首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DdeI restriction-modification system was previously cloned and has been maintained in E. coli on two separate and compatible plasmids (1). The nucleotide sequence of the endonuclease and methylase genes has now been determined; it predicts proteins of 240 amino acids, Mr = 27,808, and 415 amino acids, Mr = 47,081, respectively. Inspection of the DNA sequence shows that the 3' end of the methylase gene had been deleted during cloning. The clone containing the complete methylase gene was made and compared to that containing the truncated gene; only clones containing the truncated form support the endonuclease gene in E. coli. Bal-31 deletion studies show that methylase expression in the Dde clones is also dependent upon orientation of the gene with respect to pBR322. The truncated and complete forms of the methylase protein were purified and compared; the truncated form appears to be more stable and active in vitro. Finally, comparison of the deduced amino acid sequence of M. DdeI with that of other known cytosine methylases shows significant regions of homology.  相似文献   

2.
Two genes, coding for the HincII from Haemophilus influenzae Rc restriction-modification system, were cloned and expressed in Escherichia coli RR1. Their DNA sequences were determined. The HincII methylase (M.HincII) gene was 1,506 base pairs (bp) long, corresponding to a protein of 502 amino acid residues (Mr = 55,330). The HincII endonuclease (R.HincII) gene was 774 bp long, corresponding to a protein of 258 amino acid residues (Mr = 28,490). The amino acid residues predicted from the R.HincII and the N-terminal amino acid sequence of the enzyme found by analysis were identical. These methylase and endonuclease genes overlapped by 1 bp on the H. influenzae Rc chromosomal DNA. The clone, named E. coli RR1-Hinc, overproduced R.HincII. The R.HincII activity of this clone was 1,000-fold that from H. influenzae Rc. The amino acid sequence of M.HincII was compared with the sequences of four other adenine-specific type II methylases. Important homology was found between tne M.HincII and these other methylases.  相似文献   

3.
BamHI, from Bacillus amyloliquefaciens H, is a type II restriction-modification system recognizing and cleaving the sequence G--GATCC. The BamHI restriction-modification system contains divergently transcribed endonuclease and methylase genes along with a small open reading frame oriented in the direction of the endonuclease gene. The small open reading frame has been designated bamHIC (for BamHI controlling element). It acts as both a positive activator of endonuclease expression and a negative repressor of methylase expression of BamHI clones in Escherichia coli. Methylase activity increased 15-fold and endonuclease activity decreased 100-fold when bamHIC was inactivated. The normal levels of activity for both methylase and endonuclease were restored by supplying bamHIC in trans. The BamHI restriction-modification system was transferred into Bacillus subtilis, where bamHIC also regulated endonuclease expression when present on multicopy plasmid vectors or integrated into the chromosome. In B. subtilis, disruption of bamHIC caused at least a 1,000-fold decrease in endonuclease activity; activity was partially restored by supplying bamHIC in trans.  相似文献   

4.
The two genes encoding the class IIS restriction-modification system MboII from Moraxella bovis were cloned separately in two compatible plasmids and expressed in E. coli RR1 delta M15. The nucleotide sequences of the MboII endonuclease (R.MboII) and methylase (M.MboII) genes were determined and the putative start codon of R.MboII was confirmed by amino acid sequence analysis. The mboIIR gene specifies a protein of 416 amino acids (MW: 48,617) while the mboIIM gene codes for a putative 260-residue polypeptide (MW: 30,077). Both genes are aligned in the same orientation. The coding region of the methylase gene ends 11 bp upstream of the start codon of the restrictase gene. Comparing the amino acid sequence of M.MboII with sequences of other N6-adenine methyltransferases reveals a significant homology to M.RsrI, M.HinfI and M.DpnA. Furthermore, M.MboII shows homology to the N4-cytosine methyltransferase BamHI.  相似文献   

