uptake of labeled substrate referred to concentration of substrate in medium - U max adjustable parameter in Eqs. (9)–(15) for v, analogous to the Michaelis-Menten maximum rate,V max - v influx of substrate - v L gross influx of substrate into tissue containing substrate - v L contribution of saturable component to gross influx into tissue containing substrate - v incremental influx, that is, gross influx into tissue that contains substrate minus influx under the same conditions into tissue that does not contain substrate - V 1,V 2 intercept in Eq. (5) or (6) expressing dependence ofVmax onT orT i w in Region 1 or 2, respectively - V max maximum rate in Michaelis-Menten equation - Vmax apparent maximum rate defined byVmaxvmax(1+K t /S) - Vmax 1,Vmax 2 apparent maximum rate in Region 1 or 2, respectively - Vint apparent maximum rate at intersection defining boundary between Regions 1 and 2 - w weight of incubated tissue - W d dry weight of tissue expressed as fraction by weight - W e extracellular and surface space of incubated tissue expressed as percent by weight - , , adjustable parameters in modified expressions for gross unsaturable influx into tissue containing substrate - , , , exponents ofS orT in Eqs. (9)–(13) for v - parameter in Stein's (1981) equation, Eq. (17), corresponding more or less tom 1 For my wife, Lynn.  相似文献   

8.
Soil nutrients are heterogeneously distributed in natural systems. While many species respond to this heterogeneity through root system plasticity, little is known about how the magnitude of these responses may vary between native and invasive species. We quantified root morphological and physiological plasticity of co-occurring native and invasive Great Basin species in response to soil nitrogen heterogeneity and determined if trade-offs exist between these foraging responses and species relative growth rate or root system biomass. The nine study species included three perennial bunchgrasses, three perennial forbs, and three invasive perennial forbs. The plants were grown in large pots outdoors. Once a week for 4 weeks equal amounts of 15NH4 15NO3 were distributed in the soil either evenly through the soil profile, in four patches, or in two patches. All species acquired more N in patches compared to when N was applied evenly through the soil profile. None of the species increased root length density in enriched patches compared to control patches but all species increased root N uptake rate in enriched patches. There was a positive relationship between N uptake rate, relative growth rate, and root system biomass. Path analysis indicated that these positive interrelationships among traits could provide one explanation of how invasive forbs were able to capture 2 and 15-fold more N from enriched patches compared to the native grasses and forbs, respectively. Results from this pot study suggest that plant traits related to nutrient capture in heterogeneous soil environments may be positively correlated which could potentially promote size-asymmetric competition belowground and facilitate the spread of invasive species. However, field experiments with plants in different neighbor environments ultimately are needed to determine if these positive relationships among traits influence competitive ability and invader success.  相似文献   

9.
L. Rivier  H. Milon  P.-E. Pilet 《Planta》1977,134(1):23-27
Quantitative analyses of abscisic acid (ABA) in different parts of maize root tips (Zea mays L. cv. Kelvedon 33) were performed by mass fragmentography using the hexadeuterated analog of ABA as internal standard. It was found that the cap and the apex contained 36.1 g and 66.5 g ABA kg–1 fresh weight, respectively. The possibility that the growth regulator formed in the cap and inhibiting the elongation of the extending zone of the root is ABA is discussed.Abbreviations ABA abscisic acid - ABA-D6 hexadeuterated ABA - ABA-Me and ABA-D6-Me methyl esters of ABA and ABA-D6, respectively - GC-MS gas chromatograph(y)-mass spectrometry/spectrometer - IAA indol-3-yl-acetic acid - MF mass fragmentography - TMS trimethylsilyl  相似文献   

10.
The effects of analogs of diadenosine 5,5-p1,p4-tetraphosphate (Ap4A) were examined on the ADP-ribosylation reaction of histone Hl catalysed by purified bovine thymus poly(ADP-ribose)transferase. Among the compounds tested, Ap4A and ApCH2PPPA were shown to be the most efficient inhibitors of the enzyme. From kinetic studies of their action, it appears that Ap4A and ApCH2pppA might be mixed type inhibitors.Abbreviations ADP-ribose adenosine diphosphate ribose - ADPRT poly-(ADP-ribose)transferase - Ap4A diadenosine 5,5-p1,p4-tertraphosphate - Ap4A diadenosine 5,5-p1,p4(-1,N6-ethenyl-)tetra-phosphate - ApAA diadenosine 5,5-p1,p4(-N6(-1,N6-)bisethenyl-)tetraphosphate - ApCH2pppA diadenosine 5,5-p1,p4(-p1,p2-methylene-)tetraphosphate - AppCH2ppA diadenosine 5,5-p1,p4(-p2,p3methylene-)tetraphosphate - AppNHppA diadenosine 5,5-p1,p4(-p2,p3-amino-)tetraphosphate - AppCHBrppA diadenosine 5,5-p1,p4(-p2,p3-bromine methyno-)tetraphosphate - CpCH2ppCH2PC dicytidine 5,5-p1,p4(-p1,p2-p3,p4-bismethylene-)tetraphosphate - ApCH2ppCH2pA diadenosine 5,5-p1,p4(-p1,p2-p3,p4-bismethylene-)tetraphosphate.  相似文献   

