首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By using the EST strategy for identifying novel members belonging to homologous gene families, a novel fulklength cDNA encoding a protein significantly homologous to UDP-Gal: N-acetylglucosamine β-1, 4-galactosyltransferase (GalT) was isolated from a human testis cDNA library. A nucleotide sequence of 2 173 bp long was determined to contain an open reading frame of 1 032 nucleotides (344 amino acids). In view of the homology to memben of the galactosyltransferase gene family and especially the closest relationship toGallus gallus GalT type I (CK I), the predicted product of the novel cDNA was designated as human β-1,4-galactosyltransferase homolog I (HumGT-H1). Its mRNA is present in different degrees in 16 tissues examined. Southern analysis of human genomic DNA revealed its locus on chromosome 3.  相似文献   

2.
Konishi T  Kotake T  Tsumuraya Y 《Planta》2007,226(3):571-579
Pectin is one of the major cell wall polysaccharides found in dicotyledonous plants. We have solubilized and partially purified a β-(1→4)-galactosyltransferase (GalT) involved in the synthesis of the β-(1→4)-galactan side chains of pectin. The enzyme protein was almost completely solubilized by mixing a crude microsomal preparation of etiolated 6-day-old soybean (Glycine max Merr.) hypocotyls with a detergent, Triton X-100 (0.75%, w/v), in buffer. The solubilized enzyme was partially purified by ion-exchange chromatography. The crude membrane-bound GalT transferred Gal from UDP-Gal onto 2-aminobenzamide (AB)-derivatized β-(1→4)-galactoheptaose (Gal7-AB), leading to the formation of Gal8–11-AB by attachment of a series of one to four galactosyl residues; this is similar to what has previously been observed for 2-aminopyridine-derivatized β-(1→4)-galactooligomer acceptors (Konishi et al. in Planta 218:833–842, 2004). The partially purified GalT, by contrast, was able to transfer more than 25 galactosyl residues and elongated the chains to about Gal35-AB, thus almost reaching the length (43–47 Gal units) of native β-(1→4)-galactan side chains found in pectic polysaccharides from soybean cotyledons (Nakamura et al. in Biosci Biotechnol Biochem 66:1301–1313, 2002). Enzyme activity increased with increasing chain length of β-(1→4)-galactooligomers and reached maximal activity at heptaose, whereas galactooligomers higher than heptaose showed lower acceptor efficiency. Sugars described in this paper belong to the d-series unless otherwise noted.  相似文献   

3.
We examined the expression of human cyclooxygenase-1 (COX-1) in Drososphila melanogaster S2 (S2) cells transformed with cDNAs encoding β1,4-galactosyltransferase (GalT) and Galβ1,4-GlcNAc α2,6-sialyltransferase (ST). Southern blot analysis indicated that multiple copies of the glycosyltransferases genes were integrated into the S2 cell genome. A lectin blot analysis also indicated that recombinant COX-1 from S2COX-1/GalT-ST cells contained the glycan residues of β1,4-linked galactose and α2,6-linked sialic acid. The specific peroxidase activity of recombinant sialylated COX-1 from S2COX-1/GalT-ST cells was 41,250 U mg−1, indicating an increase of approximately 22% compared with a non-sialylated control (33,850 U mg−1) from S2COX-1 cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The antisense fragments, which were available inin vitro system, were cloned into the mammalian expression vector pcDNA3, and were transfected into H654 cells, a mammalian cell line stably expressing the thalassaemic (IVS-2-654 C→T) human β-globin gene. In these transfected cells, the level of correctly spliced β-globin mRNA in total β-globin mRNA (β/(β + β*)) was improved from 0.07 (0 d) to 0.22 (3 d), and this effect persisted for up to 15 d post transfection. All the results demonstrated that antisense RNAs were able to be transcribed from the antisense fragment expression vectors stably and effectively suppressed aberrant splicing pattern of the mutated β-globin gene (IVS-2-654 C→T) and restored correct splicing pathway. This work provided a novel approach with potential clinical significance to gene therapy of this kind of splicing mutants including β-thalassaemia (IVS-2-654 C→T) by antisense RNAs. Project supported in part by the National Natural Science Foundation of China (Grant Nos. 39780019, 39392903) and the Shanghai Life Sciences Research Centre.  相似文献   

