首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
绿色木霉发酵玉米秸秆产糖条件的研究   总被引:1,自引:0,他引:1  
对经稀酸预处理的玉米秸秆发酵产糖条件进行研究,通过单因素和正交试验考察绿色木霉培养时间、接种量、培养基液固质量比、装料量对产糖的影响,结果表明:最佳产糖条件为培养时间3d,接种量1.5片,培养基液固质量比为3.5,装料量为8g,在此条件下水解还原糖得率最高为8.01%,从而为玉米秸秆的进一步综合利用提供了参考依据。  相似文献   

2.
研究了硫酸水解法提取豆粕中复合氨基酸的工艺条件。在单因素实验的基础上,运用二次回归正交旋转组合设计方法进行了优化,建立回归模型方程并确定最佳工艺条件。结果表明,在液固比25:1、硫酸浓度3.1mol.L-1、提取时间16.0h和提取温度125.0℃的条件下,最佳氨氮得率达59.9mg.g-1。  相似文献   

3.
研究了糖化酶酶解米渣纯化米蛋白的实验条件:液固比、酶解时间、pH、温度和酶量。通过正交实验优化了酶解主要条件,得到糖化酶水解米渣最佳条件:液固比5:1,时间3 h,pH 4.0,温度65℃和酶量30 U.g-1。在最佳条件下实验,米蛋白的提取率为81.3%,纯度为76.8%。  相似文献   

4.
多孔聚氨酯固定化黑曲霉产β-葡萄糖苷酶条件的研究   总被引:2,自引:0,他引:2  
以多孔聚氨酯材料为固定化载体 ,就固定化培养条件中的孢子浓度、pH值、温度、固液比等进行考察 ,经正交试验优化后的最佳固定化条件为固液比为 1 / 90、孢子浓度为 1 0 5mL-1 、温度为 2 8℃ ,pH值 4 .5 ,固定化条件中影响黑曲霉产 β 葡萄糖苷酶的因素显著性顺序为固液比 >孢子浓度 >pH值 >温度。与游离态菌丝体相比较 ,固定化细胞发酵产酶的持续稳定性和活力都有所提高 ,固定化细胞酶产量达 1 30 .0 0u/mL。  相似文献   

5.
目的:研究米曲霉发酵玉米秸秆产富含纤维素酶的饲料的最优条件.方法:采用响应面法对发酵条件进行了优化.对Plackett-Burman设计筛选出的麸皮与秸秆比值、固液比和发酵时间三个主要因素再利用Box-Behnken设计进行优化.结果:确定了以上三个因素的最佳值分别为秸秆:麸皮比值为1.32,固液比为0.68,发酵时间为6.1d.在优化的培养基中,纤维素酶活力为522.36U/g,比优化前的469.13U/g高了11.35%.结论:利用响应面法获得了米曲霉发酵玉米秸秆产纤维素酶饲料的最佳发酵条件.  相似文献   

6.
成熟欧李果肉中单宁提取条件的优化   总被引:3,自引:0,他引:3  
以成熟欧李为试验材料,乙醇、丙酮、二甲基甲酰胺为提取剂,采用L25(5^6)正交试验设计,从溶剂浓度、固液比、浸提时间、浸提温度等因素的不同水平对欧李果肉中单宁的提取条件进行了研究,结果表明:从欧李果肉中提取单宁的最佳条件为:以丙酮作提取剂,浓度60%,浸提时间4h,浸提温度30℃,固液比1:20;以乙醇作提取剂,浓度30%,浸提时间4h,浸提温度60℃,固液比1:30。  相似文献   

7.
为实现利用秸秆水解产生的五碳糖发酵产壳聚糖,以米根霉为研究对象,研究水解温度、水解时间、酸浓度等不同预处理方式获得的半纤维素水解液对米根霉发酵产壳聚糖的影响。结果表明:水解温度、水解时间对水解液中木糖含量以及甲酸、乙酸、糠醛等抑制剂浓度具有显著影响,并进一步影响后续发酵产壳聚糖的生成量。利用响应曲面对稀酸水解预处理条件进行优化,获得最佳工艺条件:H_2SO_413.6 g/L,99.5℃,水解时间1.91 h,在此条件下预测壳聚糖发酵产量为0.79 g/L,实验验证产量为0.82 g/L,占菌体生物量的15%~18%。研究结果为秸秆资源的高效利用及发酵生产壳聚糖提供新思路。  相似文献   