5.
Cloning and structure of the BepI modification methylase.   总被引:7,自引:7,他引:0       下载免费PDF全文
The gene coding for a CGCG specific DNA methylase has been cloned in E. coli from Brevibacterium epidermidis. The enzyme, named BepI methylase, is probably the cognate methylase of the FnuDII isoschizomer BepI endonuclease isolated from this strain. The expression of BepI methylase in E. coli is dependent on the orientation of the cloned fragment suggesting that the gene is transcribed from a promoter on the plasmid vector. No BepI endonuclease could be detected in the clones producing BepI methylase. The nucleotide sequence of the BepI methylase gene has been determined, it predicts a protein of 403 amino acids (MR: 45,447). Analysis of the amino acid sequence deduced from the nucleotide sequence revealed similarities between the BepI methylase and other cytosine methylases. M. BepI methylates the external cytosine in its recognition sequence.  相似文献   

6.
Cloning the BamHI restriction modification system.   总被引:11,自引:7,他引:4       下载免费PDF全文
BamHI, a Type II restriction modification system from Bacillus amyloliquefaciensH recognizes the sequence GGATCC. The methylase and endonuclease genes have been cloned into E. coli in separate steps; the clone is able to restrict unmodified phage. Although within the clone the methylase and endonuclease genes are present on the same pACYC184 vector, the system can be maintained in E. coli only with an additional copy of the methylase gene present on a separate vector. The initial selection for BamHI methylase activity also yielded a second BamHI methylase gene which is not homologous in DNA sequence and hybridizes to different genomic restriction fragments than does the endonuclease-linked methylase gene. Finally, the interaction of the BamHI system with the E. coli Dam and the Mcr A and B functions, have been studied and are reported here.  相似文献   

7.
Genetic organization of the KpnI restriction--modification system.   总被引:5,自引:4,他引:1       下载免费PDF全文
The KpnI restriction-modification (KpnI RM) system was previously cloned and expressed in E. coli. The nucleotide sequences of the KpnI endonuclease (R.KpnI) and methylase (M. KpnI) genes have now been determined. The sequence of the amino acid residues predicted from the endonuclease gene DNA sequence and the sequence of the first 12 NH2-terminal amino acids determined from the purified endonuclease protein were identical. The kpnIR gene specifies a protein of 218 amino acids (MW: 25,115), while the kpnIM gene codes for a protein of 417 amino acids (MW: 47,582). The two genes transcribe divergently with a intergeneic region of 167 nucleotides containing the putative promoter regions for both genes. No protein sequence similarity was detected between R.KpnI and M.KpnI. Comparison of the amino acid sequence of M.KpnI with sequences of various methylases revealed a significant homology to N6-adenine methylases, a partial homology to N4-cytosine methylases, and no homology to C5-methylases.  相似文献   

8.
9.
The complete type II restriction-modification system of Salmonella infantis was cloned in Escherichia coli as an R . Sau3AI fragment of 3,430 base pairs. The clone was shown to express the restriction endonuclease as well as the modification methylase. The nucleotide sequence of the above fragment showed two open reading frames of 461 and 230 codons in tail-to-tail orientation. These were shown to represent the modification methylase M . SinI and the restriction endonuclease R . SinI, respectively. The methylase M . SinI amino acid sequence revealed a considerable similarity to those of other deoxycytidylate methylases. In contrast, endonuclease R . SinI did not exhibit such a similarity to other restriction enzymes.  相似文献   

10.
Nucleotide sequence of the EcoRII restriction endonuclease gene   总被引:3,自引:0,他引:3  
The nucleotide sequence of a 1394 basepair (bp) DNA fragment containing the EcoRII restriction endonuclease (R.EcoRII) gene was determined. The endonuclease gene is 1206 bp in length (predicted 402 amino acids (aa) and Mr = 45 178) and is separated by 33 bp from the EcoRII modification methylase (M.EcoRII) gene. The EcoRII restriction-modification system has a tail-to-tail organization of the two genes.  相似文献   

