首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we report the synthesis of natural products (NPs) 5′-O-sulfamoyl adenosine 1 and 5′-O-sulfamoyl-2-chloroadenosine 2. As primary sulfamates these compounds represent an uncommon class of NPs, furthermore there are few NPs known that contain a NS bond. Compounds 1 and 2 were evaluated for inhibition of carbonic anhydrases (CA), a metalloenzyme family where the primary sulfamate is known to coordinate to the active site zinc and form key hydrogen bonds with adjacent CA active site residues. Both NPs were good to moderate CA inhibitors, with compound 2 a 20–50-fold stronger CA inhibitor (Ki values 65–234?nM) than compound 1. The protein X-ray crystal structures of 1 and 2 in complex with CA II show that it is not the halogen-hydrophobic interactions that give compound 2 a greater binding energy but a slight movement in orientation of the ribose ring that allows better hydrogen bonds to CA residues. Compounds 1 and 2 were further investigated for antimicrobial activity against a panel of microbes relevant to human health, including Gram-negative bacteria (4 strains), Gram-positive bacteria (1 strain) and yeast (2 strains). Antimicrobial activity and selectivity was observed. The minimum inhibitory concentration (MIC) of NP 1 was 10?µM against Gram-positive Staphylococcus aureus and NP 2 was 5?µM against Gram-negative Escherichia coli. This is the first time that NP primary sulfamates have been assessed for inhibition and binding to CAs, with systematic antimicrobial activity studies also reported.  相似文献   

2.
A general strategy towards total synthesis of (-)-codonopsinine, (-)-codonopsine and codonopsinine analogues has been developed from (D)-tartaric acid via the intermediate (3S,4R)-1-methyl-2-oxo-5-(2,2,2-trichloroacetamido)pyrrolidinediacetate (7). α-amidoalkylation studies of 7 with electron rich benzene derivative 8a-g as C-nucleophiles afforded (aryl derivatives) 9a-g. The target compounds 1, 2 and 13c-g were readily obtained from 10a-g via Grignard addition to the homochiral lactam which was produced by deoxygenation using Lewis-acid followed by deacetylation. The synthesized compounds were loaded onto solid lipid nanoparticle formulations (SLNs) prepared by hot emulsification-ultrasonication technique using Compritol as solid lipid and Pluronic f68 as surfactant. SLNs were fully evaluated and the permeation of synthesized compound from SLNs was assayed against non-formulated compounds through dialysis membranes using Franz cell. The data indicated good physical characteristics of the prepared SLNs, sustaining of release profiles and significant improvement of permeation ability when compared to the non-formulated compounds. The antibacterial and antifungal activities of 1, 2 and 13c-g were determined by disc diffusion and microbroth dilution method to determine the minimum inhibitory concentrations (MIC) against seven microorganisms (Staphyloccus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans). The most active compounds against the Gram positive S. aureus were 1, 13C, 13d, and 13g. Also, 13c, 13d, and 13e had antibacterial activity but not 13f against some Gram negative organisms (E. coli, and P. mirabilis). MIC concentrations against P. aeruginosa, and K. pneumoniae were?≥512?μg/ml, while that against A. baumannii was?≥128?μg/ml except for nanoformulae of 13e and 13f that were 16 and 64?μg/ml, respectively. No antifungal activity against Candida albicans was recorded for all compounds and their nanoformulae (MIC?>?1024?μg/ml). SLNs were found to decrease the MIC values for some of the compounds with no effect on the antifungal activity. In conclusion, we demonstrated a novel, straight-forward and economical procedure for the total synthesis of (-)-codonopsinine 1, (-)-codonopsine 2 and codonopsinine analogues 13c-g from simple and commercially available starting materials; d-tartaric acid; with antimicrobial activities against Gram positive and Gram-negative organisms that were improved by SLNs formulations.  相似文献   

