首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
生境破碎化对动物种群存活的影响   总被引:51,自引:12,他引:39  
武正军  李义明 《生态学报》2003,23(11):2424-2435
生境破碎是生物多样性下降的主要原因之一。通常以岛屿生物地理学、异质种群生物学和景观生态学的理论来解释不同空间尺度中生境破碎化的生态学效应。生境破碎化引起面积效应、隔离效应和边缘效应。这些效应通过影响动物种群的绝灭阈值、分布和多度、种间关系以及生态系统过程,最终影响动物种群的存活。野外研究表明,破碎化对动物的影响,因物种、生境类型和地理区域不同而有所变化,因此,预测物种在破碎生境中的存活比较困难。研究热点集中于:确定生境面积损失和生境斑块的空间格局对破碎景观中物种绝灭的相对影响,破碎景观中物种的适宜生境比例和绝灭阈值,异质种群动态以及生态系统的生态过程。随着3S技术的发展,生境破碎化模型趋于复杂,而发展有效的模型和验证模型将成为一项富有挑战性的任务。  相似文献   

2.
道路对两栖类种群的生态学影响   总被引:2,自引:0,他引:2  
随着道路密度和交通量的不断增加,道路对两栖类种群产生的负面影响也在不断的加深和扩大,其影响主要有:1)直接作用:道路致死、廊道效应、生境破碎、回避效应等:2)间接作用:即边缘效应,包括非生物环境(土、水、气、声、热等)和生物环境(植被和其他动物等)的影响.这些因素的综合作用,将会威胁物种长期的存活,从而导致种群数量的严重下降.文章系统论述了道路对两栖类种群的生态学影响,以期引起人们的关注,并采取相应的措施,使人类在追求经济利益的同时最大限度的减少道路对动物的影响和危害.  相似文献   

3.
刘炳亮  苏金豹  马建章 《生态学报》2018,38(10):3653-3660
人类活动导致的景观改变能形成大量的生境缀块和边缘结构,对植物扩散产生重要影响。以植物个体运动生态学——种子扩散模式作为分类依据,对兴凯湖自然保护区游憩带与非游憩带、交通廊道与非交通廊道中动物扩散物种、风扩散物种、无助力扩散物种(包括重力扩散、弹射扩散等短距离扩散的物种)以及全部物种的边缘溢出效应分别进行对比分析。结果显示,游憩带动物扩散物种和全部物种的边缘溢出效应均明显弱于非游憩带;而风扩散物种在游憩带和非游憩带均有大量溢出;无助力扩散物种在这两个实验区的溢出效应均不明显。交通廊道中动物扩散物种的溢出效应显著弱于非交通廊道,但风扩散物种却明显强于非交通廊道;无助力扩散物种在两种廊道类型中同样只有少量溢出,且距离相对较短;总体溢出效应并未发现显著差异。这些结果表明,旅游开发对植物运动生态学产生了影响,最终导致了溢出效应的改变。  相似文献   

4.
道路生态研究进展   总被引:86,自引:5,他引:81  
道路广泛分布在各种景观中,其密度和交通量都不断增加,随之带来多方面的生态影响:道路建设导致动植物死亡和生境丧失、物理化学环境变化、路旁植被改变。对动物种群产生的生态影响包括道路致死、道路回避和巢区转移、移动格局改变、障碍作用导致生境和种群的破碎化。道路还强烈地改变景观格局和过程。道路生态影响的定量化测度指数包括道路密度、道路位置和道路影响域,道路生态研究在道路规划和野生动物保护中有很广阔的应用前景,成为生态学的一个重要领域。  相似文献   

5.
道路生态研究进展   总被引:11,自引:1,他引:10  
道路广泛分布在各种景观中,其密度和交通量都不断增加,随之带来多方面的生态影响:道路建设导致动植物死亡和生境丧失、物理化学环境变化、路旁植被改变.对动物种群产生的生态影响包括道路致死、道路回避和巢区转移、移动格局改变、障碍作用导致生境和种群的破碎化.道路还强烈地改变景观格局和过程.道路生态影响的定量化测度指数包括道路密度、道路位置和道路影响域,道路生态研究在道路规划和野生动物保护中有很广阔的应用前景,成为生态学的一个重要领域.  相似文献   