11.
12.
A DNA fragment that carried the genes coding for FokI endonuclease and methylase was cloned from the chromosomal DNA of Flavobacterium okeanokoites, and the coding regions were assigned to the nucleotide sequence by deletion analysis. The methylase gene was 1,941 base pairs (bp) long, corresponding to a protein of 647 amino acid residues (Mr = 75,622), and the endonuclease gene was 1,749 bp long, corresponding to a protein of 583 amino acid residues (Mr = 66,216). The assignment of the methylase gene was further confirmed by analysis of the N-terminal amino acid sequence. The endonuclease gene was downstream from the methylase gene in the same orientation, separated by 69 bp. The promoter site, which could be recognized by Escherichia coli RNA polymerase, was upstream from the methylase gene, and the sequences adhering to the ribosome-binding sequence were identified in front of the respective genes. Analysis of the gene products expressed in E. coli cells by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the molecular weights of both enzymes coincided well with the values estimated from the nucleotide sequences, and that the monomeric forms were catalytically active. No significant similarity was found between the sequences of the two enzymes. Sequence comparison with other related enzymes indicated that FokI methylase contained two copies of a segment of tetra-amino acids which is characteristic of adenine-specific methylase.  相似文献   

13.
The genes encoding the endonuclease and the methylase of the PvuI restriction and modification system were cloned in E.coli and characterized. The genes were adjacent in tandem orientation spanning a distance of 2200 bases. The PvuI endonuclease was a single polypeptide with a calculated molecular weight of 27,950 daltons. The endonuclease was easily detectable when the gene was expressed from its endogenous promotor and present on a low copy plasmid, but expression was considerably enhanced when the endonuclease gene was placed under the control of a strong promoter on a high copy plasmid. The methylase did not completely protect plasmid DNA from R.PvuI digestion until the methylase gene was placed under lac promotor control in a multicopy plasmid. In the absence of the M.PvuI methylase, expression of the R.PvuI endonuclease from the lac promotor on a multicopy plasmid was not lethal to wild type E.coli, but was lethal in a temperature-sensitive ligase mutant at the non-permissive temperature. Moreover, induction of the R.PvuI endonuclease under lambda pL promotor control resulted in complete digestion of the E.coli chromosome by R.PvuI.  相似文献   

14.
A Kiss  F Baldauf 《Gene》1983,21(1-2):111-119
Two modification methylase genes of Bacillus subtilis R were cloned in Escherichia coli by using a selection procedure which is based on the expression of these genes. Both genes code for DNA-methyltransferases which render the DNA of the cloning host E. coli HB101 insensitive to the BspRI (5'-GGCC) endonuclease of Bacillus sphaericus R. One of the cloned genes is part of the restriction-modification (RM) system BsuRI of B. subtilis R with specificity for 5'-GGCC. The other one is associated with the lysogenizing phage SP beta B and produces the methylase M.BsuP beta BI with specificity for 5'-GGCC. The fragment carrying the SP beta B-derived gene also directs the synthesis in E. coli of a third methylase activity (M.BsuP beta BII), which protects the host DNA against HpaII and MspI cleavage within the sequence 5'-CCGG. Indirect evidence suggests that the two SP beta B modification activities are encoded by the same gene. No cross-hybridization was detected either between the M.BsuRI and M.BsuP beta B genes or between these and the modification methylase gene of B. sphaericus R, which codes for the enzyme M.BspRI with 5'-GGCC specificity.  相似文献   

15.
A 6.3 kb fragment of E.coli RFL57 DNA coding for the type IV restriction-modification system Eco57I was cloned and expressed in E.coli RR1. A 5775 bp region of the cloned fragment was sequenced which contains three open reading frames (ORF). The methylase gene is 1623 bp long, corresponding to a protein of 543 amino acids (62 kDa); the endonuclease gene is 2991 bp in length (997 amino acids, 117 kDa). The two genes are transcribed convergently from different strands with their 3'-ends separated by 69 bp. The third short open reading frame (186 bp, 62 amino acids) has been identified, that precedes and overlaps by 7 nucleotides the ORF encoding the methylase. Comparison of the deduced Eco57I endonuclease and methylase amino acid sequences revealed three regions of significant similarity. Two of them resemble the conserved sequence motifs characteristic of the DNA[adenine-N6] methylases. The third one shares similarity with corresponding regions of the PaeR7I, TaqI, CviBIII, PstI, BamHI and HincII methylases. Homologs of this sequence are also found within the sequences of the PaeR7I, PstI and BamHI restriction endonucleases. This is the first example of a family of cognate restriction endonucleases and methylases sharing homologous regions. Analysis of the structural relationship suggests that the type IV enzymes represent an intermediate in the evolutionary pathway between the type III and type II enzymes.  相似文献   