8.
采用正交法优化山里红叶中牡荆素的超声辅助提取工艺。通过盐酸浓度、提取时间、固液比、超声功率、超声温度、乙醇浓度6种影响因素的单因素实验,研究它们与牡荆素提取得率之间的规律趋势;应用正交设计优化试验,研究盐酸浓度、提取时间、固液比和超声功率对山里红叶提取牡荆素得率影响大小,并确定最佳提取工艺。研究结果表明:当盐酸浓度为2 mol·L-1、提取时间为40 min,固液比为1:20、超声功率为500 W、超声温度为50℃、乙醇浓度为50%时,效果最佳,得率为2.603 mg·g-1;盐酸浓度具有较大显著性,且各因素影响顺序为:盐酸浓度 > 超声功率> > 提取时间 > 固液比。  相似文献   

9.
采用硫酸纤维素钠(NaCS)/聚二甲基二烯丙基氯化铵(PDMDAAC)微胶囊体系,固定混合产氢菌群,构建成一个能高效产氢的虚拟"细胞工厂"。经过菌群活化预处理,激活了产氢活力,进一步通过NaCS/PDMDAAC微胶囊固定化,形成适宜的内部微环境,有效增强了菌群对温度的适应能力,提高了底物浓度,氢气产量比游离细胞增长30%以上,菌体浓度提高2倍到3.2g/L。连续15批培养,囊内菌体浓度显著提高,发酵时间缩短,氢气产率保持在1.73~1.81molH2/molglucose,平均产氢速率提高了198.6%。同时还发现发酵产物中有较高比例的丁酸和乙酸,由此可以使该虚拟"细胞工厂"成为一个多产物联产体系。  相似文献   

10.
利用响应面分析法优化山楂中总黄酮提取条件   总被引:13,自引:0,他引:13  
通过响应面分析法对山楂中总黄酮的提取工艺进行优化。利用响应面实验设计考察乙醇浓度、提取温度、提取时间、液固比四因素对总黄酮提取率的影响。用自编MATLAB程序对实验数据进行二次响应面分析。得出山楂总黄酮的最佳提取条件为:乙醇浓度66%、提取温度83℃、提取时间2 h、固液比19∶1,提取率为74.72%,与模型预测值基本相符。  相似文献   

11.
Lantana camara for fuel ethanol production using thermotolerant yeast   总被引:1,自引:0,他引:1  
AIM: Evaluation of Lantana camara's use as feedstock for fuel ethanol production. METHODS AND RESULTS: Lantana camara plant material was hydrolysed with 1% sulfuric acid for 18 h at room temperature, followed by heat treatment of 121 degrees C for 20 min. Hemicellulosic hydrolyzate was separated and used for detoxification by ethyl acetate and overliming. Cellulosic fraction was hydrolysed with Aspergillus niger crude cellulase enzyme for 18 h at 55 degrees C. Using 15% (dw/v) substrate 73 g l(-1) total reducing sugars were obtained to give 78.7% hydrolysis of carbohydrate content. Acid and enzyme hydrolyzates were mixed equally and used for fermentation with thermotolerant Saccharomyces cerevisiae (VS(3)). Yeast fermented L. camara hydrolyzate well with a fermentation efficiency of 83.7% to give an ethanol yield of 0.431 +/- 0.018 g ethanol pre g sugar and productivity of 0.5 +/- 0.021 g l(-1) h(-1). CONCLUSIONS: Even though inhibitors were present in L. camara hydrolyzate, maximum sugars were utilized by thermotolerant yeast. SIGNIFICANCE AND IMPACT OF THE STUDY: Use of L. camara for fuel ethanol production with improved strains and detoxification can be recommended.  相似文献   

12.
Hemicellulosic hydrolyzate obtained from rice straw was evaluated to determine if it was a suitable fementation medium for the production of xylitol byCandida mogii ATCC 18364. To obtain xylose selectively from rice straw, it is important to establish rapid hydrolysis conditions that yield xylose-rich substrates. The results of hydrolysis experiments indicated that the optimal reaction conditions for the recovery of xylose from rice straw hemicellulose were obtained using a sulfuric acid concentration of 1.5%, a reaction temperature of 130°C, a reaction time of 20 min and a solid to liquid ratio of 1∶10. Because the fermentation of concentrated acid hydrolyzates can be inhibited by compounds present in the raw material or produced during the hydrolysis process, various methods were tested to determine if they could detoxify the hydrolyzates and thus improve xylitol production. The greatest xylitol yield (0.53 g/g) and volumetric productivity (0.38 g/L·h) were obtained when an overlimed hydrolyzate was treated with activated charcoal.  相似文献   

