首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
I investigate how risk spreading in stochastic environments and adaptation to permanent properties of local habitats interplay in the simultaneous evolution of dispersal and habitat specialization. In a simple two-patch model, I find many types of locally evolutionarily stable attractors of dispersal and of a trait involved in habitat specialization, including a single habitat specialist and a coalition of two specialists with low dispersal, a generalist with high dispersal, and several types of dispersal polymorphisms. In general, only one attractor is a global evolutionarily stable strategy (ESS). In addition to the ESS analysis, I also present some examples of the dynamics of evolution that exhibit adaptive diversification by evolutionary branching.  相似文献   

2.
Species utilizing a wide range of resources are intuitively expected to be less efficient in exploiting each resource type compared to species which have developed an optimal phenotype for utilizing only one or a few resources. We report here the results of an empirical study whose aim was to test for a negative association between habitat niche breadth and foraging performance. As a model system to address this question, we used two highly abundant species of pit-building antlions varying in their habitat niche breadth: the habitat generalist Myrmeleon hyalinus, which inhabits a variety of soil types but occurs mainly in sandy soils, and the habitat specialist Cueta lineosa, which is restricted to light soils such as loess. Both species were able to discriminate between the two soils, with each showing a distinct and higher preference to the soil type providing higher prey capture success and characterizing its primary habitat-of-origin. As expected, only small differences in the foraging performances of the habitat generalist were evident between the two soils, while the performance of the habitat specialist was markedly reduced in the alternative sandy soil. Remarkably, in both soil types, the habitat generalist constructed pits and responded to prey faster than the habitat specialist, at least under the temperature range of this study. Furthermore, prey capture success of the habitat generalist was higher than that of the habitat specialist irrespective of the soil type or prey ant species encountered, implying a positive association between habitat niche-breadth and foraging performance. Alternatively, C. lineosa specialization to light soils does not necessarily confer upon its superiority in utilizing such habitats. We thus suggest that habitat specialization in C. lineosa is either an evolutionary dead-end, or, more likely, that this species' superiority in light soils can only be evident when considering additional niche axes.  相似文献   

3.
We studied selection by predators for cryptic prey coloration in a visually heterogeneous habitat that consists of two microhabitats. It has been suggested that the probability of escaping detection in such habitats might be optimized by maximizing crypsis in one of the microhabitats. However, a recent model indicates that a coloration that compromises the requirements of different microhabitats might sometimes be the optimal solution. To experimentally study these hypotheses, we allowed great tits (Parus major L.) to search for artificial prey items in two different microhabitats (background boards): small patterned and large patterned. On each board there was one prey item that was either small-patterned, large-patterned or medium-patterned and thus compromised. Search time was used as the measure of crypsis and was on average longer on the large-patterned than on the small-patterned background. On the small-patterned background, the small-patterned prey was more cryptic than the compromised prey, which was in turn more cryptic than the large-patterned prey. On the large-patterned background, the small-patterned prey was least cryptic, but the compromised prey did not differ significantly from the large-patterned prey. The compromised coloration had lower predation risk than the matching colorations. This indicates that in some conditions a compromised coloration might be the best strategy for the prey and has important implications for the study of animal coloration.  相似文献   

4.
1. The ability to achieve optimal camouflage varies between microhabitats in heterogeneous environments, potentially restricting individuals to a single habitat or imposing a compromise on crypsis to match several habitats. However, animals may exhibit morphological and behavioural attributes that enhance crypsis in different habitats. 2. We used an undescribed fish species, Galaxias‘nebula’, to investigate two objectives. First, we examined two potential methods of enhancing crypsis: change in colour pattern and selection of a suitable background. Second, we characterised the colour pattern of this unstudied fish and assessed its capacity for crypsis. 3. No background selection was apparent but the area of dark pigment expressed varied between backgrounds, which may negate the requirement to be choosy about habitats. The capacity to change colour and selection of a background that maximises crypsis are most likely separate, non‐mutually exclusive strategies. 4. Galaxias‘nebula’ exhibits polymorphic, non‐interchangeable colour patterns that have elements of both background pattern matching and disruptive colouration. This, coupled with habitat characteristics, suggests a combination of generalist and specialist strategies of habitat use. The fish’s camouflage strategy and air‐breathing ability may be key to survival under increasing pressure from habitat degradation and invasive predators.  相似文献   