6.
物种多度格局研究进展   总被引:16,自引:1,他引:15       下载免费PDF全文
 物种多度格局研究始于20世纪30年代,是种群生态学和群落生态学研究的起点。物种多度格局研究主要在两个水平上进行:1)初期研究主要集中于群落水平,希望在不同群落之间发现一个共同的整体格局来描述群落的组织结构。常用模型包括几何级数、对数级数、对数正态和断棍模型,不同模型代表了不同的生态学过程。2)目前转向重视物种水平,并以物种多度的区域分布规律及其生态学机制研究为主。物种分布区多度关系有正相关、无相关和负相关3种形式。局部多度高的物种一般趋于广布,而局部多度低的物种趋于受限分布。物种多度区域分布的生态位模型预测为单峰型,还经常会出现“热点地区”;而异质种群模型预测为双峰型。物种多度的区域分布主要由环境资源特性、物种生态位和扩散过程等因素决定。3)物种多度格局的时间变化与空间变异类似,代表了这些生态学过程的时间异质性。4)物种多度格局的尺度变化经常表现出自相似性,但该规律并非一直存在,因为生物多样性由不同尺度上的不同生态学过程决定。5)多度(稀有度)是物种保护的基本依据,而群落多度模型能够指示生态学和干扰过程变化对群落结构的影响。物种多度格局的模型手段仍需改进,机制研究尚不系统,应用研究亟待扩展,对于物种多度格局的深入理解将为揭示生物多样性分布机制和有效保护提供帮助。  相似文献   

7.
宏生态学(Macroecology)及其研究   总被引:4,自引:1,他引:3  
胡慧建  蒋志刚  王祖望 《生态学报》2003,23(6):1192-1199
宏生态学是生态学与其他宏观学科不断交叉和融合后的产物。它以个体、种群和物种的生态特征在大时空尺度上的格局和变化规律为主要研究内容,它比其他生态学更强调归纳和推论,也更依赖数据的积累。近年来,宏生态学在对物种一面积关系进行探讨的基础上,对生物类群间的物种数量的协同变化以及物种和高级分类单元间的关系等进行了新的研究;宏生态学试图将有机论和个体论结合来探讨和总结群落结构中的物种组成规律;并对物种多度和分布格局间的关系从生态位和异质种群角度进行新的解释;个体大小频次分布规律是宏生态学一重要内容,对其深入研究和探讨已与物种多度、能量、分布面积、历史起源等多方面特征相结合,并得到一些普遍性规律;最后,宏生态学还探讨物种在地理区域上的普遍性的分布模式,并对其假说进行检验和探讨。宏生态学在中国还处于刚起步阶段,但中国具有资源的优势,并具有一定的数据积累,将在宏生态学研究中发挥越来越重要的作用。  相似文献   

8.
集合种群动态:理论与应用   总被引:28,自引:0,他引:28  
集合种群是指一相对独立地理区域内各个局域种群的集合,这些局域种群通过一定程度的个体迁移而连结在一起。集合种群理论是生态学最新分支领域——空间生态学的主要研究途径之一;它关注的是局域种群之间个体迁移的动力学后果,以及具有不稳定局域种群物种的区域续存的条件。本文较为全面地介绍了集合种群理论的基本内容,并展望其应用前景。  相似文献   

