首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
药用植物内生真菌及活性物质多样性研究进展   总被引:32,自引:2,他引:30  
药用植物具有丰富的物种多样性,是人类生存与发展的重要自然资源。内生真菌广泛存在于健康植物组织内部,是植物微生态系统的重要组成部分,各种药用植物中蕴藏着非常丰富的内生真菌。通过与药用植物的“协同进化”,某些内生真菌具有了产生与宿主植物相同或相似的生物活性物质的能力。内生真菌产生的各种活性物质,在生物制药、农业生产、工业发酵等方面都表现出美好的应用前景,受到世界各国专家的广泛关注。利用内生真菌发酵实现生物活性物质的工业化生产,可以提高产量、降低产品成本,满足人们日益增长的需求;同时有利于珍稀、濒危药用植物资源的保护,对减少野生药用植物多样性的破坏具有重要意义。本文从药用植物内生真菌物种多样性与产生生物活性物质多样性等方面总结近年最新的研究进展,提出了内生真菌及活性物质研究的未来发展方向。  相似文献   

2.
癌症已成为全球头号杀手,迫切需要从自然界寻找更新、更有效的抗肿瘤药物。植物内生真菌是指生活在宿主植物体内,不会对宿主植物组织引起明显病害症状的一类真菌。众多研究表明,植物内生真菌在寻找抗肿瘤药物中起着至关重要的作用。随着植物内生真菌研究的深入,从植物内生真菌中寻找新的抗肿瘤活性成分已成为研究的热点。大量的抗肿瘤活性成分从植物内生真菌中分离出来,并表现出良好的抗肿瘤活性。目前,植物内生真菌抗肿瘤活性代谢产物主要有紫杉醇、喜树碱、长春新碱,鬼臼毒素等等,本文主要对近年来植物内生真菌抗肿瘤活性成分的研究进展进行了综述。  相似文献   

3.
药用植物法夏内生真菌D126,当进行液体培养时能产细胞毒活性物质,经核磁共振氢谱、碳谱和快原子轰击质谱确定,该物质为布雷菲德菌素A(BFA).进一步研究表明,BFA对人Burkitt's 淋巴瘤细胞株Raji、人肝癌细胞株HepG2和人非小细胞肺腺癌细胞株A549具有较强的抑制活性,对植物病原真菌黑曲霉和杨桃炭疽菌等具有抑菌活性.最后,对植物内生真菌产细胞毒活性物质BFA的生态意义进行了探讨.  相似文献   

4.
为充分开发黄花倒水莲(Polygala fallax)的内生真菌资源,获得具有抗植物病原真菌、抗氧化活性的内生真菌,该文以黄花倒水莲内生真菌为研究对象,使用平板对峙法检测内生真菌对6种植物病原真菌的抑菌活性,测定内生真菌发酵液的DPPH清除自由基能力和总还原能力,评价内生真菌的抗氧化活性,并对具有强抑菌活性和抗氧化活性的菌株进行形态和ITS鉴定。结果表明:(1)黄花倒水莲内生真菌中有2株内生真菌对香蕉专化尖孢镰刀菌、柑橘树脂病菌、叶点霉菌、香蕉具条叶斑病菌、茄病镰刀菌、三七根腐病菌具有明显的抑菌活性,抑菌率在50.3%~91.4%之间,其中HNLF-5对柑橘树脂病菌的抑菌率为73.2%,HNLF-44对香蕉专化尖孢镰刀菌抑菌率为91.4%。(2)内生真菌发酵液具有良好的抗氧化活性,DPPH清除率均在80%以上,总还原能力吸光值范围为0.279 2~0.748 8。(3)HNLF-44菌株为链格孢属真菌。该研究表明,药用植物黄花倒水莲内生真菌具有较好的生物活性,为后续从黄花倒水莲内生真菌中挖掘潜在新型抑菌活性和抗氧化活性物质奠定了基础。  相似文献   

5.
药用植物内生真菌研究进展   总被引:2,自引:0,他引:2  
药用植物内生真菌具有抗肿瘤、抗菌、抗病毒、抗氧化等活性,能够产生植物生长素、细胞激动素、赤霉素等促植物生长物质促进植物生长,从而使研究药用植物内生真菌成为寻找新型拮抗菌、抗肿瘤、抗氧化活性药物的重要资源。本文对药用植物内生真菌的多样性、分离鉴定、产生的次生代谢产物及其功能等做一综述。  相似文献   

6.
植物内生真菌抗菌活性物质的研究进展   总被引:5,自引:2,他引:3  
植物内生真菌是一种新的微生物资源,具有潜在的应用前景,能产生生物碱类、肽类、甾体类、萜类、酚类、醌类、脂肪族类、异香豆素类等多种类型的抗菌活性物质.本文简要综述了植物内生真菌的抗菌活性物质的研究方法、提取物的抗菌活性、抗菌活性成分等方面的研究进展.  相似文献   