13.
稀酸水解玉米芯制备丁二酸   总被引:4,自引:1,他引:3  
利用正交设计得到稀H2SO4水解玉米芯制备混合糖液的优化工艺:玉米芯料液比1∶5(质量体积比),物料粒径250~380μm、H2SO4用量3%(体积分数)、水解温度126℃、反应时间2.5 h。此工艺条件下的总糖收率达90%,总糖质量浓度为60 g/L,发酵抑制物糠醛含量为0.87 g/L,5-羟甲基糠醛含量为0.68 g/L。在此基础上利用活性炭吸附和Ca(OH)2中和对玉米芯混合糖液进行脱毒及脱盐处理,SO42-脱除率达96%,色素脱除率为96%,糠醛、5-羟甲基糠醛及多酚类物质脱除率均高于50%。处理后的玉米芯多组分糖液作为产琥珀酸放线杆菌(Actinobacillus succino-genes)NJ113的发酵C源,当培养基中初始总糖质量浓度为50 g/L时,丁二酸收率为61.68%,丁二酸质量浓度为30.8 g/L;初始总糖质量浓度为70 g/L时,丁二酸收率仍可达50%以上,丁二酸质量浓度为35.2 g/L。发酵实验表明,将经过脱毒脱盐处理的玉米芯多组分糖液替代葡萄糖作为C源发酵制备丁二酸具有可行性。  相似文献   

14.
Pretreatment steps are necessary for the bioconversion of corn stover (CS) to xylitol. In order to optimize the pretreatment parameters, the sulfuric acid concentration, sulfuric acid residence time, and solid slurry concentration were evaluated, based on the glucose and xylose recovered from CS at the relatively low temperature of 120°C. The optimum conditions were found to be pretreatment with 2.5% (w/v) sulfuric acid for 1.5 h, with a solid slurry concentration of 90 g/L. Under these conditions, the hydrolysis rates of glucan and xylan were approximately 26.0 and 82.8%, respectively. High xylitol production (10.9 g/L) and conversion yield (0.97 g/g) were attained from corn stover hydrolysate (CSH) without detoxification and any nutrient addition. Our results were similar for xylitol production in synthetic medium under the same conditions. The non-necessity of both the hydrolysate detoxification step and nutrient addition to the CSH is undoubtedly promising for scale-up application on an industrial scale, because this medium-based manufacturing process is expected to reduce the production cost of xylitol. The present study demonstrates that value-added xylitol could be effectively produced from CS under optimized pretreatment conditions, especially with CSH as the substrate material.  相似文献   

15.
Hemicellulose is a potential by-product currently under-utilized in the papermaking industry. It is a hetero-carbohydrate polymer. For hardwood hemicelluloses, D-xylose is the major component upon depolymerization. At SUNY-ESF, wood extracts were obtained by extracting sugar maple wood chips with hot water at an elevated temperature. The wood extracts were then concentrated and acid hydrolyzed. Ethanologenic bacteria, E. coli FBR5, had a good performance in pure xylose medium for ethanol production. However, FBR5 was strongly inhibited in dilute sulfuric acid hydrolyzate of hot-water wood extract. FBR5 was challenged by hot-water wood extract hydrolyzate in this study. After repeated strain adaptation, an improved strain: E. coli FBHW was obtained. Fermentation experiments indicated that FBHW was resistant to the toxicity of hydrolyzate in the fermentation media of concentrated hydrolyzate, and xylose was completely utilized by the strain to produce ethanol. FBHW was grown in the concentrated hydrolyzate without any detoxification treatment and has yielded 36.8 g/L ethanol.  相似文献   

16.
超临界下有机酸对稻秆水解糖化的影响   总被引:2,自引:0,他引:2  
采用间歇式反应器在超临界条件下,以有机酸(甲酸、乙酸和丙酸)为催化剂对稻秆进行水解糖化研究,重点考察反应温度、反应时间、固液比对还原糖产率的影响。实验表明:有机酸的加入有利于稻秆的水解糖化,稻秆水解速率和还原糖产量都有所提高,这种趋势在加入甲酸时最为明显;随着反应时间的延长,还原糖产量会逐渐减少;适当提高固液比有助于增加还原糖产量。稻秆超临界水解糖化的最佳条件:甲酸体积分数3%、固液比4:60(g/mL)、反应温度410℃、反应时间5min,在此条件下,还原糖产量最高,达6.65g/L。  相似文献   

