首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 276 毫秒
1.
One of the most biologically important electrical penetration graph (EPG) waveforms recorded from aphids on DC EPG systems is the potential drop (pd), which is correlated with intracellular punctures by the stylet tips. In this study, pds of the adult female Bemisia argentifolii Bellows & Perring (Homoptera: Aleyrodidae), recorded on a DC EPG, are characterized and compared to pds of aphids. Whitefly pds consisted of 3 phases similar to those recorded from probing aphids. The major difference between aphid pds and whitefly pds was that whitefly pds lacked any observable subphases within the second phase of the pd. In addition, whitefly pds differed from aphid pds in that they: (1) did not occur frequently during stylet penetration, (2) did not occur early within probes, (3) did not occur during brief probes (<1 min). Pds produced by probing whiteflies always were preceded by a variant of waveform C which we named the pre-pd. The differences between pds of aphids and whiteflies are discussed in terms of their implications for virus transmission and host selection. Using a technique where EPG recordings can be switched back and forth between DC and AC systems, we demonstrated that the AC EPG pseudotransition waveform (Pt) was equivalent to the DC pd, and thus was correlated with intracellular punctures. Previously, intracellular punctures by whiteflies had not been detectable on AC EPG systems. The AC Pt consisted of three distinct phases (Pt1, Pt2, and Pt3) and our observations suggest that AC Pt1 correlates with the pre-pd waveform in DC EPGs and that AC Pt 2 and 3 correlate with the intracellular phase of the DC pd. AC Pts (n=47) and DC pds (n=43) were recorded on three separate plant species and were similar on all plant species.  相似文献   

2.
Plant penetration by western flower thrips (Frankliniella occidentalis (Pergande)) was analysed with the electrical penetration graph technique (EPG, DC-system). Thrips attached to a gold wire were included in an electrical circuit to record EPGs when penetrating the plant tissues with their stylets. Three basic EPG waveforms have been distinguished, correlated with stylet penetration into cells, salivation, and ingestion, respectively. The main difference with EPGs of Homoptera is the occurrence of continued separate penetrations that are not necessarily followed by ingestion. Insertion of the stylets causes strong voltage fluctuations in the EPG. We could confirm earlier evidence that penetration of cells and subsequent ingestion of (part of) the protoplast takes less than 20 seconds. Repeated short penetrations can be followed by a continuous feeding pattern during which the stylets are not withdrawn. The same sequence of waveforms is produced on other plant parts such as fruits or pollen grains. The specific waveforms are mainly caused by electromotive force (emf). The emf component was recorded with high resolution and the correlation of waveform details with activities of the cibarial muscle system is discussed.  相似文献   

3.
The direct current electrical penetration graph (DC‐EPG) technique was used to identify stylet penetration behaviors of Myzus persicae (Sulzer) (Hemiptera: Sternorrhyncha: Aphididae) that are related to successful acquisition and inoculation of the non‐persistently transmitted potyvirus, Zucchini yellow mosaic virus (ZYMV), to melon, Cucurbita pepo L. (Cucurbitaceae). Stylet penetration behaviors of two sources of M. persicae that differ in their ZYMV transmission efficiency were examined to determine if behavioral differences were related to their differing ZYMV transmission efficiencies. Successful acquisition of ZYMV by M. persicae was significantly related to longer total time in intracellular subphase II‐3 of potential drops. Successful inoculation of ZYMV by M. persicae was related to a greater number of intracellular punctures, shorter durations of intracellular punctures, and longer total time in intracellular subphase II‐1. Of these variables that were related to ZYMV transmission, the two aphid sources differed in the total time spent in subphases II‐1 and II‐3. These results suggest that the differences in ZYMV transmission efficiencies between the aphids may be at least partially caused by behavioral differences during stylet penetrations of the host plant tissue, specifically behaviors that occur during intracellular punctures.  相似文献   