11.
An approach for parameter estimators design of biotechnological processes (BTP) is presented in case of lack of real time information about state variables. It is based on general reaction rate models and measurements of at least one reaction rate. A general parameter estimator of BTP is designed with the help of which specific rate estimators are synthesized. Stability and convergence of an estimator of specific growth rate for a class of aerobic batch processes are proved. Its effectiveness is illustrated by simulation results. The proposed on-line parameter estimation approach can be used for design of BTP on-line variable estimation algorithms (variable observers of BTP).List of Symbols X, S, P g/l biomass, substrate and product concentrations - C g/l oxygen concentration in the culture broth - C sg/l saturation concentration of oxygen in the culture broth - C in, Coutg/l oxygen concentrations in the input air flow and in the outlet gasphase - F in, Foutl/h the input air flow in the fermenter and output air flow - OUR g/(lh) oxygen consumption rate - OUR mg/(lh) measured values of OUR - V l volume - , , l/h specific growth, consumption and synthesis rates - K La(o) l/h specific volumetric mass transfer coefficient - D l/h dilution rate - R X, RS, RPg/(lh) biomass growth, substrate consumption and product synthesis rates - K b matrix of yield coefficients - Hb(), H() matrices of known functions of - H(R) matrix of known functions of R - and gain matrices - a vector of the state variables - () a reactions rates vector, describing qualitative relations among the components - R() a reactions rates vector, describing qualitative and quantitative relations among the components - F a feed rates vector - Q a gaseous outflow rates vector - b () a vector of unknown functions of - 1() a vector of functions - (t) a vector of unknown time-varying parameters - 2(, ) an auxiliary vector-function of and - Y X/S, YX/C, YX/P substrate, oxygen and product yield coefficients - b maintenence coefficient - k i(i=1...6) kinetic coefficients - C i(i=1,2) design parameters estimate  相似文献   

12.
Summary Plant water relations and shoot growth rate of shrubs resprouting after fire or unburnt were measured in a semi-arid poplar box (Eucalyptus populnea) shrub woodland of eastern Australia. In vegetation unburnt for about 60 years, the dawn xylem water potential (x) of the dominant shrub species was about-1.0 MPa when the soil was wet and-8.0 MPa when the soil was very dry. At any one time, the dominant shrub species,Eremophila mitchellii, E. sturtii, Geijera parviflora andCassia nemophila, were similar in x butAcacia aneura andDodonaea viscosa were consistently higher in x than this group when the soil was moist and lower when the soil was dry. The dominant tree species,Eucalyptus populnea andE. intertexta, appeared to have access to additional water beneath the hardpan which is located 60–80 cm below the surface. When shrubs were under extreme water stress (x of-8 MPa), the trees had a x of-3 to-3.6 MPa. Following a fire, both x and leaf stomatal conductance (g s) of resprouting shrubs were higher for about 5 years than comparable-aged unburnt vegetation, with relative differences in x increasing with drought stress. Elongation rate of resprouts was positively linked to prefire shrub height in 3 of 4 species. However, shrubs resprouting after high intensity fires had substantially higher rates of shoot elongation than after low intensity fires which were in turn higher than for foliar expansion of unburnt shrubs. It is concluded that the growth rate of resprouting shrubs is primarily determined by physiological/ morphological factors associated with plant size but is also assisted by greater availability of water and possibly nutrients for a period after fire.  相似文献   

13.
Summary A set of three 3D (1H, 13C, 15N) triple-resonance correlation experiments has been designed to provide H1-H8 intraresidue sugar-to-base correlations in purines in an unambiguous and efficient manner. Together, the HsCsNb, HsCs(N)bCb, and HbNbCb experiments correlate the H1 sugar proton to the H8 proton of the attached base by means of the {H1, C1, N9, C8, H8} heteronuclear scalar coupling network. The assignment strategy presented here allows for unambiguous H1-H8 intraresidue correlations, provided that no two purines have both the same H1 and C1 chemical shifts and the same C8 and N9 chemical shifts. These experiments have yielded H1-H8 intraresidue sugar-to-base correlations for all five guanosines in the [13C, 15N] isotopically labeled RNA duplex r(GGCGCUUGCGUC)2.  相似文献   