17.
基于正交实验法,优化从栀子黄色素中提取制备藏红花酸的碱水解工艺,以期可以简单高效地获得高纯度藏红花酸。建立高效液相色谱法(HPLC)测定藏红花酸含量,以藏红花酸的含量和得率为考察指标,采用正交实验法考察碱水解工艺中的料液比、NaOH浓度、水解温度和水解时间对产品中藏红花酸含量和得率的影响。确定栀子黄色素碱水解的最佳条件:料液比1∶6 g/mL、NaOH浓度3 mol/L、水解温度55℃、水解时间60 min。在该条件下制备获得的藏红花酸得率可达15.33%±1.25%;含量可达到97.24%±0.78%。优化后方法步骤简单易行,绿色无污染,一步制得高纯度藏红花酸,适用于工业化生产。  相似文献   

18.
The effects of dilute H2SO4 concentration, forage:sulfuric acid ratio, digestion time, and digestion temperature were evaluated to determine effects on ethanol yield of Triarrhena sacchariflora (Maxim.) Nakai. Twenty single factor experiments were conducted to evaluate H2SO4 concentration (0.5, 1.0, 1.5, 2.0, and 2.5%, w/w), forage:sulfuric acid ratio (1∶6, 1∶8, 1∶10, 1∶12, and 1∶14, g/ml), digestion time (15, 30, 45, 60, and 90, min), digestion temperature (80, 100, 110, 120, and 125 °C) for 3 replicates of the 5 levels of each factor. Based on results of the single factor experiments, an incomplete factorial was designed to evaluate ethanol yield from the best combinations of single factors. Finally, the best combination was tested by enzymatic hydrolysis and fermentation experiment in selected combinations according to pretreatment results. Percentage cellulose, hemicellulose, and lignin contents of forage residue after pretreatment, and glucose and xylose concentrations of the filtrate were analyzed prior to enzymatic hydrolysis, and percentage crystallinity was observed in untreated grass and pretreated residue. In addition, the solid residues were then hydrolysed and fermented by cellulase and yeast, the concentrations of glucose and ethanol being monitored for 96 h. Results showed that the order of the effect of main effect factors was as follows: digestion temperature > dilute H2SO4 concentration > digestion time > forage:sulfuric acid ratio. The best process parameters evaluated were sulfuric acid concentration of 1.5%, forage:sulfuric acid ratio of 1∶6, digestion time of 15 min, and digestion temperature of 120°C. With this combination of factors, 80% of the cellulose was hydrolysed in 96 h, and 78% converted to ethanol. The findings identified that hemicelluloses were the key deconstruction barrier for pretreatment of Triarrhena sacchariflora (Maxim.) Nakai for ethanol production. The results of this research provide evidence of appropriate combinations of processing factors for production of ethanol from Triarrhena sacchariflora (Maxim.) Nakai.  相似文献   

19.
This study aims to optimize the conditions for furfural production from hemicellulose extracted from delignified palm pressed fiber (dPPF) via two-stage process: acid hydrolysis followed by dehydration, using response surface methodology (RSM). The extracted hemicellulose contained 80.8% xylose. In order to convert hemicellulose to xylose in the acid hydrolysis step, there were four important parameters consisting of reaction temperature (100–150 °C), sulfuric acid concentration (1–10% v/v), ratio of sulfuric acid to hemicellulose (L/S ratio) (10, 9, and 8 v/w), and reaction time (30–120 min). The maximum xylose production (12.58 g/L) was achieved at 125 °C, 5.5% sulfuric acid, L/S ratio of 9 mL/g for 30 min with the determination coefficient (R2) value of 0.90. For the dehydration process, two parameters; reaction temperature (120–160 °C) and reaction time (30–150 min), were optimized. The maximum furfural production (8.67 g/L) was achieved at a reaction temperature of 140 °C for 90 min with the determination coefficient (R2) value of 0.93.  相似文献   

20.
In this study, we developed a lime addition–capacitive deionization (CDI) hybrid process that can efficiently remove acetic acid and sulfuric acid from the model mixture of glucose, xylose, acetic acid, and sulfuric acid, which are the major components from the biomass hydrolyzate by acid hydrolysis. The key parameters of lime addition process (type of lime, amount of lime, stirrer speed, and reaction time) and CDI process (voltage, flow rate, and feed concentration) were also optimized. In the lime addition process, the optimal lime type, (sulfuric acid + acetic acid)/lime molar ratio, stirrer speed, and reaction time for the removal of sulfuric acid were CaCO3, 1:1, 200 rpm, and 6 min, respectively. For the CDI process, the optimal voltage and flow rate were 1.2 V and 20 mL/min, respectively. The efficiency of acid removal increased as the initial acetic acid concentration decreased. This hybrid process was able to remove 98.08% of sulfuric acid and 76.97% of acetic acid from the mixture of glucose, xylose, acetic acid, and sulfuric acid. The process was able to recover almost all sugar (>99%) at high purity (97.53%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号