4.
The solenopsis mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), is a polyphagous insect known to cause severe damage to cotton (especially transgenic varieties) in South Asia, and currently poses a serious threat in Asia and potentially elsewhere. Stylet penetration behavior of P. solenopsis on cotton was monitored using the electrical penetration graph (EPG) technique (DC system) and the EPG characteristics were compared with those previously published from Phenacoccus manihoti Matile‐Ferrero and Planococcus citri (Risso). We identified and further characterized typical waveforms of A, B, C, and pd (together pathway), E1 and E2 (phloem), F (derailed stylet mechanics), and G (xylem). Five novel EPG aspects were distinguished in the EPG waveforms from P. solenopsis: (1) obvious B waveforms occurred following waveform A, (2) during waveform C, some aphid‐like E1e waveforms were observed, (3) prolonged potential drops (pd) up to >1 h occurred with two continuously alternating sub‐phases pd1 and pd2, (4) the pd1 waveform always occurred as the first waveform related to phloem sieve elements, preceding the other phloem waveforms (E), the labeling of which we changed to achieve a better comparison to the aphid E waveforms, and (5) waveform F, related to derailed stylet mechanics occurred but was not reported from other mealybugs so far. This is mainly a waveform morphology study to extend existing knowledge on mealybug EPGs to investigate mealybug‐host plant interactions. Further experimental verification of waveform correlations with plant tissue positions of stylet tips and insect activities is still needed.  相似文献   

5.
With the purpose of studying the feeding behavior of the brown citrus aphid pest, Toxoptera citricida (Kirkaldy) (Hemiptera: Aphididae), we compared stylet probing behaviors of third and fourth instars and adults on Citrus unshiu Marc (Rutaceae) seedlings using the electrical penetration graph (EPG) technique. EPG waveforms exhibited the full suite of stylet behaviors – stylet pathway, intracellular stylet puncture, phloem salivation (E1), sieve ingestion (E2), and xylem sap ingestion activities, plus the non‐penetration (Np) waveform. Before the phloem phase, the number of probes was significantly higher for third‐instar nymphs than for adults. Overall duration of Np events by adults was significantly lower than the duration of third and fourth instars. The number of short probes of the fourth instars was significantly higher than that of the adults. In the phloem phase, adults made more frequent and longer E1 events than the third and fourth instars. Third instars made more frequent but shorter E2 events, whereas adults made fewer but longer events. These results showed adults gained nutrients by increasing feeding time during phloem ingestion. Thus, the probability of phloem‐associated virus acquisition and transmission of T. citricida was higher in adults than in nymphs.  相似文献   

6.
Detailed information on probing behavior of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is critical for understanding the transmission process of phloem‐limited bacteria (Candidatus Liberibacter spp.) associated with citrus ‘huanglongbing’ by this vector. In this study, we investigated stylet penetration activities of D. citri on seedlings of Citrus sinensis (L.) Osbeck cv. Pêra (Rutaceae) by using the electrical penetration graph (EPG‐DC system) technique. EPG waveforms were described based on amplitude, frequency, voltage level, and electrical origin of the observed traces during stylet penetration into plant tissues. The main waveforms were correlated with histological observations of salivary sheath termini in plant tissues, to determine the putative location of stylet tips. The behavioral activities were also inferred based on waveform similarities in relation to other Sternorrhyncha, particularly aphids and whiteflies. In addition, we correlated the occurrence of specific waveforms with the acquisition of the phloem‐limited bacterium Ca. Liberibacter asiaticus by D. citri. The occurrence of a G‐like xylem sap ingestion waveform in starved and unstarved psyllids was also compared. By analyzing 8‐h EPGs of adult females, five waveforms were described: (C) salivary sheath secretion and other stylet pathway activities; (D) first contact with phloem (distinct from other waveforms reported for Sternorrhyncha); (E1) putative salivation in phloem sieve tubes; (E2) phloem sap ingestion; and (G) probably xylem sap ingestion. Diaphorina citri initiates a probe with stylet pathway through epidermis and parenchyma (C). Interestingly, no potential drops were observed during the stylet pathway phase, as are usually recorded in aphids and other Sternorrhyncha. Once in C, D. citri shows a higher propensity to return to non‐probing than to start a phloem or xylem phase. Several probes are usually observed before the phloem phase; waveform D is observed upon phloem contact, always immediately followed by E1. After E1, D. citri either returns to pathway activity (C) or starts phloem sap ingestion, which was the longest activity observed.  相似文献   