5.
6.
In mammals, the xylosylprotein beta4-galactosyltransferase termed beta4GalT7 (XgalT-1, EC ) participates in proteoglycan biosynthesis through the transfer of galactose to the xylose that initiates each glycosaminoglycan chain. A Drosophila cDNA homologous to mammalian beta4-galactosyltransferases was identified using a human beta4GalT7 cDNA as a probe in a BLAST analysis of expressed sequence tags. The Drosophila cDNA encodes a type II membrane protein with 322 amino acids and shows 49% identity to human beta4GalT7. Extracts from L cells transfected with the cDNA exhibited marked galactosyltransferase activity specific for a xylopyranoside acceptor. Moreover, transfection with the cloned cDNA restored glycosaminoglycan synthesis in beta4GalT7-deficient Chinese hamster ovary cells. In transfectant lysates the properties of Drosophila and human beta4GalT7 resembled each other, except that Drosophila beta4GalT7 showed a less restricted specificity and was active at a wider range of temperatures. Drosophila beta4GalT7 is expressed throughout development, with higher expression levels in adults. Reduction of Drosophila beta4GalT7 levels using expressed RNA interference (RNAi) in imaginal discs resulted in an abnormal wing and leg morphology similar to that of flies with defective Hedgehog and Decapentaplegic signaling, which are known to depend on intact proteoglycan biosynthesis. Immunohistochemical analysis of tissues confirmed that both heparan sulfate and chondroitin sulfate biosynthesis were impaired. Our results demonstrate that Drosophila beta4GalT7 has the in vitro and in vivo properties predicted for an ortholog of human beta4GalT7 and is essential for normal animal development through its role in proteoglycan biosynthesis.  相似文献   

7.
Mouse cDNA sequences encoding α, β, and γ adducins were cloned from a mouse reticulocyte cDNA library. The purified clones contain alternatively spliced exons from all three adducin genes. In the case of α and β, the inclusion of the alternatively spliced exons results in truncated polypeptide isoforms (called α-2 and β-2). The mouse predicted amino acid sequences are compared with published rat and human sequences. For completion of this comparison, cDNA encoding the rat β-1 carboxy terminus was cloned by PCR. The carboxy terminal region containing MARCKS homology, calmodulin-binding region-2, and spectrin-actin-binding site, is conserved among α-1, β-1, and γ-1 isoforms in mouse, rat, and humans. We also report here the localization of the gene encoding γ adducin (Add3) to murine Chr 19, in a region that shows conserved synteny with human Chr 10. Received: 1 June 1999 / Accepted: 25 August 1999  相似文献   

8.
β-1,4-galactosyltransferase I (β-1,4-GalT I) plays an important role in the synthesis of the backbone structure of adhesion molecules involved in leukocyte–endothelial cell interaction. The expression of β-1,4-GalT I mRNA increased in primary human endothelial cells after exposure to tumor necrosis factor-α (TNF-α). In the central nervous system (CNS), astrocytes play a pivotal role in immunity as immunocompetent cells by secreting cytokines and inflammatory mediators, there are two types of astrocytes. Type-1 astrocytes can secrete TNF-α when stimulated with Lipopolysaccharide (LPS), while the responses of type-2 astrocytes during inflammation are unknown. So we examined the expression change of β-1,4-GalT I mRNA in type-2 astrocytes after exposure to TNF-α and LPS. Real-time PCR showed that TNF-α or LPS affected β-1,4-GalT I mRNA expression in a time- and dose-dependent manner. RT-PCR analysis revealed that TNFR1 and TNFR2 were present in normal untreated type-2 astrocytes, and that TNF-α, TNFR1 and TNFR2 increased in type-2 astrocytes after exposure to TNF-α or LPS. Immunocytochemistry showed that TNFR1 was expressed in the cytoplasm, nucleus and processes of normal untreated type-2 astrocytes, and distributed mainly in the cytoplasm and processes after exposure to LPS. TNFR2 was mainly expressed in the nucleus of normal untreated type-2 astrocytes, and distributed mainly in the processes of type-2 astrocytes after exposure to LPS. Both anti-TNFR1 and anti-TNFR2 antibodies suppressed β-1,4-GalT I mRNA expression induced by TNF-α or LPS. From these results, we conclude that TNF-α signaling via both TNFR1 and TNFR2 translocated from nucleus to cytoplasm or processes is sufficient to induce β-1,4-GalT I mRNA. In addition, we observed that not only exogenous TNF-α but also TNF-α produced by type-2 astrocytes affected β-1,4-GalT I mRNA production in type-2 astrocytes. These results suggest that an autocrine loop involving TNF-α contributes to the production of β-1,4-GalT I mRNA in response to inflammation. Chunlin Xia is the co-first author.  相似文献   