9.
邓文洪  高玮 《生态学报》2005,25(11):2804-2810
边缘效应对动物的分布及行为会产生一定的影响,在鸟类生态学研究中已证实某些鸟类在森林内部和森林边缘区域存在着物种丰富度和个体多度的差异。于1999至2001年的春夏季,在吉林省左家自然保护区对阔叶林/农田边缘、阔叶林/灌丛边缘及阔叶林/针叶林边缘3种不同类型边缘地带的鸟类物种丰富度及个体多度进行了比较研究。结果表明,不同年间鸟类物种丰富度无显著变化,但个体多度存在着一定的波动。不同类型森林边缘的鸟类物种丰富度存在着一定的差异,阔叶林/灌丛边缘的鸟类物种丰富度最高,而阔叶林/针叶林边缘的鸟类物种丰富度最低。鸟类个体多度的总体趋势在3种不同类型的边缘差异不显著,但存在种间差异,灰椋鸟、灰头啄木鸟和喜鹊在阔叶林/农田边缘的个体多度最高,斑啄木鸟、黄胸、三道眉草和日本树莺在阔叶林/灌丛边缘的个体多度最高,而沼泽山雀、冕柳莺和山在阔叶林/针叶林边缘的个体多度最高。  相似文献   

10.
提出了随时间变化的人类活动效应对物种多样性影响的多物种竞争非自治动力模式,并以洪湖为例模拟了湿地水鸟物种多样性对人类活动效应(生境持续毁坏)的响应过程。模拟发现:对于强.强物种,生境的持续破坏使得湿地水鸟的物种多度大幅度减小,并发生优势种群的更替;对于弱-弱物种,将导致大批的弱物种种群迅速灭绝,而余下的弱物种种群将做准周期振荡;尽管停止对湿地生境的持续毁坏,仍会使一批弱物种种群继续走向灭绝,并且使得原来最强的几个种群最终灭绝。物种灭绝对生境毁坏的这种时间滞后性,即破碎的生境中存在着一些“活死者”,必须引起自然保护学家的关注,否则会低估了实际处于灭绝边缘的物种的数目,从而影响正确的物种保护决策的制订。  相似文献   

11.
Summary Research into mitigation of the ecological impacts of rainforest roads in North Queensland has a long history, commencing during the formative years of Australian road ecology. In Queensland’s Wet Tropics and throughout Australia, installation of engineered structures to ameliorate ecological road impacts is now common during larger construction projects, but unusual in smaller road projects. Retro‐fitting of engineering solutions to roads that are causing obvious impacts is also uncommon. Currently, Australian mitigation measures concentrate on two important impacts: road mortality and terrestrial habitat fragmentation. Unfortunately, other important ecological impacts of roads are seldom addressed. These include edge effects, traffic disturbance, exotic invasions and fragmentation of stream habitats. In North Queensland, faunal underpasses and canopy bridges across rainforest roads have been monitored over long periods. These structures are used frequently by multiple individuals of various species, implying effectiveness for movements and dispersal of many generalist and specialised rainforest animals. However, without addressing population and genetic implications, assessment of effectiveness of these connectivity structures is not holistic. These aspects need sufficient long‐term funding to allow similar systematic monitoring before and after construction. Throughout Australia, more holistic approaches to mitigation of road impacts would routinely examine population and genetic connectivity, consider mitigation against more ecological impacts where appropriate and include landscape‐scale replication.  相似文献   

12.
Habitat fragmentation often induces edge effects that can increase, decrease or have minimal effect upon the population density of a species, depending upon environmental conditions and the requirements of the species. Using a trapping study and generalized linear mixed models, we evaluated edge effects on small tropical mammals living near roads, including two ground‐dwelling (Akodon sp. and Cerradomys subflavus) and two arboreal (Marmosops incanus and Rhipidomys sp.) species. We examined the relationship of these edge effects to environmental factors at both plot and patch scales. Generalist ground‐dwelling species were attracted to edges, with higher population densities recorded in habitats close to road or matrix edges where vegetation density was lower. In contrast, populations of the generalist arboreal species avoided edge habitats, their populations were found in greater density in habitats far from roads/matrix edges. Thus, our results show that patterns of edge habitat utilization were related to the ecological requirements of each species. These findings are especially important in the tropics, where demand for economic growth in many countries has accelerated the fragmentation process and has recently culminated in increased road construction and expansion. Fragmented habitats promote an increase in edge environments, and consequently will reduce the abundance of arboreal small mammal species, such as those used as models in this study.  相似文献   