3.
The biochemical mechanisms that marine sponges have developed as a chemical defense to protect themselves against micro and subsequent macrobiofouling process might comprise a potential alternative for the preventing attack of biofilm forming bacteria. The present study investigated the antimicrobial activity of a series of major secondary metabolites isolated from the sponges Fasciospongia cavernosa and Axinella donnani against fouling bacteria. Secomanoalide (1), dehydromanoalide (2) and cavernosine (3) have been isolated from F. cavernosa. Their structures were determined by MS, 1H NMR spectra analyses and by comparison with those reported in the literature. The most promising activity was exhibited by the metabolites from A. donnani, that is, cerebroside (5) against three strains Aeromonas hydrophila subsp. salmonicida A449 and Erythrobacter litoralis. Our investigation revealed that combined metabolites 1, 2 and 3 retained strong activity but individual metabolite had moderate activity indicating that activity probably results from synergistic interactions between multiple compounds. The antibacterial screening of compounds 3, 5 and synergistic effect of 13 against fouling bacteria has been studied for the first time. Further, isolation of manoalide related compounds and their synergistic screening can be accelerated for the development of new biofilm inhibitors.  相似文献   

4.
The systematic isolation of the EtOAc extract from Schisandra sphenanthera fruit was performed during a search for HSV-2 and adenovirus inhibitors. Sixteen lignans were obtained, with compound 1 representing a new and rare type of lignan in the genus Schisandra. Their structures were elucidated by spectroscopy and comparison with literature data. Among all the lignans tested for their antiviral activities, compound 14 was the most active against HSV-2 with a selectivity index value up to 29.83. Moreover, the new compound 1, and the known ones (4, 6, 7, 10 and 14) also exhibited moderate inhibition of HSV-2 and adenovirus. To the best of our knowledge, this is the first report that these lignans from Schisandra genus were shown to have modest activity against HSV-2 and adenovirus. Meanwhile, structure–activity relationships of some lignans for the inhibitory activity against HSV-2 and adenovirus were discussed in this study.  相似文献   

5.
The new pentacyclic triterpenoids friedel-1-en-3,16-dione (1), 1α,29-dihydroxyfriedelan-3-one (2) and 16β,28,29-trihydroxyfriedelan-3-one (3) were isolated from Maytenus robusta branches in addition to the known, but new for this species, triterpenoid 12α,29-dihydroxyfriedelan-3-one (4). The structures and stereochemistry of the novel triterpenoids were established by IR, 1D/2D NMR and HR-APCIMS spectral data. In addition, the biological activity of compound 2 and the previously isolated friedelanes 58 (friedelan-3,16-dione, 29-hydroxyfriedelan-3-one, 29-hydroxyfriedelan-3,16-dione and 16β,29-dihydroxyfriedelan-3-one) was investigated. Compounds 2 and 8 were tested for their acetylcholinesterase properties and antimicrobial activity against the bacteria Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes, Citrobacter freundii, and the fungus Candida albicans. Compound 2 was the most active compound for both assays, with values of 32.3% acetylcholinesterase inhibition, 42% activity against the fungus Candida albicans and 34% against the bacterium Pseudomonas aeruginosa. Compounds 5–8 were assayed for their antiedematogenic activity using the carrageenan-induced paw edema assay. At maximum inflammation after three hours, compounds 6 and 8 showed 42% and 57% activity, respectively. After four hours, compounds 5 and 7 showed activity of 71% and 75% compared to 79% of the control indomethacin.  相似文献   

