首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
The nematode C. elegans is a classic study object of developmental biology and genetics, which is particularly suitable for studying the molecular bases of meiosis. Developing meiocytes are located in the threadlike gonads of C. elegans in linear gradient order of the stages of meiosis, which facilitates studying the order of intracellular events during meiosis. C. elegans has polycentric chromosomes. This causes a special order of events during meiosis, and as a consequence, meiosis in C. elegance differs from canonical meiosis of most eukaryotes. In the meiotic prophase I, all chromosomes carry single protein “pairing centers.” They are responsible for joining homologous chromosomes in pairs. This initiates the formation of synaptonemal complexes (SCs). Programmed double-stranded DNA breaks appear after initiation of the SC assembly, and they give rise to meiotic recombination. The initiation of meiotic recombination after the chromosome pairing distinguishes the C. elegans meiotic pattern from those in the absolute majority of eukaryotes studied. C. elegans has strict crossing over interference, which allows for the formation of one chiasma per bivalent. In the late prophase I, the polycentric centromeres are remodeled, one of the chromosome ends acquires a cuplike kinetochore, and during two meiotic divisions, chromosomes behave as monocentric. The study of meiosis in C. elegans allows for separate investigation of synapsis and recombination of homologous chromosomes and provides material for studying the evolution of meiosis.  相似文献   

2.
We screened for mutations that resulted in lethality when the G1 cyclin Cln2p was overexpressed throughout the cell cycle in Saccharomyces cerevisiae. Mutations in five complementation groups were found to give this phenotype, and three of the mutated genes were identified as MEC1, NUP170, and CDC14. Mutations in CDC14 may have been recovered in the screen because Cdc14p may reduce the cyclin B (Clb)-associated Cdc28 kinase activity in late mitosis, and Cln2p may normally activate Clb-Cdc28 kinase activity by related mechanisms. In agreement with the idea that cdc14 mutations elevate Clb-Cdc28 kinase activity, deletion of the gene for the Clb-Cdc28 inhibitor Sic1 caused synthetic lethality with cdc14-1, as did the deletion of HCT1, which is required for proteolysis of Clb2p. Surprisingly, deletion of the gene for the major B-type cyclin, CLB2, also caused synthetic lethality with the cdc14-1 mutation. The clb2 cdc14 strains arrested with replicated but unseparated DNA and unseparated spindle pole bodies; this phenotype is distinct from the late mitotic arrest of the sic1::TRP1 cdc14-1 and the cdc14-1 hct1::LEU2 double mutants and of the cdc14 CLN2 overexpressor. We found genetic interactions between CDC14 and the replication initiator gene CDC6, extending previous observations of interactions between the late mitotic function of Cdc14p and control of DNA replication. We also describe genetic interactions between CDC28 and CDC14.  相似文献   

3.
Genetic collection of meiotic mutants of winter rye Secale cereale L. (2n = 14) was created. Mutations were detected in inbred F2 generations after self-fertilization of the F1 hybrids, obtained by individual crossing of rye plants (cultivar Vyatka) or weedy rye with plants from autofertile lines. The mutations cause partial or complete plant sterility and are maintained in collection in a heterozygous state. Genetic analysis accompanied by cytogenetic study of meiosis has revealed six mutation types. (1) Nonallelic asynaptic mutations sy1 and sy9 caused the formation of only axial chromosome elements in prophase and anaphase. The synaptonemal complexes (SCs) were absent, the formation of the chromosome “bouquet” was impaired, and all chromosomes were univalent in meiotic metaphase I in 96.8% (sy1) and 67% (sy2) of cells. (2) Weak asynaptic mutation sy3, which hindered complete termination of synapsis in prophase I. Subterminal asynaptic segments were always observed in the SC, and at least one pair of univalents was present in metaphase I, but the number of cells with 14 univalents did not exceed 2%. (3) Mutations sy2, sy6, sy7, sy8, sy10, and sy19, which caused partially nonhomologous synapsis: change in pairing partners and fold-back chromosome synapsis in prophase I. In metaphase I, the number of univalents varied and multivalents were observed. (4) Mutation mei6, which causes the formation of ultrastructural protrusions on the lateral SC elements, gaps and branching of these elements. (5) Allelic mutations mei8 and mei8-10, which caused irregular chromatin condensation along chromosomes in prophase I, sticking and fragmentation of chromosomes in metaphase I. (6) Allelic mutations mei5 and mei10, which caused chromosome hypercondensation, defects of the division spindle formation, and random arrest of cells at different meiotic stages. However, these mutations did not affect the formation of microspore envelopes even around the cells, whose development was blocked at prophase I. Analysis of cytological pictures of meiosis in double rye mutants reveled epistatic interaction in the mutation series sy9 > sy1 > sy3 > sy19, which reflects the order of switching these genes in the course of meiosis. The expression of genes sy2 and sy19 was shown to be controlled by modifier genes. Most meiotic mutations found in rye have analogs in other plant species.  相似文献   