9.
Galactose oxidase (EC 1.1.3.9, GAO) was used to convert the C-6′ OH of Galβ(1 → 4)Glcβ–OBn (5) to the corresponding hydrated aldehyde (7). Chemical modification, through dehydratative coupling and reductive amination, gave rise to a small library of Galβ(1 → 4)Glcβ–OBn analogues (9a–f, 10, 11). UDP-[6-3H]Gal studies indicated that α1,3-galactosyltransferase recognized the C-6′ modified Galβ(1 → 4)Glcβ–OBn analogues (9a–f, 10, 11). Preparative scale reactions ensued, utilizing a single enzyme UDP-Gal conversion as well as a dual enzymatic system (GalE and α1,3GalT), taking full advantage of the more economical UDP-Glc, giving rise to compounds 6, 15–22. Galα(1 → 3)Galβ(1 → 4)Glcβ–OBn trisaccharide (6) was produced on a large scale (2 g) and subjected to the same chemoenzymatic modification as stated above to produce C-6″ modified derivatives (23–30). An ELISA bioassay was performed utilizing human anti-αGal antibodies to study the binding affinity of the derivatized epitopes (6, 15–30). Modifications made at the C-6′ position did not alter the IgG antibody's ability to recognize the unnatural epitopes. Modifications made at the C-6″ position resulted in significant or complete abrogation of recognition. The results indicate that the C-6′ OH of the αGal trisaccharide epitope is not mandatory for antibody recognition. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Mouse F9 teratocarcinoma cells converted into primitive endodermand parietal endoderm-like cells when treated with retinoicacid (RA) and RA plus dibutyryl cyclic AMP (dbtcAMP), respectively.The carbohydrate chains of glycoconjugates are known to undergorapid changes during F9 cell differentiation. The mechanismof gene regulation of ß1,4-galactosyltransferase (ß1,4GalT),one of the glycosyltransferases involved in the synthesis ofcarbohydrate structures, was explored during the differentiationof F9 cells. Northern blot analysis revealed that the amountof ß1,4GalT mRNA increased  相似文献   

11.
Novel chimeric lacdiNAc (GalNAc(β1-4)GlcNAc) synthase (c-LacdiNAcS) was generated by gene fusion of α-lactalbumin (α-LA) and β1,4-galactosyltransferase 1 (β1,4-GalT1). c-LacdiNAcS was expressed in Lec8 Chinese hamster ovary (Lec8 CHO) cells and exhibited N-acetylgalactosaminyltransferase (GalNAcT) activity in the absence of exogenous α-LA as well as other glycosyltransferase activities including lactose synthase (LacS), and β1,4-GalT. These glycosyltransferase activities of c-LacdiNAcS were compared to those activities induced in LacS system under the co-presence of bovine β1,4-GalT1 and α-LA, indicating that each domain of α-LA and β1,4-GalT1 on c-LacdiNAcS is not only folding correctly, but also interacting together. Furthermore, c-LacdiNAcS was found to be auto-lacdiNAcylated and can synthesize lacdiNAc structures on cellular glycoproteins, demonstrating that GalNAcT activity of c-LacdiNAcS is functional in Lec8 CHO cells.  相似文献   

12.
6-Sulfo-sialyl Lewis X structure is attributable to recognition between lymphocytes and high endothelial venules. However, the biosynthetic pathway still remains unclear. We found that a β-galactosyltransferase (βGalT) in human colorectal mucosa preferentially acts on GlcNAc-6-O-sulfate (6S-GN). 6S-GN:β4GalT was partially purified by UDP-hexanolamine-Sepharose and asialo-agalacto-ovomucin-Sepharose chromatographies. The optimum pH of this enzyme was found to be 6.5–7.5 and the Michaelis constants for 6S-GN and UDP-Gal were 0.43 mM and 16 μM, respectively. The enzymatic activity was dependent on divalent cations and the substrate specificity was not affected by α-lactalbumin. This is the first demonstration of the occurrence of 6S-GN:β4GalT.  相似文献   