5.
We analyze the evolution of specialization in resource utilization in a discrete-time metapopulation model using the adaptive dynamics approach. The local dynamics in the metapopulation are based on the Beverton-Holt model with mechanistic underpinnings. The consumer faces a trade-off in the abilities to consume two resources that are spatially heterogeneously distributed to patches that are prone to local catastrophes. We explore the factors favoring the spread of generalist or specialist strategies. Increasing fecundity or decreasing catastrophe probability favors the spread of the generalist strategy and increasing environmental heterogeneity enlarges the parameter domain where the evolutionary branching is possible. When there are no catastrophes, increasing emigration diminishes the parameter domain where the evolutionary branching may occur. Otherwise, the effect of emigration on evolutionary dynamics is non-monotonous: both small and large values of emigration probability favor the spread of the specialist strategies whereas the parameter domain where evolutionary branching may occur is largest when the emigration probability has intermediate values. We compare how different forms of spatial heterogeneity and different models of local growth affect the evolutionary dynamics. We show that even small changes in the resource dynamics may have outstanding evolutionary effects to the consumers.  相似文献   

6.
The evolution of phenotypic plasticity is studied in a model with two reproductively isolated “species” in a coarse-grained environment, consisting of two types of habitats. A quantitative genetic model for selection was constructed, in which habitats differ in the optimal value for a focal trait, and with random dispersal among habitats. The main interest was to study the effects of different selection regimes. Three cases were investigated: (1) without any limits to plasticity; (2) without genetic variation for plasticity; and (3) with a fitness cost for phenotypically plastic reactions. In almost all cases a generalist strategy to exploit both habitats emerged. Without any limits to plasticity, optimal adaptive reactions evolved. Without any genetic variation for plasticity, a compromise strategy with an intermediate, fixed phenotype evolved, whereas in the presence of costs a plastic compromise between the demands of the habitats and the costs associated with plasticity was found. Specialization and phenotypic differentiation was only found when selection within habitats was severe and optimal phenotypes for different habitats were widely different. Under soft selection (local regulation of population numbers in each habitat) the specialists coexisted; under hard selection (global regulation of population numbers) one specialist outcompeted the other. The prevalent evolutionary outcome of compromises rather than specialization implies that costs or constraints are not necessarily detectable as local adaptation in transplantation or translocation experiments.  相似文献   

7.
The evolution of aposematism is considered to be a major evolutionary problem because if new aposematic forms emerged in defended cryptic populations, they would face the dual problems of rarity and conspicuousness. We argue that this commonly assumed starting point might not have wide validity. We describe a novel evolutionary computer model in which prey evolve secondary defences and become conspicuous by moving widely over a visually heterogeneous habitat. Unless crypsis imposes high opportunity costs (for instance, preventing prey from efficient foraging, thermoregulation and communication), costly secondary defences are not predicted to evolve at all. However, when crypsis imposes opportunity costs, prey evolve secondary defences that facilitate raised behavioural conspicuousness as prey exploit opportunities within their environment. Optimal levels of secondary defence and of behavioural conspicuousness increase with population sizes and the costs imposed by crypsis. When prey are already conspicuous by virtue of their behaviours, the evolution of aposematic appearances (bright coloration, etc.) is much easier to explain because aposematic traits add little further costs of conspicuousness, but can bring large benefits.  相似文献   