4.
COLICINOGENIC factor E1 (Col E1) is a small bacterial plasmid (4.2×106 daltons) present in colicinogenic strains of Escherichia coli1 to the extent of about twenty-four copies per cell (Clewell and Helinski, unpublished results), which continues to replicate in the presence of high levels of chloramphenicol, a specific inhibitor of protein synthesis, although the chromosome only completes current rounds of replication and ceases (Clewell and Helinski, unpublished results). The average rate of Col E1 semiconservative replication in the absence of protein synthesis is, in certain conditions, faster than (as much as eight times) the normal rate of synthesis (Clewell, unpublished results). Replication continues for 10–15 h after the addition of chloramphenicol, resulting in nearly 3,000 copies of Col E1 DNA per cell. We are taking advantage of this system to study the effects of a number of antibiotics on DNA replication and now report evidence that rifampicin (an active semisynthetic derivative of rifamycin B)2, an antibiotic known specifically to inhibit bacterial DNA dependent RNA polymerase3–6, has a dramatic inhibitory effect on Col E1 DNA replication.  相似文献   

5.
6.
HOMOEOLOGOUS chromosomes of the three genomes of bread wheat (Triticum aestivum 2n=6x=42) are normally prevented from pairing at meiosis by the activity of an allele at the Ph locus on chromosome 5BL (refs. 1–4). This activity is responsible for the regular bivalent-forming meiotic behaviour and for the stable disomic inheritance of T. aestivum. If allelic variation occurs at the PA locus in nature it is extremely rare, although mutation has been induced and mutant alleles isolated3,4.  相似文献   

7.
DNA Synthesis during Maturation of Starfish Oocytes   总被引:1,自引:0,他引:1  
IN Xenopus, nuclear DNA is replicated at an early stage of meiosis and there is no measurable DNA synthesis during the long diplotene stage characterized by the presence of the lampbrush chromosomes1–3; this is probably a general phenomenon in animals. But in the case of pollen formation in plants, autoradiographic data suggest that, in addition to normal replication during S phase, some chromosomal DNA is synthesized throughout meiosis4. Limited DNA synthesis also follows replication during the S phase in Lilium anthers5.  相似文献   

8.
ACCORDING to the hypothesis of Crew and Koller1 and Koller and Darlington2, there are homologous segments in the X and Y chromosomes of the mouse and other mammals. The homologous regions in the mouse were believed to be localized in the extremely short arms proximal to the kinetochores. The end-to-end association at meiosis was thought to be the result of the formation of a chiasma between these homologous regions3. Electron microscopy revealed a short synaptonemal complex in mouse meiotic cells4. However, partial sex linkage has never been demonstrated in the mouse5 and other authors6–10 believe that the X and Y chromosomes associate only by connexion between the chromosome ends furthest from the centromeres.  相似文献   