6.
Leishmaniasis is one of the most important neglected tropical diseases (NTDs) that are especially common among low-income populations in developing regions of Africa, Asia, and the Americas. Many natural products, particularly alkaloids, have been reported to have inhibitory activity against arginase, the key enzyme in the pathology caused by Leishmania sp. In this way, piperidine alkaloids (–)-cassine (1), (–)-spectaline (2), (–)-3-O-acetylcassine (3), and (–)-3-O-acetylspectaline (4) were isolated from Senna spectabilis flowers. These compounds (1/2 and 3/4) initially present as homologous mixtures were separated by high performance liquid chromatography and evaluated against the promastigote phase of Leishmania amazonensis. In addition, molecular docking simulations were implemented in order to probe the binding modes of the ligands 14 to the amino acids in the active site of L. amazonensis arginase. Alkaloid 2 (IC50 15.81?μg?mL?1) was the most effective against L. amazonensis. Compounds 2 and 4, with larger side chain, were more effective against the parasite than compounds 1 and 3. The cell viability test on Vero cells revealed that compound 2 (CC50 66.67?μg?mL?1) was the most toxic. The acetyl group in the 3-O position of the parent structures reduced the leishmanicidal activity and the toxicity of the alkaloids. Further, molecular docking suggested that Asn143 is essential for arginase to interact with (–)-spectaline-derived compounds, which agreed with the IC50 measurements. Our findings revealed that S. spectabilis is an important source of piperidine alkaloids with leishmanicidal activity. Moreover, the natural compound 3 has been isolated for the first time. Experimental investigation combined with theoretical study advances knowledge about the enzyme binding site mode of interaction and contributes to the design of new bioactive drugs against Leishmania infection.  相似文献   

7.
Isoniazid-naphthoquinone hybrids were synthesized and evaluated against a susceptible (H37Rv) strain and two isoniazid-resistant strains (INHR1 and INHR2) of Mycobacterium tuberculosis. The antimycobacterial activity of the derivatives was determined based on the resazurin microtiter assay and their cytotoxicity in adhered mouse monocyte macrophage J774.A1 cells (ATCC TIB-67). Of the twenty-two compounds evaluated against the three strains of M. tuberculosis, twenty-one presented some activity against the H37Rv and INHR1 (katG S315T) or INHR2 (inhA C(−5)T) strains. Compounds 1a, 2a, and 8a were effective against the INHR1 strain, and compounds 1a, 1b, 2a, 3a, 5a, 5b and 8a were effective against the INHR2 strain, with MICs in the range of 3.12–6.25 µg/mL. Compounds 1b and 5b were the most active against H37Rv, with MIC of 0.78 µg/mL. Based on the selectivity index, 1b and 5b can be considered safe as a drug candidate compounds. These results demonstrate that quinoidal compounds can be used as promising scaffolds for the development of new anti-TB drugs and hybrids with activity against M. tuberculosis-susceptible and INH-resistant strains.  相似文献   

8.
A series of new pyrrol-2(3H)-ones 4a-f and pyridazin-3(2H)-ones 7a-f were synthesized and characterized using different spectroscopic tools. Some of the tested compounds revealed moderate activity against 60 cell lines. The E form of the pyrrolones 4 showed good cytotoxic activity than both the Z form and the corresponding open amide form. Furthermore, the in vitro cytotoxic activity against HepG2 and MCF-7 cell lines revealed that compounds (E)4b, 6f and 7f showed good cytotoxic activity against HepG2 with IC50 values of 11.47, 7.11 and 14.80 μM, respectively. Compounds (E)4b, 6f, 7d and 7f showed a pronounced inhibitory effect against cellular localization of tubulin. Flow cytometric analysis indicated that HepG2 cells treated with (E)4b showed a predominated growth arrest at the S-phase compared to that of G2/M-phase. Molecular modeling study using MOE® program indicated that most of the target compounds showed good binding of β-subunit of tubulin with the binding free energy (dG) values about −10 kcal/mole.  相似文献   

9.
Bioassay-guided fractionation of an ethanol extract of a Madagascar collection of the bark of Scutia myrtina led to the isolation of three new anthrone–anthraquinones, scutianthraquinones A, B and C (13), one new bisanthrone–anthraquinone, scutianthraquinone D (4), and the known anthraquinone, aloesaponarin I (5). The structures of all compounds were determined using a combination of 1D and 2D NMR experiments, including COSY, TOCSY, HSQC, HMBC, and ROESY sequences, and mass spectrometry. All the isolated compounds were tested against the A2780 human ovarian cancer cell line for antiproliferative activities, and against the chloroquine-resistant Plasmodium falciparum strains Dd2 and FCM29 for antiplasmodial activities. Compounds 1, 2 and 4 showed weak antiproliferative activities against the A2780 ovarian cancer cell line, while compounds 14 exhibited moderate antiplasmodial activities against P. falciparum Dd2 and compounds 1, 2, and 4 exhibited moderate antiplasmodial activities against P. falciparum FCM29.  相似文献   