8.
Optimization of cryptic coloration in heterogeneous habitats   总被引:3,自引:0,他引:3  
We present a theoretical approach to the optimization of crypsis in heterogeneous habitats. Our model habitat consists of two different microhabitats, and the optimal combination of crypsis in the microhabitats is supposed to maximize the probability of escaping detection by a predator. The probability of escaping detection for a prey is a function of: (i)degree of crypsis, (ii) probability of occurrence in the microhabitats and (iii) probability of encountering a predator in the microhabitats. Because crypsis is background-specific there is a trade-off between crypsis in two visually different microhabitats. Depending on the nature of the trade-off, the optimal coloration is either a compromise between the requirements of the differing microhabitats or entirely adapted to only one of them. An increased risk of predation in one of the microhabitats favours increased crypsis in that microhabitat. Because the trade-off constrains possible optimal solutions, it is not possible to predict the optimal coloration only from factors (i)-(iii). However, habitat choice may fundamentally change the situation. If minimizing predation risk does not incur any costs, the prey should exclusively prefer the microhabitat where it has a lower probability of encountering a predator and better crypsis. The implications of these results for variation in cryptic coloration and polymorphism are discussed.  相似文献   

9.
Many predators are able to become better at spotting cryptic prey by recognising specific clues, but by concentrating on one prey type they will become worse at spotting other prey types. This phenomenon is known as the formation of a search image for a certain prey by a predator and is related to apostatic selection. Here, we study the evolution of a search image in the predator by formulating and analysing a mathematical model. The predator forages for two prey types and is able to form an independent search image for both prey. The results show that the evolutionary dynamics can be divided into two parts: a fast and a slow part. At first selection pressure will be strong towards a stable ratio of prey, which is the same as the ratio found for the unbeatable prey choice for predators with a Holling type II functional response. Following this, the slow dynamics will keep this ratio constant independent of the trait values, but the predator will slowly evolve towards a stronger search image and ultimately become a specialist predator or slowly evolve towards generalist with a weak search image. In conclusion, the formation of a search image causes the predator to control the prey densities such that the ratio of available prey is kept constant by the predator.  相似文献   

10.
Predators select prey so as to maximize energy and minimize manipulation time. In order to reduce prey detection and handling time, individuals must actively select their foraging space (microhabitat) and populations exhibit morphologies that are best suited for capturing locally available prey. We explored how variation in diet correlates with habitat type, and how these factors influence key morphological structures (mouth gape, eye diameter, fin length, fin area, and pectoral fin ratio) in a common microcarnivorous cryptic reef fish species, the triplefin Helcogrammoides cunninghami. In a mensurative experiment carried out at six kelp‐dominated sites, we observed considerable differences in diet along 400 km of the Chilean coast coincident with variation in habitat availability and prey distributions. Triplefins preferred a single prey type (bivalves or barnacles) at northern sites, coincident with a low diversity of foraging habitats. In contrast, southern sites presented varied and heterogeneous habitats, where triplefin diets were more diverse and included amphipods, decapods, and cumaceans. Allometry‐corrected results indicated that some morphological structures were consistently correlated with different prey items. Specifically, large mouth gape was associated with the capture of highly mobile prey such as decapods, while small mouth gape was more associated with cumaceans and copepods. In contrast, triplefins that capture sessile prey such as hydroids tend to have larger eyes. Therefore, morphological structures co‐vary with habitat selection and prey usage in this species. Our study shows how an abundant generalist reef fish exhibits variable feeding morphologies in response to the distribution of potential habitats and prey throughout its range.  相似文献   