9.
Cytological analysis of different meiosis stages was performed in F4 hybrids in comparison with the F1 hybrids obtained through crosses between the hexaploid triticale and genome-substitution forms of Aurolata (AABBUU) and Aurosis (AABBSshSsh) wheat, in which D genome of common wheat Aurora was substituted for the genomes of Aegilops umbellulata and Ae. sharonensis, respectively. It was demonstrated that in F4 the level of bivalent conjugation was substantially higher than the expected one. However, the value of meiotic index in F4 hybrids was still small, pointing to incomplete process of the meiosis stabilization, specifically, of the stages following the metaphase I. Based on the data of morphological and biochemical analyses of the hybrids produced, the forms of triticale carrying some properties of the genus Aegilops, which were of interest for genetic and breeding studies, were isolated.  相似文献   

10.
THE semi-conservative replication of DNA of Gram-positive bacteria is specifically inhibited by 6-(p-hydroxyphenyIazo)-uracil (HPUra; obtained from ICI) in an apparently novel mechanism1–4. We have attempted to characterize the HPUra-sensitive site in replication using in vitro preparations of drug-sensitive bacteria. In particulate and soluble preparations of sensitive bacteria, however, HPUra at high concentration does not significantly inhibit polymerization of deoxyribonucleotides2,4. Since these systems may not accurately represent the process of DNA replication as it occurs in vivo, we have examined the effect of HPUra on a more suitable, toluene-treated preparation of Bacillus subtilis described by Matsushita et al.5. In this preparation, DNA replication is ATP-dependent, utilizes deoxyribonucleotides to give biologically active DNA, semi-conservatively and sequentially in the proper gene order. HPUra can inhibit DNA replication by this system. We describe here the characteristics of HPUra inhibition and the conditions necessary for it to occur.  相似文献   

11.
12.
Earlier, using bioinformatic methods, we reported the identification of repeated DNA sequences (RSs), presumably responsible for the attachment of chromatin loops to the lateral elements of synaptonemal complex in meiotic chromosomes. In the present study, consensus sequences for this class of RS were identified. It was demonstrated that at least part of these sequences belonged to the AluJb subfamily of Alu sequences. The Alu copies distribution along the major human histocompatibility complex (MHC) and their spatial separation from the sites of meiotic recombination was examined. It was demonstrated that simple sequences, like (GT/CA) n , were flanking meiotic recombination sites. A model of the RS organization in meiotic chromosome, most efficiently linking experimental data on the meiotic recombination in MHC and the in silico data on the RS localization (the coefficient of multiple correlation, r = 0.92) is suggested.  相似文献   

13.
Defective DNA Synthesis in Permeabilized Yeast Mutants   总被引:12,自引:0,他引:12  
THE simple eukaryote, Saccharomyces cerevisiae, is suitable for combined genetic and biochemical analysis of the cell division cycle. More than forty temperature-sensitive mutants of S. cerevisiae defective in fifteen genes that control various steps of the yeast cell cycle have been detected by screening a collection of mutants with time-lapse photomicroscopy1. Mutations in two genes, cdc4 and cdc8, result in defective DNA synthesis at the restrictive temperature2. The product of cdc8 is apparently required throughout the period of DNA synthesis, because if a strain defective in this gene is shifted to 36° C within the S period, DNA replication ceases. In contrast, the product of cdc4 is apparently required only at the initiation of DNA synthesis because when a strain carrying a defect in this gene is shifted to 36° C, DNA replication already in progress is not impaired. Cells defective in cdc4, however, fail to initiate new rounds of DNA synthesis at the restrictive temperature. Based on these observations the DNA mutants have been tentatively classified as defective in DNA replication (cdc8) and in the initiation of DNA synthesis (cdc4).  相似文献   

14.

Key message

The presence of homologous subgenomes inhibited unreduced gamete formation in wheat × Aegilops interspecific hybrids. Unreduced gamete rates were under the control of the wheat nuclear genome.