14.
Biological nitrogen fixation in mixed legume/grass pastures   总被引:18,自引:2,他引:16  
Biological nitrogen fixation (BNF) in mixed legume/grass pastures is reviewed along with the importance of transfer of fixed nitrogen (N) to associated grasses. Estimates of BNF depend on the method of measurement and some of the advantages and limitations of the main methods are outlined. The amounts of N fixed from atmospheric N2 in legume/grass pastures throughout the world is summarised and range from 13 to 682 kg N ha-1 yr-1. the corresponding range for grazed pastures, which have been assessed for white clover pastures only, is 55 to 296 kg N ha-1 yr-1.Biological nitrogen fixation by legumes in mixed pastures is influenced by three primary factors; legume persistence and production, soil N status, and competition with the associated grass(es). These factors and the interactions between them are discussed. Legume persistence, production and BNF is also influenced by many factors and this review centres on the important effects of soil moisture status, soil acidity, nutrition, and pests and disease.Soil N status interacts directly with BNF in the short and long term. In the short-term, increases in soil inorganic N occurs during dry conditions and where N fertiliser is used, and these will reduce BNF. In the long-term, BNF leads to accumulation of soil N, grass dominance, and reduced BNF. However, cyclical patterns of legume and grass dominance can occur due, at least in part, to temporal changes in plant-available N levels in soil. Thus, there is a dynamic relationship between legumes and grasses whereby uptake of soil N by grass reduces the inhibitory effect of soil N on BNF and competition by grasses reduces legume production and BNF. Factors affecting the competition between legumes and grasses are considered including grass species, grazing animals, and grazing or cutting management.Some fixed N is transferred from legumes to associated grasses. The amount of N transferred below-ground, predominantly through decomposition of legume roots and nodules, has been estimated at 3 to 102 kg N ha-1 yr-1 or 2 to 26% of BNF. In grazed pasture, N is also transferred above-ground via return in animal excreta and this can be of a similar magnitude to below-ground transfer.Increased BNF in mixed legume/grass pastures is being obtained through selection or breeding of legumes for increased productivity and/or to minimise effects of nutrient limitations, low soil moisture, soil acidity, and pests and disease. Ultimately, this will reduce the need to modify the pasture environment and increase the role of legumes in low-input, sustainable agriculture.  相似文献   

15.
Leaf osmotic potentials ( s) of 104 plant species from different habitats, i.e., fixed sand dunes, lowland and wetlands in Hunshandak Sandland, Inner Mongolia, China, were investigated. The values of s were strongly species-specific, and varied from –6.54 MPa ( Caragana microphylla), to –0.44 MPa ( Digitaria ischaemum); 75% of plants investigated had s from –1.01 to –3.0 MPa. Shrubs were found to have the lowest s, with an average value of –3.19 MPa, while grasses showed the highest s. The order of plant s is shrubs<trees<grasses. The result may relate to anatomical features of shrubs. C4 photosynthetic pathway plants showed lower s values. The s values of 104 species were negatively correlated with their rooting depths ( r 2=0.42; P <0.001). High hydraulic pressure resulting from the deep roots may well explain this trend. The value of s increased as the environment became wetter, ranging from –0.79 MPa in wetlands to –2.09 MPa in fixed sand dunes. Although soil salt content was higher in wetlands, we did not find any effect on s.An erratum to this article can be found at  相似文献   

16.
Summary Experiments with tomato, rape and spinach in nutrient solutions have shown that the formation of root hairs is strongly influenced by phosphate and nitrate supply. Decreasing the phosphate concentration of the nutrient solution from 100 to 2 M P resulted in an increase of root hair length from 0.1–0.2 to 0.7 mm of the three plant species. Root hair density also increased by a factor of 2–4 when the P concentration was lowered from 1000 to 2 M. The variation of these two root properties raised the root surface area by a factor of 2 or 3 compared to plants well supplied with P. Root hair length was closely related to the phosphate content of the root and shoot material. On the other hand, spinach plants grown in a split-root experiment produced root hairs in solutions of high P concentration (1000M P) if the major part of the total root system was exposed to low P concentration (2 M P). It is therefore concluded that the formation of root hairs does not depend on directly the P concentration at the root surface but on the P content of the plant.Similar experiments with nitrate also resulted in an increase in length and density of root hairs with the decrease of concentration below 1000 M. In this case marked differences between plant species occurred. At 2 M compared to 1000 M NO3 root hair length of tomato increased by a factor of 2, of rape by a factor of 5 and of spinach by a factor of 9. Root hair length was correlated, but not very closely, to the total nitrogen content of the plants. It is concluded, that the influence of nutrient supply on the formation of root hairs is a mechanism for regulating the nutrient uptake of plants.Dedicated to Prof. Dr. E. Welte on the occasion of his 70th anniversary.  相似文献   