13.
Road edge effects cover extensive areas and exert a wide range of ecological influences on nearby plants and animals. Most studies have focused on individual and population level effects of the road edge; less is known about how communities and their functionality are altered in proximity to roads. Here, we studied the effect of road edges on species richness, rarity, endemism, composition, and functional (trophic) classification of communities of plants, ground-dwelling arthropods (beetles, spiders, scorpions, diplopods), and small mammals. The study, conducted in a Mediterranean ecosystem in central Israel, included sampling of these taxa in 10 plots adjacent to a regional road, and in 12 nearby control plots located in a typical shrubland habitat. We found a variety of community level road edge effects on the structure, composition, and function of the studied communities. The extent of effects varied among taxa, but they were generally positive or neutral. For the species-rich taxa (plants, beetles, and spiders), distinct road edge communities characterized by higher richness and altered species composition were found. Rarity and endemism were lower, and the proportion of disturbance-associated plant species was higher at the road edge. Among the species-poor taxa, scorpions and small mammals were more abundant along road edges than in control plots, while diplopods, the only negatively affected taxon, showed decreased abundance along the road. No ecologically meaningful changes in richness or composition were detected for the species-poor taxa along the road edge. Road edges profoundly affect floral and faunal communities, with possible implications for biodiversity conservation.  相似文献   

14.
A major target for environmental managers when trying to minimise the road-barrier effect on wildlife is to improve permeability to animal movements. Previous studies have demonstrated that drainage culverts are used by vertebrates, although knowledge of the main influencing factors remains limited. The use of 34 culverts from two roads in southern Portugal, differing in traffic volume, vehicle speeds and configuration, was evaluated by the analysis of terrestrial vertebrate footprint data (408 passage-operative days). Culvert crossings were related to various explanatory variables by means of canonical ordination techniques. We recorded 901 complete crossings, corresponding to an average of 2.2 crossings/culvert/operative day. Thirteen taxa were detected, all in more than one passage. Animal species included reptiles, small mammals, lagomorphs, carnivores and domestic dogs and cats. Our results suggest that fencing might have a funnelling effect, directing larger animals toward culverts. Also, vegetation covering culvert entrances seems to have a positive effect, particularly on genets; longer passages with entrances far from the pavement were, apparently, avoided by smaller animals; a lower number of crossings was detected on passages with detritus pits; the closest passages to urban areas are more often used by domestic species; forest-living species favour passages with low, open land cover nearby; and smaller species, like lagomorphs and small mammals, appear to use more culverts near the pavement, which probably reflects the importance of road verges as refuges for these species. Although not used by all species present in the study area, constructing numerous passages of different sizes without detritus pits and which are distributed along roads might be an important step in mitigating road fragmentation effects on animal populations.  相似文献   

15.
Roads can fragment animal populations by reducing gene flow, which can lead to drift and the loss of genetic diversity. One of the principle signatures of reduced gene flow is increased genetic differentiation in isolated populations, and evidence that roads contribute to such differentiation has been reported for several species. We used microsatellites to examine whether six roads led to increased genetic differentiation in red-backed salamanders (Plethodon cinereus). These six roads included one divided interstate highway, one undivided four-lane highway, and four secondary roads. We found that the genetic distance between plots that were bisected by the interstate highway was significantly greater than the genetic distance between equidistant plots on the same side of the highway. However, for the five smaller roads, plots across the road were no more genetically distinct than were plots on the same side of the road. Bayesian clustering methods also supported both of these findings. The optimal clustering of plots for the interstate highway consisted of two clusters that corresponded to the two sides of highway. For the other five sites, the optimal grouping consisted of a single cluster containing all of the plots. Our findings suggest that gene flow across very large roads is rare and that bisected red-backed salamander populations are likely to diverge from one another. For smaller roads, our results imply that the indirect effects of roads on genetic population structure are probably less of a pressing concern for terrestrial salamanders than are the direct effects of mortality and habitat alteration.  相似文献   