13.
Receptor-mediated cell-extracellular matrix (ECM) interactions are critical regulators of cell survival, and perturbing these signaling pathways can disrupt cellular differentiation and function in a variety of tissues, including the mammary gland. One such receptor is the cell surface-associated, long isoform of beta1,4-galactosyltransferase I (GalT I). Deletion of long GalT I leads to increased mammary ductal branching morphogenesis [Dev. Biol., 244 (2002) 114]. Here, we show that this expansion in the mammary epithelial (ME) cell compartment is accomplished through decreased apoptosis during pregnancy and involution. Decreased apoptosis during involution is concomitant with delayed alveolar collapse, persistent expression of the milk protein gene alpha-lactalbumin and delayed expression of genes associated with the tissue-remodeling phase of involution. Using 3-dimensional in vitro cultures, we show that the decrease in apoptosis is dependent on laminin 1, a ligand for surface GalT I, suggesting that surface GalT I negatively influences ECM-dependent cell survival, a novel function for an ECM receptor. In the best-studied examples, ECM promotes survival through integrin receptor-mediated activation of focal adhesion kinase (FAK). Aggregation of surface GalT I also activates FAK, therefore, we asked if FAK activation was altered in ME from long GalT I null mice. Activated FAK was appropriately localized to focal adhesions in long GalT I null ME. However, FAK activation was constitutively reduced 4.5-fold in long GalT I nulls relative to wild type. Expression of the integrin beta1 subunit was not affected by loss of long GalT I. Collectively, these results suggest that surface GalT I might negatively regulate ME cell survival by linking integrin-independent FAK activation to apoptotic rather than survival signaling events.  相似文献   

14.
Most of the glycosyltransferases involved in O antigen biosynthesis have not yet been characterized. We recently demonstrated that the wbbD gene of the O7 lipopolysaccharide biosynthesis cluster in E. coli strain VW187 (O7:K1) encodes WbbD, a UDP-Gal: GlcNAcα-pyrophosphate-lipid β1,3-Gal-transferase (EC 2.4.1., accession number AAC27537) that transfers the second sugar moiety in the assembly of the O7 repeating unit. The enzyme utilizes undecaprenol-pyrophosphate-GlcNAc as a natural acceptor substrate, but can also transfer Gal to GlcNAcα-PO3-PO3-(CH2)11-O-phenyl (GlcNAc-PP-PhU). A number of acceptor substrate analogs have now been tested to further characterize the acceptor specificity of WbbD and to determine the roles of the pyrophosphate bond and the lipid moiety in the acceptor substrate. The enzyme was found to have a low activity with a substrate containing only one phosphate group directly α-linked to GlcNAc, and the enzyme was inactive when the phosphate was absent or further removed from the anomeric carbon of GlcNAc. Modifications of the lipid chain yielded substrates with variable activities. GlcNAc derivatives that were inactive as substrates did not inhibit WbbD suggesting that these compounds did not bind to the active site of the enzyme. The specificity of mammalian β4-galactosyltransferase I has been compared to that of WbbD. The results indicate that the bacterial WbbD enzyme has a distinct specificity for GlcNAc-PP-lipid, and that WbbD recognition of its acceptor substrate is very different from that of the ubiquitous mammalian β4-galactosyltransferase I. These studies help to understand mechanisms of O antigen synthesis, to develop methods to synthesize defined oligosaccharide structures and to develop specific O antigen inhibitors.  相似文献   

15.
We previously showed that in vitro activated human T lymphocytes expressed increased amounts of -1,6-branched N-linked oligosaccharides (Lemaire S et al. (1994) J Biol Chem 269: 8069-74), which have been proposed to participate in the regulation of the immune process. In the present paper, we compared the activity and expression of -1,4-galactosyltransferase (GalT), one of the glycosyltransferases involved in the biosynthesis of these -1,6-branched N-linked oligosaccharides, before and after in vitro activation of T lymphocytes after a 40 h treatment with a mixture of phorbol 12-myristate 13-acetate and Phaseolus vulgaris lectin. After treatment, the enzymatic activity of the GalT was significantly increased and immunoblot experiments performed with a monoclonal antibody to human GalT showed an increased intensity of the GalT band at 49 kDa, attributable to an enhancement of GalT mRNA level, as shown by Northern blots. However, treatment of the same T-lymphocytes by phorbol ester alone, which is unable to induce mitosis, resulted in a comparable increase of the expression of GalT. Moreover, these phorbol ester-treated T lymphocytes, analysed by flow cytometry exhibited a two-fold increase in the expression of GalT. Finally, confocal fluorescence microscopy performed on all T lymphocytes (treated or not) showed that the flow cytometric signal of GalT originates from intracellular, Golgi-associated antigen only since no surface GalT was detected.  相似文献   