7.
棉蚜获得黄瓜花叶病毒的行为与取食过程的关系   总被引:14,自引:4,他引:10  
利用刺吸电位(EPG)及其即时中断技术研究了棉蚜Aphis gossypii传播黄瓜花叶病毒(CMV)的机理,分析电势落差波(pd)及其亚波形在棉蚜获得CMV的取食行为过程中的作用。结果表明:棉蚜的获毒需要pd波的发生,它的获毒效率与穿刺病株细胞膜的次数呈正相关。证明了这种行为是一种细胞内行为。对植物细胞内穿刺产生的电位落差(pd)波亚波形分析的结果显示,棉蚜的获毒发生在pd波的Ⅱ-3阶段,与棉蚜主动吸食植物细胞汁液的活动相关, 这支持了蚜虫获毒的 “吸入假说”。  相似文献   

8.
This study focuses on the resistance of sugarcane, Saccharum spec. (Poaceae), to the sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), which vectors Sugarcane yellow leaf virus (SCYLV). Resistance was characterized in cultivar R 365, using a 3‐year field trial and laboratory experiments on potted plantlets and excised leaves. R 365 reduced aphid populations in the field by antixenosis and antibiosis. Using the electrical penetration graph technique, we detected delayed aphid salivation in phloem and inhibition of passive phloem sap uptake in R 365. The resistance factors also proved to be effective against the corn leaf aphid, Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae), another vector of SCYLV.  相似文献   

9.
Aphid feeding requires the secretion of two types of saliva: gelling saliva (from the principal gland) that forms an intercellular sheath for the penetrating stylet, and watery saliva [from accessory salivary glands (ASGs)] that facilitates intracellular penetration and phloem feeding. Plant viruses can be used as salivary markers to investigate key steps in aphid feeding, and penetration can be monitored electrically using the electrical penetration graph (EPG) approach. We conducted a series of EPG‐controlled transmission experiments using Cucurbit aphid‐borne yellows virus [CABYV; Polerovirus spec. (Luteoviridae)], which is retained in the ASGs, as a marker for watery saliva secretions. The melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae), was used as a vector and melon seedlings, Cucumis melo L. (Cucurbitaceae), as host plants. Viruliferous aphids were interrupted at various stages during stylet penetration, i.e., during intercellular penetration prior to intracellular puncture and following a potential drop within the first probe. Viruliferous aphids and leaf disc samples obtained from the stylet penetration site were used to detect CABYV by quantitative real‐time RT‐PCR. Approximately half of the inoculated leaf discs were found to be infected with CABYV after very brief (12.9 ± 1.9 s) intercellular stylet probes and before intracellular stylet puncture. The number of virus particles ejected during such probes was similar to the number ejected by aphids during longer probes including a single intracellular puncture. Our results therefore suggest that watery saliva is secreted by aphids from the onset of stylet penetration.  相似文献   

10.
Aphid activities during sieve element punctures   总被引:13,自引:0,他引:13  
Aphid salivation in sieve elements and phloem sap ingestion were linked to waveforms in the Electrical Penetration Graph (EPG). Non-viruliferousRhopalosiphum padi (L.) (Hemiptera, Aphididae) on barley yellow dwarf virus (BYDV) infected wheat could acquire the virus, which was used as an indication for phloem sap ingestion, whereas virus inoculation by viruliferous aphids on healthy plants was associated with salivation in sieve elements or other phloem cells. Probing was monitored and the waveforms recorded were related to ELISA results of test plants. The EPG patterns A, B, and C are indicative of the stylet pathway phase, whereas patterns E1 and E2 reflect the phloem (sieve element) phase with an unknown activity (E1) or with ingestion and concurrent salivation (E2). Aphids showing pathway and E1 rarely acquired virus, suggesting that little or no phloem sap ingestion can occur during these patterns, whereas those showing additionally pattern E2 did so substantially, indicating phloem sap ingestion. The main pattern related to virus inoculation was E1, although some aphids were able to inoculate plants during pathway. Pattern E1 clearly reflects the most important salivation into sieve elements. Pattern E2 had no clear contribution to virus inoculation, supporting the present hypothesis that during this pattern the saliva is mixed with the phloem sap in the single canal at the stylet tips and ingested immediately, without reaching the plant tissue. Sustained sap ingestion did not affect virus inoculation. So, BYDV inoculation mainly occurs during the first period of a sieve element puncture which is always formed by E1. Implications on persistent virus transmission are discussed.  相似文献   