10.
Z- and E-Phosphonate analogues 12 and 13 derived from cyclopropavir and the corresponding cyclic phosphonates 14 and 15 were synthesized and their antiviral activity was investigated. The 2,2-bis(hydroxymethylmethylenecyclopropane acetate (17) was transformed to tetrahydropyranyl acetate 18. Deacetylation gave intermediate 19 which was converted to bromide 20. Alkylation with diisopropyl methylphosphonate afforded after protecting group exchange (21 to 22) acetylated phosphonate intermediate 22. Addition of bromine gave the dibromo derivative 16 which was used in the alkylation–elimination procedure with 2-amino-6-chloropurine to give Z- and E-isomers 23 and 24. Hydrolytic dechlorination coupled with removal of all protecting groups gave the guanine phosphonates 12 and 13. Cyclization afforded the cyclic phosphonates 14 and 15. Z-Phosphonate 12 was a potent and non-cytotoxic inhibitor of human and murine cytomegalovirus (HCMV and MCMV) with EC50 2.2–2.7 and 0.13 μM, respectively. It was also an effective agent against Epstein-Barr virus (EBV, EC50 3.1 μM). The cyclic phosphonate 14 inhibited HCMV (EC50 2.4–11.5 μM) and MCMV (EC50 0.4 μM) but it was ineffective against EBV. Both phosphonates 12 and 14 were as active against two HCMV Towne strains with mutations in UL97 as they were against wild-type HCMV thereby circumventing resistance due to such mutations. Z-Phosphonate 12 was a moderate inhibitor of replication of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) but it was a potent agent against varicella zoster virus (VZV, EC50 2.9 μM). The cyclic phosphonate 14 lacked significant potency against these viruses. E-isomers 13 and 15 were devoid of antiviral activity.  相似文献   

11.
A one-pot, three-component, microwave assisted and conventional synthesis of new 3-(4-chloro-2-hydroxyphenyl)-2-(substituted) thiazolidin-4-one (4an) was carried out by using N,N-dimethylformamide as a solvent with high product yield. Among these synthesized compounds (4f, 4g, 4l and 4m) were found to be a broad spectrum molecule active against all bacterial and fungus strains tested, except fungus Aspergillus niger. Amongst the compounds (4g, 4l and 4m) were found to be more potent than respective standard drugs used in the experiment against Candida albicans, Staphylococcus aureus and Aspergillus flavus, respectively. All synthesized compounds were also tested for their cytotoxic activity against HeLa and MCF-7 cell lines by the sulforhodamine B (SRB) assay. This study shows that all compounds were non-cytotoxic in nature, and confirmed their antimicrobial specificity apart from any general cytotoxicity.  相似文献   

12.
A series of novel 10-((1H-indol-3-yl)methylene)-7-aryl-7,10-dihydro-5H-benzo[h]thiazolo[2,3-b]quinazolin-9(6H)-ones (8at) have been synthesized in good yields by the reaction of benzo[h]quinazoline-2(1H)-thiones (4af) with 2-chloro-N-phenylacetamide (5) followed by Knoevenagel condensation with various indole-3-carbaldehydes (7ad) under conventional method. All the synthesized compounds were characterized by spectral studies and screened for their in vitro anticancer and antimicrobial activities. Compound 8c has exhibited excellent activity against MCF-7 (breast cancer cell line) than the standard drug Doxorubicin. Compound 8d against both the cancer cell lines, 8q against MCF-7 and 8c, 8h against HepG2 have also shown good activity. Remaining compounds have shown moderate activity against both the cell lines. Antimicrobial activity revealed that, the compound 8q and 8t against Staphylococcus aureus and 8i, 8k, 8l, 8q & 8t against Klebsiella pneumoniae have shown equipotent activity on comparing with the standard drug Streptomycin. Remaining compounds have shown significant antibacterial and comparable antifungal activities against all the tested microorganisms.  相似文献   