11.
Studies of trait‐mediated indirect interactions (TMIIs) typically focus on effects higher predators have on per capita consumption by intermediate consumers of a third, basal prey resource. TMIIs are usually evidenced by changes in feeding rates of intermediate consumers and/or differences in densities of this third species. However, understanding and predicting effects of TMIIs on population stability of such basal species requires examination of the type and magnitude of the functional responses exhibited towards them. Here, in a marine intertidal system consisting of a higher‐order fish predator, the shanny Lipophrys pholis, an intermediate predator, the amphipod Echinogammarus marinus, and a basal prey resource, the isopod Jaera nordmanni, we detected TMIIs, demonstrating the importance of habitat complexity in such interactions, by deriving functional responses and exploring consequences for prey population stability. Echinogammarus marinus reacted to fish predator diet cues by reducing activity, a typical anti‐predator response, but did not alter habitat use. Basal prey, Jaera nordmanni, did not respond to fish diet cues with respect to activity, distribution or aggregation behaviour. Echinogammarus marinus exhibited type II functional responses towards J. nordmanni in simple habitat, but type III functional responses in complex habitat. However, while predator cue decreased the magnitude of the type II functional response in simple habitat, it increased the magnitude of the type III functional response in complex habitat. These findings indicate that, in simple habitats, TMIIs may drive down consumption rates within type II responses, however, this interaction may remain de‐stabilising for prey populations. Conversely, in complex habitats, TMIIs may strengthen regulatory influences of intermediate consumers on prey populations, whilst potentially maintaining prey population stability. We thus highlight that TMIIs can have unexpected and complex ramifications throughout communities, but can be unravelled by considering effects on intermediate predator functional response types and magnitudes. Synthesis Higher‐order predators and habitat complexity can influence behaviour of intermediate species, affecting their consumption of prey through trait‐mediated indirect interactions (TMIIs). However, it is not clear how these factors interact to determine prey population stability. Using functional responses (FRs), relating predator consumption to prey density, we detected TMIIs in a marine system. In simple habitats, TMIIs reduced consumption rates, but FRs remained de‐stabilising for prey populations. In complex habitats, TMIIs strengthened prey regulation with population stabilizing FRs. We thus demonstrate that FRs can assess interactions of environmental and biological cues that result in complex and unexpected outcomes for prey populations.  相似文献   

12.
On the ecological timescale, two predator species with linear functional responses can stably coexist on two competing prey species. In this paper, with the methods of adaptive dynamics and critical function analysis, we investigate under what conditions such a coexistence is also evolutionarily stable, and whether the two predator species may evolve from a single ancestor via evolutionary branching. We assume that predator strategies differ in capture rates and a predator with a high capture rate for one prey has a low capture rate for the other and vice versa. First, by using the method of critical function analysis, we identify the general properties of trade-off functions that allow for evolutionary branching in the predator strategy. It is found that if the trade-off curve is weakly convex in the vicinity of the singular strategy and the interspecific prey competition is not strong, then this singular strategy is an evolutionary branching point, near which the resident and mutant predator populations can coexist and diverge in their strategies. Second, we find that after branching has occurred in the predator phenotype, if the trade-off curve is globally convex, the predator population will eventually branch into two extreme specialists, each completely specializing on a particular prey species. However, in the case of smoothed step function-like trade-off, an interior dimorphic singular coalition becomes possible, the predator population will eventually evolve into two generalist species, each feeding on both of the two prey species. The algebraical analysis reveals that an evolutionarily stable dimorphism will always be attractive and that no further branching is possible under this model.  相似文献   

13.
Animal dispersal depends on multiple factors, such as habitat features and life‐history traits of the species. We studied the propensity for ballooning dispersal in spiders under standardized laboratory conditions. The 1269 tested individuals belonged to 124 species and originated from 16 sites with wide variation in habitat type. Spiders from disturbed habitats ballooned 5.5 times more than spiders from stable habitats. In Meioneta rurestris , for which we had enough data for a single‐species analysis, individuals were most dispersive if they originated from highly disturbed habitats. While the data for the other species were not sufficient for single‐species analyses, a hierarchical model that included the data simultaneously on all species suggested that dispersal propensity generally increases within species with the level of habitat disturbance. Dispersal probability showed a trend to increase with niche width, but the higher commonness of species with wide niches provides an alternative explanation for this pattern. As the prevalence of especially dispersive species was highest in disturbed habitats, variation in dispersal propensity was influenced by both inter‐ and intraspecific factors. We conclude that the positive correlation between niche width and dispersal propensity enables generalist species to utilize highly disturbed habitats, whereas the persistence of specialist species with restricted dispersal ability requires the conservation of stable habitats.  相似文献   