Abstract

Production of unreduced gametes is common among interspecific hybrids, and may be affected by parental genotypes and genomic similarity. In the present study, five cultivars of Triticum aestivum and two tetraploid Aegilops species (i.e. Ae. triuncialis and Ae. cylindrica) were reciprocally crossed to produce 20 interspecific hybrid combinations. These hybrids comprised two different types: T. aestivum × Aegilops triuncialis; 2n = ABDUtCt (which lack a common subgenome) and T. aestivum × Ae. cylindrica; 2n = ABDDcCc (which share a common subgenome). The frequency of unreduced gametes in F1 hybrids was estimated in sporads from the frequency of dyads, and the frequency of viable pollen, germinated pollen and seed set were recorded. Different meiotic abnormalities recorded in the hybrids included precocious chromosome migration to the poles at metaphase I and II, laggards in anaphase I and II, micronuclei and chromosome stickiness, failure in cell wall formation, premature cytokinesis and microspore fusion. The mean frequency of restitution meiosis was 10.1 %, and the mean frequency of unreduced viable pollen was 4.84 % in T. aestivum × Ae. triuncialis hybrids. By contrast, in T. aestivum × Ae. cylindrica hybrids no meiotic restitution was observed, and a low rate of viable gametes (0.3 %) was recorded. This study present evidence that high levels of homologous pairing between the D and Dc subgenomes may interfere with meiotic restitution and the formation of unreduced gametes. Variation in unreduced gamete production was also observed between T. aestivum × Ae. triuncialis hybrid plants, suggesting genetic control of this trait.
  相似文献   

15.
16.
BIOCHEMICAL studies of chromosome replication have been hampered by the unavailability of an adequate in vitro system with the basic features of in vivo DNA replication. The criteria for such a system are: (1) semiconservative replication; (2) normal biological activity of newly synthesized DNA; (3) normal advancement of the original replication fork; (4) rate of DNA replication equivalent to in vivo; and (5) expected phenotypic behaviour of temperature-sensitive dna mutants. Systems in Escherichia coli, a membrane-DNA fraction1, an agar-embedded cell lysate2 and toluene-treated cells3 have met two or three of the requirements. Several laboratories have also reported the expected behaviour of ts-dna E. coli mutants in toluenized cells3–5.  相似文献   

17.
Recombination, synapsis, chromosome segregation and gene expression are co-ordinately regulated during meiosis to ensure successful execution of this specialised cell division. Studies with multiple mutant mouse lines have shown that mouse spermatocytes possess quality control checkpoints that eliminate cells with persistent defects in chromosome synapsis. In addition, studies on Trip13mod/mod mice suggest that pachytene spermatocytes that successfully complete chromosome synapsis can undergo meiotic arrest in response to defects in recombination. Here, we present additional support for a meiotic recombination-dependent checkpoint using a different mutant mouse line, Tex19.1?/?. The appearance of early recombination foci is delayed in Tex19.1?/? spermatocytes during leptotene/zygotene, but some Tex19.1?/? spermatocytes still successfully synapse their chromosomes and we show that these spermatocytes are enriched for early recombination foci. Furthermore, we show that patterns of axis elongation, chromatin modifications and histone H1t expression are also all co-ordinately skewed towards earlier substages of pachytene in these autosomally synapsed Tex19.1?/? spermatocytes. We also show that this skew towards earlier pachytene substages occurs in the absence of elevated spermatocyte death in the population, that spermatocytes with features of early pachytene are present in late stage Tex19.1?/? testis tubules and that the delay in histone H1t expression in response to loss of Tex19.1 does not occur in a Spo11 mutant background. Taken together, these data suggest that a recombination-dependent checkpoint may be able to modulate pachytene progression in mouse spermatocytes to accommodate some types of recombination defect.  相似文献   