11.
Feeding behavior of three leafhopper species – Erythroneura vitis (Harris), Erythroneura ziczac (Walsh), and Erythroneura elegantula (Say) (Hemiptera: Cicadellidae) – reared on grapevine, Vitis vinifera L. cv. ‘Seyval blanc’ (Vitaceae), was investigated using histological techniques and DC‐electrical penetration graphs (DC‐EPG). Histological studies revealed that the Erythroneura species induced white stipples on the leaves and that these leafhoppers produced thin salivary sheaths in grapevine leaf tissues. The DC‐EPG system allowed the characterization of five waveforms associated with stylet penetration and feeding in leaf tissues. These waveforms were characteristic of feeding phases corresponding to epidermis penetration pathway, salivation, and ingestion. We calculated 28 parameters (e.g., number of probes, duration of phases, and time spent in the various tissues) to describe and compare the feeding behavior of the Erythroneura species. We conclude that the three Erythroneura species are mainly mesophyll feeders but may probably also feed in other tissues such as xylem.  相似文献   

12.
Aphis gossypii Glover (Hemiptera: Aphididae) is a key pest in cotton crops, notably owing to its increasing resistance to commonly used pesticides. Such resistance prompts for the development of integrated pest management (IPM) programs that include novel pesticides being effective against the aphid. In the present study, we assessed lethal and sublethal effects of cycloxaprid, a novel chiral neonicotinoid pesticide developed in China, on A. gossypii. The lethal concentration at 50% (LC50) value of cycloxaprid on A. gossypii was estimated, using the dipping method, at 7.73 mg/L. The impact of a sublethal concentration (LC10) and a lethal concentration (LC40) of cycloxaprid on A. gossypii population growth and feeding behavior (using electrical penetration graph technique [EPG]), and its transgenerational effect were further assessed. Adult longevity and fecundity significantly decreased after exposure to LC40 or LC10 of cycloxaprid. Cycloxaprid with sublethal concentrations (especially LC40) had negative effects on phloem ingestion by A. gossypii. Additionally, the offspring of the adults exposed to LC40 of cycloxaprid had shorter nymphal development duration and adult longevity than the control, and those from LC10 and LC40 treatments had lower adult fecundity and net productive rate. We demonstrated that cycloxaprid is a pesticide showing both lethal and sublethal activities, and transgenerational effects on A. gossypii; it may be useful for implementation in IPM programs against this aphid pest.  相似文献   

13.
The cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae), is distributed throughout the tropical and subtropical areas of the world. The main crops attacked by B. brassicae are cabbage, collard greens, broccoli, Brussels sprouts, and cauliflower. To survive the attack of pest insects, plants have evolved various resistance mechanisms that may affect pest feeding behavior. The use of electronic monitoring through EPG (electrical penetration graph) can help characterize and distinguish the resistance mechanisms involved. This study evaluated the feeding behavior of B. brassicae in eight genotypes of collard greens, Brassica oleraceae L. var. acephala (Brassicaceae), exhibiting antixenosis and/or antibiosis resistance to this insect. Possible correlations were established between the glucosinolate levels, the hardness, and the epicuticular wax on the leaves vs. aphid feeding behavior. On the genotypes 22V, 5E, and 27VA, for which many ‘potential drop’ waves were performed, aphid development was slower, indicating antixenosis as resistance type. Aphids on the genotypes 22V and 24X required more time until accessing the phloem, also suggesting antixenosis as resistance category. Genotypes 22V and PE had hard leaves, which also points at antixenosis. Genotypes 20T and HS had higher total wax and wax mg−1. Feeding parameters on ARI and 24X were similar to those observed on HS; antibiosis is likely to be the predominant resistance category of this germplasm. Because HS was considered as a susceptible standard genotype in this study, a higher gluconapin amount indicates that this compound does not influence cabbage aphid feeding behavior. The present study confirms that analysis of the physical and chemical aspects of collard greens genotypes by the EPG technique can provide a useful approach for the study of plant resistance to cabbage aphids.  相似文献   