16.
Two genes from the total genomic DNA of dairy starter culture Lactococcus lactis subsp. cremoris UC503, encoding ScrFI modification enzymes, have been cloned and expressed in Escherichia coli. No homology between the two methylase genes was detected, and inverse polymerase chain reaction of flanking chromosomal DNA indicated that both were linked on the Lactococcus genome. Neither clone encoded the cognate endonuclease. The DNA sequence of one of the methylase genes (encoded by pCI931M) was determined and consisted of an open reading frame 1,170 bp long, which could encode a protein of 389 amino acids (M(r), 44.5). The amino acid sequence contained the highly characteristic motifs of an m5C methylase. Extensive regions of homology were observed with the methylases of NlaX, EcoRII, and Dcm.  相似文献   

17.
E Szomolányi  A Kiss  P Venetianer 《Gene》1980,10(3):219-225
The gene coding for the sequence-specific modification methylase methM . BspI of Bacillus sphaericus R has been cloned in Escherichia coli by means of plasmid pBR322. The selection was based on the expression of the cloned gene which rendered the recombinant plasmid resistant to BspI restriction endonuclease cleavage. The gene is carried by a 9 kb BamHI fragment and by a smaller 2.5 kb EcoRI fragment derived from the BamHI fragment. The Bsp-specific methylase level was found to be higher in the recombinant clones than in the parental strain. The methylase gene is probably located on the Bacillus sphaericus chromosome, and not on a plasmid known to be carried by this strain. The recombinant clones do not exhibit an BspI restriction endonuclease activity.  相似文献   

18.
19.
L Szilk  P Venetianer    A Kiss 《Nucleic acids research》1990,18(16):4659-4664
The genes coding for the GGNCC specific Sau96I restriction and modification enzymes were cloned and expressed in E. coli. The DNA sequence predicts a 430 amino acid protein (Mr: 49,252) for the methyltransferase and a 261 amino acid protein (Mr: 30,486) for the endonuclease. No protein sequence similarity was detected between the Sau96I methyltransferase and endonuclease. The methyltransferase contains the sequence elements characteristic for m5C-methyltransferases. In addition to this, M.Sau96I shows similarity, also in the variable region, with one m5C-methyltransferase (M.SinI) which has closely related recognition specificity (GGA/TCC). M.Sau96I methylates the internal cytosine within the GGNCC recognition sequence. The Sau96I endonuclease appears to act as a monomer.  相似文献   

20.
StsI endonuclease (R.StsI), a type IIs restriction endonuclease found in Streptococcus sanguis 54, recognizes the same sequence as FokI but cleaves at different positions. A DNA fragment that carried the genes for R.StsI and StsI methylase (M.StsI) was cloned from the chromosomal DNA of S.sanguis 54, and its nucleotide sequence was analyzed. The endonuclease gene was 1,806 bp long, corresponding to a protein of 602 amino acid residues (M(r) = 68,388), and the methylase gene was 1,959 bp long, corresponding to a protein of 653 amino acid residues (M(r) = 76,064). The assignment of the endonuclease gene was confirmed by analysis of the N-terminal amino acid sequence. Genes for the two proteins were in a tail-to-tail orientation, separated by a 131-nucleotide intercistronic region. The predicted amino acid sequences between the StsI system and the FokI system showed a 49% identity between the methylases and a 30% identity between the endonucleases. The sequence comparison of M.StsI with various methylases showed that the N-terminal half of M.StsI matches M.NIaIII, and the C-terminal half matches adenine methylases that recognize GATC and GATATC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号