18.
A Gram-stain negative, aerobic, motile, non-spore-forming and rod-shaped bacterial strain, designated YIM 730227T, was isolated from a soil sample, collected from Karak district, Khyber-Pakhtun-Khwa, Pakistan. The bacterium was characterized using a polyphasic taxonomic approach. Pairwise comparison of the 16S rRNA gene sequences showed that strain YIM 730227T is closely related to Phenylobacterium lituiforme FaiI3T (97.5% sequence similarity), Phenylobacterium muchangponense A8T (97.4%), Phenylobacterium panacis DCY109T (97.1%), Phenylobacterium immobile ET (97.1%) and Phenylobacterium composti 4T-6T (97.0%), while also sharing 98.0% sequence similarity with Phenylobacterium hankyongense HKS-05T after NCBI blast, showing it represents a member of the family Caulobacteraceae. The major respiratory quinone was Q-10 and the major fatty acids were C16:0, summed feature 8 (comprising C18:1ω7c and/or C18:1ω6c), C18:1ω7c 11-methyl and C17:0. The polar lipids were phosphatidylglycerol, unidentified glycolipids, phospholipid and unidentified lipid. The G?+?C content of the genomic DNA was 68.2 mol%. The DNA–DNA relatedness values of strain YIM 730227T with P. hankyongense HKS-05T, P. lituiforme FaiI3T, P. muchangponense A8T, P. panacis DCY109T, P. immobile ET and P. composti 4T-6T were 31.3?±?0.6, 26.1?±?0.2, 24.3?±?0.1, 21.8?±?0.9, 19.8?±?0.6 and 18.2?±?1.1%, respectively, values lower than 70%. Besides the morphological and chemotaxonomic characteristics, phylogenetic analyses of 16S rRNA gene sequences and the biochemical characteristics indicated that the strain YIM 730227T represents a novel member of the genus Phenylobacterium, for which the name Phenylobacterium terrae sp. nov. (type strain YIM 730227T =?KCTC62324T?=?CGMCC 1.16326T) is proposed.  相似文献   

19.
Meiotic Protein in Spermatocytes of Mammals   总被引:8,自引:0,他引:8  
THE DNA-binding protein in meiotic cells of Lilium1 has a very high binding affinity for single stranded DNA and also the unusual property of catalysing the renaturation of thermally denatured lily DNA at room temperature. Significantly, these and other in vitro properties are very similar to those of the “gene 32-protein” which is essential to genetic recombination in T4 bacteriophage2 and the possibility that this protein may have a function in meiotic recombination of Lilium led us to a more extensive study of its behaviour3.  相似文献   

20.
Success of interspecific hybridization relies mostly on the adequate similarity between the implicated genomes to ensure synapsis, pairing and recombination between appropriate chromosomes during meiosis in allopolyploid species. Allotetraploid Brassica napus (AACC) is a model of natural hybridization between Brassica rapa (AA) and Brassica oleracea (CC), which are originally derived from a common ancestor, but genomic constitution of the same chromosomes probably varied among these species through time after establishment, giving rise to cytogenetic difference in the synthetic hybrids. Herein we investigated meiotic behaviors of A and C chromosomes of synthetic allotriploid Brassica hybrids (ACC) at molecular and cytological levels, which result from the interspecific cross between natural B. napus (AACC) and B.oleracea (CC), and the results showed that meiosis course was significantly aberrant in allotriploid Brassica hybrids, and chromosomes aligned chaotically at metaphase I, chromosome bridges and lags were frequently observed from later metaphase I to anaphase II during meiosis. Simultaneously, we also noticed that meiosis-related genes were abruptly down-regulated in allotriploid Brassica hybrids, which likely accounted for irregular scenario of meiosis observed in these synthetic hybrids. Therefore, these results indicated that inter-genomic exchanges of A and C chromosomes could occur frequently in synthetic Brassica hybrids, and provided an efficient approach for genetic changes of homeologous chromosomes during meiosis in polyploid B.napus breeding program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号