7.
癌症已经严重威胁人类的健康。从自然界中筛选更新的、更有效的抗癌药物已成为了该领域的研究重点。作为新型抗癌药物的潜在来源,众多从植物内生真菌分离的代谢产物被证明具有抗肿瘤的生物活性。这些内生真菌通常具有特殊的代谢途径,可以在其培养物中积累抗癌活性物质,如紫杉烷类、生物碱类、细胞松弛素、鬼臼毒素、布雷菲德菌素A等。将系统的介绍已分离自植物内生真菌的抗癌药物的研究进展,同时对内生真菌的抗癌药物筛选的策略和发展前景进行简要的展望。  相似文献   

8.
本文主要概述了植物内生真菌及其生理活性物质研究的最新进展,而今,它们在医药领域的应用越来越受到人们的关注,植物内生真菌是新的天然药物的重要源泉,在新药开发上具有广阔的发展前景。  相似文献   

9.
植物内生真菌是寄居植物组织内,与植物共生的真菌种类。植物内生真菌的次生代谢产物具有结构和生物活性多样性的特点,因而可为医药及农药创制提供先导结构,具有巨大的研究和开发价值。本文综述了近三年来(2017~2019年)从植物内生真菌中分离出来的具有生物活性的生物碱、聚酮、萜类、甾醇、蒽醌以及其他类化合物,并分别简要概述了其生物活性研究进展,以期为植物内生真菌活性代谢产物的研究与利用提供参考。  相似文献   

10.
植物内生真菌作为一类重要的微生物资源,不仅可在植物组织内生活且不引起植物病变,还能产生大量具有活性的天然产物。植物内生真菌多糖作为一类重要的大分子天然产物,越来越多证据表明其具有重要的研究价值。植物内生真菌的来源、培养和发酵,植物内生真菌均一多糖的理化性质和结构特征等都与其多糖的生理活性密切相关。为此,从菌株选择、培养条件、多糖分离纯化、理化特征、生物活性和对植物的作用等方面对植物内生真菌多糖的研究进行了综述,以期为植物内生真菌多糖的生理生化作用、开发等深入研究提供参考。  相似文献   

11.
A potential antioxidant resource: Endophytic fungi from medicinal plants   总被引:3,自引:0,他引:3  
Medicinal plants and their endophytes are important resources for discovery of natural products. Several previous studies have found a positive correlation between total antioxidant capacity (TAC) and total phenolic content (TPC) of many medicinal plant extracts. However, no information is available on whether such a relationship also exists in their endophytic fungal metabolites. We investigated the relationship between TAC and TPC for 292 morphologically distinct endophytic fungi isolated from 29 traditional Chinese medicinal plants. The antioxidant capacities of the endophytic fungal cultures were significantly correlated with their total phenolic contents, suggesting that phenolics were also the major antioxidant constituents of the endophytes. Some of the endophytes were found to produce metabolites possessing strong antioxidant activities. Several bioactive constituents from the fungal cultures and host plant extracts were identified. This investigation reveals that the metabolites produced by a wide diversity of endophytic fungi in culture can be a potential source of novel natural antioxidants.  相似文献   

12.
药用植物内生真菌研究现状及其应用前景   总被引:6,自引:0,他引:6  
随着对药用植物内生真菌研究的深入,从药用植物内生真菌中寻找新的生物活性成分已成为研究热点。内生真菌对药用植物的生长及活性成分的形成都有影响,内生真菌活性成分已成为发现新颖结构化合物及新药物的潜在资源。简要综述了近年来在内生真菌的分离鉴定、发酵、次生代谢产物、与宿主的关系等方面的研究进展。  相似文献   

13.
《Phytomedicine》2014,21(4):534-540
Many endophytic fungi have been reported with the biosynthetic potential to produce same or similar metabolites present in host plants. The adaptations that might have acquired by these fungi as a result of the long-term association with their host plants can be the possible basis of their biosynthetic potential. The bioactive compounds originated from endophytes are currently explored for their potential applications in pharmaceutical, agriculture and food industries. Piper nigrum, a plant of the Piperaceae is very remarkable because of the presence of the alkaloid piperine. Piperine has been reported to have broad bioactive properties ranging from antimicrobial, antidepressant, anti-inflammatory, antioxidative to anticancer activities. Interestingly, piperine also plays a vital role in increasing the bioavailability of many drugs which again is a promising property. The current study was carried out to identify piperine producing endophytic fungus from Piper nigrum L. By screening various endophytic fungi, the isolate which was identified as member of Colletotrichum gloeosporioides was found to have the ability to form piperine and was confirmed by HPLC and LCMS. Considering the broad bioactive potential of piperine, the piperine producing fungi identified in the study can expect to have much industrial potential.  相似文献   