16.
Galactosyltransferases are important enzymes for the extension of the glycan chains of glycoproteins and glycolipids, and play critical roles in cell surface functions and in the immune system. In this work, the acceptor specificity and several inhibitors of bovine β1,4-Gal-transferase T1 (β4GalT, EC 2.4.1.90) were studied. Series of analogs of N-acetylglucosamine (GlcNAc) and GlcNAc-carrying glycopeptides were synthesized as acceptor substrates. Modifications were made at the 3-, 4- and 6-positions of the sugar ring of the acceptor, in the nature of the glycosidic linkage, in the aglycone moiety and in the 2-acetamido group. The acceptor specificity studies showed that the 4-hydroxyl group of the sugar ring was essential for β4GalT activity, but that the 3-hydroxyl could be replaced by an electronegative group. Compounds having the anomeric β-configuration were more active than those having the α-configuration, and O-, S- and C-glycosyl compounds were all active as substrates. The aglycone was a major determinant for the rate of Gal-transfer. Derivatives containing a 2-naphthyl aglycone were inactive as substrates although quinolinyl groups supported activity. Several compounds having a bicyclic structure as the aglycone were found to bind to the enzyme and inhibited the transfer of Gal to control substrates. The best small hydrophobic GlcNAc-analog inhibitor was found to be 1-thio-N-butyrylGlcNβ-(2-naphthyl) with a Ki of 0.01 mM. These studies help to delineate β4GalT–substrate interactions and will aid in the development of biologically applicable inhibitors of the enzyme.  相似文献   

17.
Genomic organization of the human interleukin-12 receptor β2-chain gene   总被引:1,自引:1,他引:0  
 The interleukin-12 receptor (IL-12R) is composed of two subunits, referred to as β1 and β2. Both chains are necessary for high-affinity IL-12 binding and signalling, although only the IL-12Rβ2 chain contains the intracellular tyrosine residues responsible for STAT4 activation. This study presents the intron-exon organization of the human IL-12Rβ2-chain gene. Polymerase chain reaction (PCR) primers designed across the cDNA (U46198) were used to trace introns, by comparing PCR product sizes obtained using cDNA and genomic DNA as templates. PCR products spanning introns were sequenced to determine the exact splice sites and flanking regions. The coding region of the gene was found to consist of 15 exons and 14 introns. All intron-exon boundaries are consistent with the consensus sequence for splice junctions (5′ GT/AG 3′). Comparison of the intron-exon organization with the human GCSFR gene indicated a remarkably well conserved genomic organization between these two class I cytokine receptors. Interestingly, we identified an alternatively spliced mRNA, encoding a putative, truncated protein, lacking all signalling potential. Received: 21 July 1999 / Revised: 2 September 1999  相似文献   

18.
19.
Virus-induced gene silencing (VIGS) is potentially an attractive reverse-genetics tool for studies of plant gene function, but whether it is effective in silencing mineral nutritional-related genes in roots has not been demonstrated. Here we report on an efficient VIGS system that functions in tomato roots using a modified viral satellite DNA (DNAmβ) associated with Tomato yellow leaf curl China virus (TYLCCNV). A cDNA fragment of the ferric chelate reductase gene (FRO1) from tomato was inserted into the DNAmβ vector. Tomato roots agro-inoculated with DNAmβ carrying both a fragment of FRO1 and TYLCCNV used as a helper virus exhibited a significant reduction at the FRO1 mRNA level. As a consequence, ferric chelate reductase activity, as determined by visualization of the pink FeBPDS3 complex was significantly decreased. Our results clearly demonstrated that VIGS system can be employed to investigate gene function associated with plant nutrient uptake in roots.  相似文献   

20.
By using differential display PCR (DD-PCR) technique, two salt-inducible and one salt-repressed cDNA fragments were isolated from rice. The three cDNA fragments were characterized respectively as partial sequence of rice S-adenosylmethionine decarboxylase (SAMDC) gene, a new member of translation elongation factor 1A gene (namedREF1 A), and a novel gene whose function is unknown (namedSRG1). The full-length cDNA of SAMDC gene (namedSAMDC1) was further isolated by RT-PCR approach and the deduced polypeptide was found to be homologous to SAMDC proteins of other plants, yeast and buman. Northern hybridization revealed that expression of SAMDCl and REFlA was induced, while SRGl was dramatically repressed, by salinity stress. Southern blot analysis demonstrated that SAMDCl and SRGl were present as a single copy gene in rice genome, whereas riceREF1 A gene was organized as a gene family. TheREF1 A,SAMDC1, andSRG1 genes were located on chromosome 3,4, and 6 respectively by RFLP mapping approach using ZYQ8/JX17 DH population and RFLP linkage maps. Project supported by the National “863” High-Technology Program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号