16.
Changes in the distribution and abundance of bird and small mammal species at urban-wildland edges can be caused by different factors. Edges can affect populations directly if animals respond behaviorally to the edge itself or if proximity to edge directly affects demographic vital rates (an "ecotonal" effect). Alternatively, urban edges can indirectly affect populations if edges alter the characteristics of the adjacent wildland vegetation, which in turn prompts a response to the altered habitat (a "matrix" or "habitat" effect). We studied edge effects of birds and small mammals in southern Californian coastal sage scrub, and assessed whether edge effects were attributable to direct behavioral responses to edges or to animal responses to changes in habitat at edges. Vegetation species composition and structure varied with distance from edge, but the differences varied among study sites. Because vegetation characteristics were correlated with distance from edge, responses to habitat were explored by using independently-derived models of habitat associations to calibrate vegetation measurements to the habitat affinities of each animal species. Of sixteen species examined, five bird and one small mammal species responded to edge independently of habitat features, and thus habitat restoration at edges is expected to be an ineffective conservation measure for these species. Two additional species of birds and one small mammal responded to habitat gradients that coincided with distance from edge, such that the effect of edge on these species was expressed via potentially reversible habitat degradation.  相似文献   

17.
Road mortality is a significant threat to terrestrial vertebrates in many areas, and the novel thermal environment of black-topped roads may represent ecological traps for some species and demographic groups. We investigated the relationship between ambient temperature and on-road detection in a snake assemblage in southeastern Louisiana by comparing observations of live snakes on a black-topped road, across measurements of air temperature and road temperature on survey days. Analyses indicated on-road detection of snakes was significantly influenced by ambient temperature conditions for five snake species. Additionally, road temperatures, and the difference between air and road temperatures, were strong drivers of on-road snake detections. Permutation analysis methods revealed that significant temperature related group (species or sex) structure exists in occurrences of snakes on the roadway, and that road temperature was the strongest driver of species differences. We also compared how air and road temperatures affected occurrence on the road between sexes in the colubrid snakes Nerodia fasciata, Nerodia cyclopion, Thamnophis proximus, and Pantherophis obsoletus. Males and females of the viviparous species N. fasciata, N. cyclopion, and T. proximus diverged significantly in temperature preferences, with females found under warmer conditions, while males and females of the oviparous species P. obsoletus did not. Road temperature was also the strongest driver of differences between sexes. Our results indicate that black-topped roads are an ecological trap that is heavily influenced by sex, reproductive condition, and species specific thermoregulatory requirements, particularly for viviparous species.  相似文献   

18.
Roads as barriers to animal movement in fragmented landscapes   总被引:3,自引:0,他引:3  
Roads can act as barriers to animal movement through mortality during crossing attempts or behavioral avoidance. This barrier effect has negative demographic and genetic consequences that can ultimately result in local or regional extinction. Here we use radio-telemetry data on three terrestrial vertebrates (eastern massasauga Sistrurus catenatus , eastern box turtle Terrapene carolina and ornate box turtle Terrapene ornata ) to test whether roads acted as barriers to movement. Specifically, we test whether individuals avoided crossing roads by comparing the number of observed crossings with the number of road crossings predicted by randomizations of individual movement paths. All species crossed roads significantly less often than predicted by chance, indicating strong road avoidance. Results of this study showing behavioral avoidance and previous studies on road mortality indicate that roads are strong barriers to these species. High mortality during crossing attempts would select for road avoidance, reducing the number of individuals killed on roads over time but leading to genetically partitioned subpopulations due to a lack of gene flow. In species that are long-lived and late-maturing, negative genetic effects might not be observable over short time-scales, thus placing populations at high risk of extinction because of a failure to detect an incrementally worsening problem. Formulating successful management strategies for many species in decline will require integrating data on road mortality, animal behavior and population genetics in order to understand more clearly the barrier effect of roads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号