14.
The simple gaseous compound ethylene (ET) has long been recognized as a common component of plant responses to insect feeding and pathogen attack. However, it is presently uncertain whether it plays a role in host–plant resistance to piercing–sucking insects such as aphids. In these experiments, we investigated the expression of key ET‐associated genes in resistant and susceptible interactions in two model systems: the tomato‐MiMacrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae: Macrosiphini) system and the melon‐virus aphid transmission gene (Vat)‐Aphis gossypii Glover (Hemiptera: Aphididiae: Aphidini) system. We examined expression patterns of genes associated with ET synthesis, perception, signal transduction, and downstream response. When compared with control plants, plants infested with aphids showed marked differences in gene expression. In particular, ET signaling pathway genes and downstream response genes were highly upregulated in the resistant interaction between A. gossypii and Vat+, indicating ET may play a role in Vat‐mediated host–plant resistance. A key integrator between the ET and jasmonic acid pathways (Cm‐ERF1) showed the strongest response.  相似文献   

15.
Analysis of electrically recorded feeding behaviour of aphids was combined with colony‐development tests to search for sources of resistance to Myzus persicae (Sulzer) (Homoptera: Aphididae) in tuber‐bearing Solanum species (Solanaceae), aiming at a reduction of potato leaf roll virus (PLRV) transmission. Twenty genotypes, originating from 14 gene bank accessions, representing 13 wild tuber‐bearing Solanum spp., three Solanum tuberosum L. (potato) cultivars, and one S. tuberosum breeding line, were selected. Colony‐development tests were carried out in no‐choice experiments by placing adult aphids on plants of each genotype and counting numbers of nymphs and adults on young plants after 8 and 15 days, and on flowering plants after 14 and 30 days. Large differences were observed among genotypes: some developed small colonies and others developed large ones. Also, in a few genotypes, resistance in mature plants was different for leaves of different ages; young leaves were resistant to aphids whereas old senescent leaves were susceptible. The electrical penetration graph (DC‐EPG system) technique was used to study aphid feeding behaviour on each Solanum genotype for 6 h. Electrical penetration graph (EPG) results also showed large differences among the genotypes, indicating resistance at the leaf surface and at three different levels of plant tissue (epidermis, mesophyll, and phloem). Therefore, it was concluded that different mechanisms of resistance to M. persicae exist among the genotypes analysed. EPGs recorded from aphids on Solanum berthaultii Hawkes and Solanum tarijense Hawkes with and without glandular trichomes showed that strong surface resistance can bias EPG parameters associated with resistance located in deeper tissues. Experimental evidence is presented that the resistance to aphids in the genotypes with glandular trichomes strongly depends on these morphological structures.  相似文献   

16.
The psyllid Bactericera trigonica Hodkinson (Hemiptera: Triozidae) is a carrot and celery pest recently described as a vector of the plant pathogenic bacterium Candidatus Liberibacter solanacearum (Lso) on Apiaceae. Detailed information on vector stylet penetration activities is essential in the study of Lso transmission. In this study we used the electrical penetration graph (EPG) technique, characterized waveforms produced during the various stylet penetration activities in carrot leaves, and correlated them with stylet tracks and salivary sheath termini on plant tissues as well as with Lso inoculation. In addition, the effect of Lso in B. trigonica on the stylet penetration activities was tested. The EPG waveforms identified were: waveforms C1 and C2 detected in the mesophyll, waveforms D, E1, and E2 near or in the phloem sieve elements, and waveform G in the xylem vessels. A waveform pattern not previously reported for psyllids was the ‘pseudo‐potential drop’ (pseudo‐pd), characterized by sudden voltage dips similar to potential drops. However, the lowered voltage appeared to be inverted when the plant voltage is negative, indicating that it is caused by an increased resistance period and not due to a cell puncture. A direct correlation is shown between the waveform E1 and salivation into phloem sieve elements by B. trigonica as the inoculation of Lso occurred in a period as short as 30 s of E1; Lso transmission occurred in 17 of 35 plants (48%). Stylet activities during waveforms C or D had no consequences on the inoculation of Lso. In conclusion, Lso infection directly affects the probing behaviour of B. trigonica by increasing the total duration of C and D waveforms, but not variables related to phloem salivation (Lso inoculation) or ingestion (Lso acquisition). The reported information here is fundamental for identifying the psyllid vector traits of behaviour associated with transmission of Lso to Apiaceae.  相似文献   