13.
14.
A series of novel 2H-chromen-2-one derivatives decorated with 1,2,3-triazole moiety were designed and synthesized using the click reaction of azidoalkyloxy-2H-chromen-2-ones with different propargylamines. Propargylamines were obtained by alkylation of various heterocyclic amines with propargyl bromide. Newly synthesized compounds and intermediates were evaluated for their antifungal activity against four fungi (Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus and Candida albicans). Antibacterial studies were also carried out against three Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis and Staphylococcus epidermis) and four Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Klebsiella pneumoniae). In vitro, bioassay results showed that all the synthesized compounds exhibited excellent activity against fungal strains Aspergillus fumigatus, Aspergillus flavus and Candida albicans. Interestingly, all the compounds have shown even superior activity than the reference drug miconazole against Aspergillus fumigatus. Morpholine and N-acetyl piperazine containing compounds 10c and 10e have shown promising activity against various bacterial strains. Compound 10e was found to be most active against Pseudomonas aeruginosa. Based on, in silico pharmacokinetic studies, compounds 10ae were identified as lead compounds for future investigation due to their lower toxicity, high drug score values and good oral bioavailability as per OECD guidelines.  相似文献   

15.
Clinical utility of rifabutin 1 (RBT), a potent antibiotic used in multidrug regimens for tuberculosis (TB) as well as for infections caused by Mycobacterium avium complex (MAC), has been hampered due to dose-limiting toxicity. RBT analogs 2–11 were synthesized and evaluated against M. avium 1581 and Mycobacterium tuberculosis susceptible and resistant strains in vitro. A selection of candidates were also assayed against non-replicating persistent (NRP) M. tuberculosis. Subsequent in vivo studies with the best preclinical candidate drugs 5 and 8, in a model of progressive pulmonary tuberculosis of Balb/C mice infected either with H37Rv drug–sensible strain or with multidrug resistant (MDR) clinical isolates, resistant to all primary antibiotics including rifampicin, were performed. The results disclosed here suggest that 5 and 8 have potential for clinical application.  相似文献   

16.
A new xanthone, 3,4-dihydro-8,10,12-trihydroxy-2,2-dimethylpyrano[2,3-b]xanthen-11(2H)-one or butyraxanthone E (1), along with the known compounds 30-epi-cambogin (2), 1,7-dihydroxyxanthone (3) and 1,5-dihydroxyxanthone (4) were isolated from the roots of Pentadesma butyracea. Their structures were elucidated by spectroscopic means and comparison with published data. Their antiproliferative activities were evaluated against Drosophila S2 cells and two human cancer cell lines, THP-1 (leukemia) and HCT116 (colon cancer). Compounds 1 and 2 showed moderate antiproliferative activity against Drosophila S2 cells and the HCT116 cell line, respectively. Compound 2 was active against Drosophila S2 cells.  相似文献   

17.
Direct synthesis of the 1- and 9-(5-azido-2,3,5-trideoxy-β-D-glycero-pent-2-enofuranosyl) derivatives (3a and 3b) of cytosine and adenine, respectively, has been accomplished via treatment of the corresponding 2′,3′-unsaturated nucleosides (1a and 1b) with triphenylphosphine and carbon tetrabromide in the presence of lithium azide. Members of a new type of (aminoacyl)amino nucleoside, the 1- and 9-[5-(aminoacyl)amino-2,3,5-trideoxy-β-D-glycero-pent-2-enofuranosyl] derivatives of cytosine and adenine, respectively, have been obtained by condensation of the corresponding, unsaturated amino nucleosides with the active esters of several amino acid derivatives, followed by deprotection. These nucleosides were examined for in vivo antitumor activity against leukemia L-1210 and Sarcoma 180 (solid tumor) in mice; none of them exhibited antitumor activity against L-1210 in mice, but compounds 1a, 3a, and 1-[2,3,5-trideoxy-5-(L-methionyl)amino-β-D-glycero-pent-2-enofuranosyl]cytosine exhibited weak activity against Sarcoma 180 (solid tumor).  相似文献   