14.
In the past few decades groups of scientists have focused their study on relatively new microorganisms called endophytes. By definition these microorganisms, mostly fungi and bacteria, colonise the intercellular spaces of the plant tissues. The mutual relationship between endophytic microorganisms and their host plants, taxanomy and ecology of endophytes are being studied. Some of these microorganisms produce bioactive secondary metabolites that may be involved in a host-endophyte relationship. Recently, many endophytic bioactive metabolites, known as well as new substances, possesing a wide variety of biological activities as antibiotic, antitumor, antiinflammatory, antioxidant, etc. have been identified. The microorganisms such as endophytes may be very interesting for biotechnological production of bioactive substances as medicinally important agents. Therefore the aim of this review is to briefly characterize endophytes and summarize the structuraly different bioactive secondary metabolites produced by endophytic microorganisms as well as microbial sources of these metabolites and their host plants.  相似文献   

15.
Horizontally transmitted fungal endophytes are an ecological group of fungi, mostly belonging to the Ascomycota, that reside in the aerial tissues and roots of plants without inducing any visual symptoms of their presence. These fungi appear to have a capacity to produce an array of secondary metabolites exhibiting a variety of biological activity. Although the ability of fungi to produce unique bioactive metabolites is well known, endophytes have not been exploited, perhaps because we are only beginning to understand their distribution and biology. This review emphasizes the need to routinely include endophytic fungi in the screening of organisms for bioactive metabolites and novel drugs; it also underscores the need to use information obtained concerning fungal secondary metabolite production from other groups of fungi for a targeted screening approach.  相似文献   

16.
Psychrophilic microorganisms are cold-adapted organisms that have an optimum growth temperature below 15 °C, and often below 5 °C. Endophytic microorganisms live inside healthy plants and biosynthesize an array of secondary metabolites which confer major ecological benefits to their host. We provide information, for the first time, on an endophytic association between bioactive psychrophilic fungi and trees in Cupressaceae plant family living in temperate to cold, semi-arid habitats. We have recovered psychrophilic endophytic fungi (PEF) from healthy foliar tissues of Cupressus arizonica, Cupressus sempervirens and Thuja orientalis (Cupressaceae, Coniferales). In total, 23 such fungi were found out of 110 endophytic fungal isolates. They were identified as ascomycetous fungi, more specifically Phoma herbarum, Phoma sp. and Dothideomycetes spp., all from Dothideomycetes. The optimal growth temperature for all these 23 fungal isolates was 4 °C, and the PEF isolates were able to biosynthesize secondary metabolite at this temperature. Extracted metabolites from PEF showed significant antiproliferative/cytotoxic, antifungal and antibacterial effects against phytopathogenic fungi and bacteria. Of special interest was their antibacterial activity against the ice-nucleation active bacterium Pseudomonas syringae. Accordingly, we suggest that evergreen Cupressaceae plants may benefit from their psychrophilic endophytic fungi during cold stress. Whether such endosymbionts confer any ecological and evolutionary benefits to their host plants remains to be investigated in vivo.  相似文献   

17.
《Phytomedicine》2013,20(14):1270-1284
Over more than 20 years, the endophytic fungi have been explored as “biofactories” of novel bioactive substances, and they have not disappointed. Among the extracts and pure substances obtained from the culture broths or fungal biomass, some have exerted antibacterial activity ranging from moderate to powerful when tested on the bacterial strains resistant to the antibiotics currently in use. In this article we review the accumulated data on endophytic fungi isolated from plants that produce metabolites with antibacterial activity against human pathogenic bacteria.  相似文献   

18.
Endophytic fungi are ubiquitous organisms found in the plants, residing intercellular or intracellular, at least for a portion of their lives without causing apparent symptoms of infection. Almost all plants are known to harbor endophytes. The choice of the plant to be used for exploring endophytes for bioactives is important. Therefore, medicinal plants which are known to be used since centuries as an alternative source of medicine, are a valuable source for bioprospecting endophytes. Nevertheless, due to many reasons there is a dire need for novel resources for novel drugs which can be an answer to many deadly diseases. It is in this context that the present review was envisaged. The review reveals the importance of endophytic fungi from medicinal plants as a source of bioactive and chemically novel compounds. The bioactive metabolites produced by endophytic fungi originate from different biosynthetic pathways and belong to diverse structural groups such as terpenoids, steroids, quinones, phenols, coumarins etc. Endophytes therefore, represent a chemical reservoir for new compounds such as, anticancer, immunomodulatory, antioxidant, antiparasitic, antiviral, antitubercular, insecticidal etc. for use in the pharmaceutical and agrochemical industries. Although, efforts have been made to accommodate as many examples as possible but the depth of the subject is so vast that it cannot be covered in one single review. This in itself speaks of the fact that endophytic fungi from medicinal plants is indeed a treasure worth searching. In the present review only some selected examples have been covered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号