17.
Aphids that colonize and reproduce on potato are some of the most efficient vectors of Potato virus Y (PVY) (Potyviridae: Potyvirus), and hence these aphids have been the focus of the majority of studies to date. However, other non‐colonizing aphids can also function as vectors. Mineral oil is the only product available to growers that effectively prevents the spread of PVY in potato seed production. Most previous studies focused on the effect of mineral oil on the behavior of aphids on their preferential host plant, and consequently there is a lack of information for non‐colonizing aphids on potato plants. The objective of this study was to determine the effect of spraying potatoes with one of two mineral oils, Superior 70 or Vazyl‐Y, on host selection and probing behavior of the non‐colonizing aphid Rhopalosiphum padi (L.) (Hemiptera: Aphididae). The electrical penetration graph (EPG) technique, combined with ethological observations, determined that there was no difference in R. padi behavior on potato plants treated with Superior 70. However, there were few significant changes in R. padi behavior on plants sprayed with Vazyl‐Y, including a delay in the initiation of stylet penetration and an increase in the duration of xylem sap ingestion. These new data support previous results and confirm that the mode of action of mineral oil in the reduction of the spread of PVY is not solely due to the modification of the behavior of aphids.  相似文献   

18.
The Mi‐1.2 gene in tomato, Solanum lycopersicum L. (Solanaceae), confers resistance against several herbivores, including the potato aphid, Macrosiphum euphorbiae (Thomas) (Hemiptera: Sternorrhyncha: Aphididae) and the sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae). Previous studies on the tissue localization of resistance have given varying results; whitefly resistance was attributed to factors localized in the mesophyll or epidermis, whereas aphid resistance was attributed to factors localized in the phloem. Our study utilizes the direct current electrical penetration graph (DC‐EPG) technique to compare aphid feeding behavior on resistant (Mi‐1.2+) and susceptible (Mi‐1.2?) tomato plants. This study also compares the impact of resistance on the feeding behavior of two aphid clones that vary in their virulence, or their ability to survive and reproduce on resistant plants. Previous work had shown that the avirulent WU11 clone is almost completely inhibited by resistance, whereas the semi‐virulent WU12 clone can colonize resistant hosts. Here, DC‐EPG analysis shows that both aphid clones take longer to initiate cell sampling and to establish a confirmed sieve element phase on resistant plants than on susceptible hosts, and have shorter ingestion periods on resistant plants. However, the magnitude of these deterrent effects is far less for the semi‐virulent clone than for the avirulent aphids. In particular, the WU12 clone is less sensitive to factors that limit sieve element ingestion, showing shorter non‐probe duration and rapidly establishing sustained phloem ingestion on resistant plants when compared to the WU11 clone. We conclude that, in addition to previously described factors in the phloem that inhibit ingestion, Mi‐mediated aphid resistance also involves factors (possibly in the mesophyll and/or epidermis) that delay initiation of phloem salivation, and that act in the intercellular spaces to deter the first cell sampling. Furthermore, the relative effectiveness of these components of resistance differs among insect populations.  相似文献   

19.
The olfactory response of the parasitoid Aphidius colemani (Viereck) (Hymenoptera: Braconidae) to odours in a tritrophic system involving three cultivars of common cabbage, Brassica oleracea var capitata, characterized by different levels of susceptibility to Myzus persicae (Sulzer) (Hemiptera: Aphididae) was studied in a four‐way olfactometer. Odours influenced A. colemani response in the olfactometer to varying degrees. The magnitude of parasitoid response to odours of uninfested cabbage depended on cultivar, with Derby Day [green‐leaved, susceptible to M. persicae and the crucifer specialist, Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae)] and Minicole (green‐leaved, partially resistant with known antibiosis factors for B. brassicae) preferred over Ruby Ball (red‐leaved with antixenosis factors for M. persicae and B. brassicae). The odour of the cabbage cultivar on which the parasitoid had been reared was preferred over the other cultivars. However, when provided with a choice between odours of infested plants, parasitoids did not show a significant preference for the cultivar on which they were reared. Results from the study show that parasitioids differentiated between odour of the three cultivars in dependence of their rearing history when the plant is uninfested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号