14.
Why and how specialist and generalist strategies evolve are important questions in evolutionary ecology. In this paper, with the method of adaptive dynamics and evolutionary branching, we identify conditions that select for specialist and generalist strategies. Generally, generalist strategies evolve if there is a switching benefit; specialists evolve if there is a switching cost. If the switching cost is large, specialists always evolve. If the switching cost is small, even though the consumer will first evolve toward a generalist strategy, it will eventually branch into two specialists.  相似文献   

15.
Evolution of the germination rate (the proportion of newly produced and dormant seeds that germinates every year) of annual plants is investigated, when the environment is temporally stochastic and spatially heterogeneous. The environment consists of two habitats with synchronous stochastic variation in the annual yield and permanent difference in constant seed survival rates. Density dependence operates within the habitats, which are connected via restricted seed dispersal. We find that instead of a single common evolutionarily stable strategy the coexistence of several germination strategies is possible and that in an initially monomorphic population evolutionary branching may occur. During evolutionary branching the population undergoes disruptive selection and splits into two branches of different lineages that converge to the evolutionarily stable coalition of different germination strategies. It is shown that spatial heterogeneity and restricted dispersal are essential for evolutionary branching. Disruptive selection on the germination rate presents yet another possibility for parapatric speciation.  相似文献   

16.
Metapopulation theory for the evolution of specialisation is virtually absent. In this article, therefore, we study a metapopulation model for consumers with a fitness trade-off between two habitats. We focus on effects of habitat abundance, dispersal rate and trade-off strength on the evolution of specialisation under two types of trade-off. Adaptation affects either the intrinsic growth rates r or the carrying capacities K. Depending on dispersal rate and trade-off strength, evolution can result in one generalist, one specialist or two specialist types. Higher dispersal rate and a weaker trade-off favour the evolution of a generalist, for both trade-off structures. However, we also find differences between the two trade-off structures. Our results are qualitatively similar to analyses of two-patch models, suggesting that insights from such simpler models can be extrapolated to metapopulation models. Additional effects, however, occur because in classical metapopulations patch lifetime depends on extinction rate. Counterintuitively, this favours the evolution of specialisation when the trade-off affects r.  相似文献   

17.
In studies on dynamics of northern predator‐prey systems, two assumptions are often made. First, the bifurcation from stable to cyclic dynamics is seen as a consequence of changing generalist‐specialist ratio, ultimately due to reduced prey diversity at high latitudes and the negative impact of snow on the efficiency of generalists as predators of small, folivorous mammals. Supposedly, the primary mechanism is the qualitative difference between the functional response of specialist and generalist predators. Second, the interaction between large predators and ungulates is supposed to be prone to lead to two alternative equilibria, one where predation regulates ungulates at a relatively low equilibrium and another, where ungulate densities are close to carrying capacity. In the first‐mentioned issue, our analysis corroborates the general idea of snow favoring specialists and leading to cycles. However, differences in functional response appear to be of secondary importance only, and rather special conditions are required for generalists to have a stabilizing type III functional response. A destabilizing type II functional response or a slight modification of it should be common in generalists, too, as also indicated by the classical experiments. Stability of generalist dominated systems seems primarily to derive from their relative inefficiency, allowing prey's density‐dependent mechanisms to play a bigger role in the neighborhood of the equilibrium. Moreover, the main destabilizing impact of deep, long‐lasting snow cover appears to lie in the protection it offers to the efficient but vulnerable specialists, which are eliminated or marginalized by intraguild predation in areas with snow‐free winters, unless the habitat offers some other form of efficient protection. As for the conjecture of multiple equilibria in northern wolf‐ungulate systems, it seems to be derived from an erroneous operational definition of numerical response and has little if any empirical support. Available data suggest that predation limitation of folivorous mammals prevails along the entire gradient from relatively productive low arctic habitats to the humid parts of the temperate zone, provided that the numbers of predators are not controlled by man.  相似文献   