18.
A new series of 1,4-dihydropyridine derivatives (2a–h, 3a–e, and 4a–e) were systematically designed and synthesized via ultrasound irradiation methods with easy work-up and good yields. Compounds structures were confirmed by IR, 1H NMR, 13C NMR, and mass spectra. The synthesized compounds were screened for both antimicrobial and anticoagulant activities. Compound 2e (MIC: 0.25?μg/mL) was highly active against Escherichia coli and compound 2c (MIC: 0.5?μg/mL) was also highly active against Pseudomonas aeruginosa compared with ciprofloxacin. (MIC: 1?μg/mL) The antifungal activity of 2c (MIC: 0.5?μg/mL) against Candida albicans was high relative to that of clotrimazole (MIC: 1?μg/mL). Anticoagulant activity was determined by activated partial thromboplastin time (APTT) and prothrombin time (PT) coagulation assays. Compound 4-(4-hydroxyphenyl)-2,6-dimethyl-N3,N5-bis(5-phenyl-1,3,4-thiadiazol-2-yl)-1,4-dihydropyridine-3,5-dicarboxamide 3d (>1000?s in APTT assays) was highly active in anticoagulant screening compared with the reference of heparin.Cytotoxicity was evaluated using HepG2 (liver), HeLa (cervical), and MCF-7 (breast) cancer cell lines, with high toxicities observed for 2c (GI50?=?0.02?μm) against HeLa cell line and 2e (GI50?=?0.03?μm) equipotant against MCF-7 cell line. Therefore, the compounds 2e, 2c and 3d can serve as lead molecules for the development of new classes of antimicrobial and anticoagulant agent.  相似文献   

19.
To identify new agents for the American Cutaneous Leishmaniasis treatment, a series of 2-aryl-quinazolin-4(3H)-ones were tested against L. mexicana, L. braziliensis and L. amazonensis parasites as potential inhibitor of folic metabolism pathway. In general, the L. braziliensis and L. mexicana promastigote parasites were more sensitive to the action of the quinazolinones than L. amazonensis. The most active derivatives showed low-micromolar EC50 ranging from 4 to 10 μM, being 1.3 to 4 fold more potent than glucantime reference drug. A complete in vitro evaluation on intracellular amastigote, axenic amastigote and murine peritoneal macrophage were performed for the most active derivatives. The compounds 2j, 2h, 2t and 2u displayed acceptable responses against intracellular amastigote compared to reference drug, excellent antileishmanial activities against axenic amastigote (LD50 ranging from 1 to 4 μM) and relative low toxicities on peritoneal macrophages. To validate the efficacy of these four derivatives, an in vitro evaluation was performed against an antimony-resistant amastigote strain; identifying to 2h and 2u as promising antileishmanial leads for further pharmacokinetics and in vivo studies. Experimental mechanism assays putted in evidences that the most active compounds act as folate inhibitor. A tentative molecular docking on pteridine reductase 1 (PTR1) enzyme showed that the most active quinazolinones 2j and 2t are located in almost identical place compared with methotrexate reference into active site.  相似文献   

20.
Four new diterpenes, crossogumerins A–D (14) along with six known ones (510) were isolated from the root bark of Crossopetalum gaumeri, an endemic medicinal plant from the Yucatan Peninsula. Their structures were elucidated on the basis of 1D and 2D NMR techniques, including HMQC, HMBC, and ROESY experiments. Compounds 15, 810 were evaluated for cytotoxicity against HeLa (carcinoma of the cervix) and Hep-2 (lung carcinoma) human tumor cells lines and against normal Vero cells (African green monkey kidney) in lag and log phase of growth. Podocarpane diterpenes, crossogumerin B (2) and nimbiol (10), exhibited the highest activity against HeLa cells (IC50 values of 3.1 and 8.1 μM, respectively), but also selectivity on Vero cells (SI 22.6 and 7.5, respectively). The preliminary SAR studies suggest that an epoxy moiety in ring B and a hydrogen bond-donor group strategically positioned in the diterpene core are important requirements for cytotoxicity and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号