17.
Responses of morphology and biomass allocation of roots to frequency of nitrogen (N) pulse potentially influence the fitness of plants, but such responses may be determined by root size. We grew 12 plant species of three functional groups (grasses, forbs, and legumes) under two N pulse frequencies (high vs. low supply frequency) and two N amounts (high vs. low supply amount). Compared to low-amount N supply, high-amount N supply stimulated biomass accumulation and root growth by either increasing the thickness and length of roots or decreasing the root mass fraction. Compared to low-frequency N supply, high-frequency N supply improved biomass accumulation and root growth in forbs or grasses, but not in legumes. Furthermore, the magnitude of the response to N frequency was significantly negatively correlated with root size at the species scale, but this was only true when the N amount was high. We conclude that root responses to N frequency are related to plant functional types, and non-legume species is more sensitive to N frequency than legume species. Our results also suggest that root size is a determinant of root responses to N frequency when N supply amount is high.  相似文献   

18.
Introduced African grasses are invading Neotropical savannas and displacing the native herbaceous community. This work, which is part of a program to understand the success of the African grasses, specifically investigates whether introduced and native grasses differ in their water relations. The water relations of the native Trachypogon plumosus and the successful invader Hyparrhenia rufa were studied in the field during two consecutive years in the seasonal savannas of Venezuela. The two C4 grasses differed clearly in their responses to water stress. H. rufa consistently had higher stomatal conductance, transpiration rate, leaf water and osmotic potential and osmotic adjustment than the native T. plumosus. Also, leaf senescence occurred much earlier during the dry season in H. rufa. Both grasses showed a combination of water stress evasion and tolerance mechanisms such as stomatal sensitivity to atmospheric or soil water stress, decreased transpiring area and osmotic adjustment. Evasion mechanisms are more conspicuous in H. rufa whereas T. plumosus is more drought tolerant and uses water more conservatively. The evasion mechanisms and oportunistic use of water by H. rufa, characteristic of invading species, contribute to, but only partially explain, the success of this grass in the Neotropical savannas where it displaces native plants from sites with better water and nutrient status. Conversely, the higher water stress tolerance of t. plumosus is consistent with its capacity to resist invasion by alien grasses on shallow soils and sites with poorer nutrient and water status.  相似文献   

19.
A. Mesa  R. S. de Mesa 《Chromosoma》1967,21(2):163-180
The karyotype of three species of South American grasshoppers are studied in this paper. Leiotettix sanguineus has two chromosome races, one of them with 2n=23 and an XO sex mechanism and the other, as far as we know limited to the Cerro Chato population, with 2n=22 and an XY sex mechanism. Leiotettix politus has two kinds of individuals, one with 2n=14 and XY sex chromosomes and the other 2n=13 and an X1X2Y mechanism. Dichroplus dubius presents 2n=21 and an X1X2Y sex chromosomes. One of the three specimens studied shows aberrant behaviour in the meiotic process.  相似文献   

20.
Summary Leaf blades of 42 grasses (Poaceae) have been examined ultrastructurally for the occurrence of a suberized lamella in walls of parenchymatous bundle sheaths and PCR (= Kranz) sheaths in both large and small vascular bundles. The sample includes species from a range of major grass taxa, and represents all photosynthetic types found in the grasses. Three grasses with unusual C4 leaf anatomy were also included:Alloteropsis semialata, Aristida biglandulosa, Arundinella nepalensis. The presence of a suberized lamella in PCR cell walls was perfectly correlated with photosynthetic type. All PEP-carboxykinase type and NADP-malic enzyme type C4 species examined possessed a suberized lamella in outer tangential and radial walls, but with variable presence in inner tangential walls. PCR cells of bothAlloteropsis semialata andArundinella nepalensis also possessed a suberized lamella. A lamella was totally absent from parenchymatous bundle sheath cells of the C3 species examined (5 spp.) and ofPanicum milioides, a C3-C4 intermediate. It was also absent from PCR cells of NAD-malic enzyme type C4 species (14 spp.) andAristida biglandulosa. The results are discussed in relation to the leakage of CO2 from PCR cells, and to differences between C4 types in 13C values, chloroplast position in PCR cells, and other anatomical characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号