18.
Coccinellids (ladybird beetles) exhibit considerable diversity in habitat and dietary preference and specificity. This is evident even when comparing species within some coccinellid genera. Resource limitation and competition are suggested as of greatest importance in the evolution of coccinellid habitat preferences. Dietary and habitat specialization has probably occurred in some lineages within broader preferences possessed by generalist ancestors, to avoid the costs associated with migration between habitats and prey switching. Feeding in atypical habitats, on alternative food, when optimal prey are scarce, is likely to have been of great importance in facilitating evolutionary shifts to novel diets and habitats. The broad host ranges of many coccinellid parasitoids and observed interspecific differences in parasitoid prevalence resulting from physiological differences between coccinellid species argue that enemy free space has been of limited importance in habitat and prey shifts in this group. Rapid change may occur in coccinellid foraging patterns, perhaps due to conditioning, and coccinellids may swiftly adapt to new habitats through selection acting on the expression pre-existing traits. Diet, as a determinant of coccinellid migration and gene flow, is likely to affect probable modes of speciation in different coccinellid groups. Parapatric speciation and possibly sympatric speciation are suggested as of possible importance in the genesis of new coccinellid species through prey and habitat shifts.  相似文献   

19.
The predator satiation hypothesis poses that synchronous and variable seed production during masting events increases seed escape through seed predator satiation. The success of this strategy depends upon the type of consumer functional response, in this case defined as the change in seed consumption rate by a predator as a function of change in seed density. Type II (where the proportion of seed consumed is highest at low levels of seed availability) and type III (where the proportion of seed consumed is highest at some intermediate level of seed availability and then declines towards zero) functional responses describe negative density‐dependence and indicate predator satiation. The type of function response should be contingent upon herbivore traits: type II responses are predicted for dietary specialist predators with low mobility, and type III responses are predicted for highly mobile, dietary generalist predators. Surprisingly, most studies have not evaluated whether functional responses vary among seed predator guilds. Here we describe the functional responses at population and individual tree level of highly mobile generalist (birds and rodents) and less mobile specialist (insects) pre‐dispersal seed predators attacking acorns of two sympatric oaks (Quercus suber and Q. canariensis) over a 10‐year period. Our results showed that in most cases specialist seed predators exhibited the predicted type II functional response at both the individual tree and population level for both oak species. However, generalist seed predators did not exhibit the predicted type III response; instead, they also exhibited a type II response at the individual tree and population level for both oak species. By independently assessing the effects of multiple seed predators associated with the same host tree species, our work highlights the influence of herbivore traits on the outcome of plant–seed predator interactions in masting species, and thus furthers our understanding of the ecological and evolutionary mechanisms underlying masting behaviour.  相似文献   

20.
How, and where, a prey species survives predation by a specialist predator during low phases of population fluctuations or a cycle, and how the increase phase of prey population is initiated, are much-debated questions in population and theoretical ecology. The persistence of the prey species could be due mainly to habitats that act as refuges from predation and/or due to anti-predatory behaviour of individuals. We present models for the former conjecture in two (and three) habitat systems with a specialist predator and its favoured prey. The model is based on dispersal of prey between habitats with high reproductive output but high risk of predation, and less productive habitats with relatively low risk of predation. We illustrate the predictions of our model using parameters from one of the most intriguing vertebrate predator–prey systems, the multi-annual population cycles of boreal voles and their predators. We suggest that cyclic population dynamics could result from a sequence of extinction and re–colonization events. Field voles (Microtus agrestis), a key vole species in the system, can be hunted to extinction in their preferred meadow habitat, but persist in sub-optimal wet habitats where their main predator, the least weasel (Mustela nivalis nivalis) has a low hunting efficiency. Re–colonization of favourable habitats would occur after the predator population crashes. At the local scale, the model suggests that the periodicity and amplitude of population cycles can be strongly influenced by the relative availability of risky and safe habitats for the prey. Furthermore, factors like intra-guild predation may lead to reduced predation pressure on field voles in sub-optimal habitats, which would act as a refuge for voles during the low phase of their population cycles. Elasticity analysis suggested that our model is quite robust to changes in most parameters but sensitive to changes in the population dynamics of field voles in the optimal grassland habitat, and to the maximum predation rate of weasels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号