首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
A rabbit antiserum was prepared against the C-terminal peptide of 21 amino acids from the human heat shock protein hsp70. These antibodies were shown to be specific for this highly inducible heat shock protein (72 kilodaltons [kDa] in rat cells), and for a moderately inducible, constitutively expressed heat shock protein, hsc70 (74 kDa). In six independently derived rat cell lines transformed by a murine cDNA-genomic hybrid clone of p53 plus an activated Ha-ras gene, elevated levels of p53 were detected by immunoprecipitation by using murine-specific anti-p53 monoclonal antibodies. In all cases, the hsc70, but not the hsp70, protein was coimmunoprecipitated with the murine p53 protein. Similarly, antiserum to heat shock protein coimmunoprecipitated p53. Western blot (immunoblot) analysis demonstrated that the hsc70 and p53 proteins did not share detectable antigenic epitopes. The results provide clear immunological evidence for the specific association of a single heat shock protein, hsc70, with p53 in p53-plus-ras-transformed cell lines. A p53 cDNA clone, p11-4, failed to produce clonable cell lines from foci of primary rat cells transfected with p11-4 plus Ha-ras. A mutant p53 cDNA clone derived from p11-4, SVKH215, yielded a 2- to 35-fold increase in the number of foci produced after transfection of rat cells with SVKH215 plus Ha-ras. When cloned, 87.5% of these foci produced transformed cell lines. SVKH215 encodes a mutant p53 protein that binds preferentially to the heat shock proteins of 70 kDa compared with binding by the parental p11-4 p53 gene product. These data suggest that the p53-hsc70 protein complex could have functional significance in these transformed cells.  相似文献   

2.
The 11-4 p53 cDNA clone failed to transform primary rat fibroblasts when cotransfected with the ras oncogene. Two linker insertion mutations at amino acid 158 or 215 (of 390 amino acids) activated this p53 cDNA for transformation with ras. These mutant cDNAs produced a p53 protein that lacked an epitope, recognized by monoclonal antibody PAb246 (localized at amino acids 88 to 110 in the protein) and preferentially bound to a heat shock protein, hsc70. In rat cells transformed by a genomic p53 clone plus ras, two populations of p53 proteins were detected, PAb246+ and PAb246-, which did or did not bind to this monoclonal antibody, respectively. The PAb246- p53 preferentially associated with hsc70, and this protein had a half-life 4- to 20-fold longer than free p53 (PAb246+). These data suggest a possible functional role for hsc70 in the transformation process. cDNAs for p53 derived from methylcholanthrene-transformed cells transform rat cells in cooperation with the ras oncogene and produce a protein that bound with the heat shock proteins. Recombinant clones produced between a Meth A cDNA and 11-4 were tested for the ability to transform rat cells. A single amino acid substitution at residue 132 was sufficient to activate the 11-4 p53 cDNA for transformation. These studies have identified a region between amino acids 132 and 215 in the p53 protein which, when mutated, can activate the p53 cDNA. These results also call into question what the correct p53 wild-type sequence is and whether a wild-type p53 gene can transform cells in culture.  相似文献   

3.
The majority of the p53 genes derived from human colorectal carcinomas contain point mutations. A significant number of these mutations occur in or around amino acids 143, 175, 273, or 281. Experiments presented here demonstrate for the first time that p53 DNA clones containing any one of these mutations cooperate with the activated ras oncogene to transform primary rat embryo cells in culture. These transformed cells produce elevated levels of the human p53 protein, which has extended half-lives (1.5-7 h), as compared to the wild-type human p53 protein (20-30 min). The p53 mutant with an alteration at residue 175 (p53-175H) binds tightly to the cellular heat shock protein, hsc70. In contrast, the p53 mutants possessing mutations at either residue 273 or 281 (p53-273H/281G) do not bind detectably to this heat shock protein and generally are less efficient at forming transformed foci in culture. The transformed cell lines are tumorigenic in nude mice. Thus, two classes of p53 mutant proteins can be distinguished: p53-175H, which cooperates with ras efficiently and binds to hsc70, and p53-273H/281G, which has a reduced efficiency of transformed foci formation and does not bind hsc70. This demonstrates that complex formation between mutant p53 and hsc70 is not required for p53-mediated transformation, but rather it facilitates this function, perhaps by ensuring sequestration of the endogenous wild-type p53 protein. The positive effect on cell proliferation by these mutant p53 proteins is consistent with a role for activated p53 mutants in the genesis of colorectal carcinomas.  相似文献   

4.
The transformation-related protein p53 is normally very labile. The stability of p53 is significantly increased in a number of fibrosarcoma cell lines derived from mouse tumors induced by treatment with physical or chemical agents. In many instances, p53 stabilization is correlated with the ability to form a stable complex with the heat shock protein cognate hsc70. We describe a line in which p53 is very stable yet has no detectable interaction with hsc70. The inability to form such a complex probably resides in the primary structure of the endogenous p53, since introduction of other p53 variants into those cells resulted in the appearance of a p53-hsc70 complex. The factors affecting p53 stability were investigated by stable transfection experiments. The results indicated that the primary structure of the p53 protein is a major determinant of its turnover rate; different p53 variants were degraded at distinct and characteristic rates in a number of transformed cell types. However, at least one p53 variant was degraded differently in nontransformed BALB/c-3T3 than in transformed fibrosarcoma cells, demonstrating that the specific cellular environment can also affect the stability of p53.  相似文献   

5.
Several structurally divergent proteins associate with molecular chaperones of the 70-kDa heat shock protein (hsp70) family and modulate their activities. We investigated the cofactors Hap46 and Hop/p60 and the effects of their binding to mammalian hsp70 and the cognate form hsc70. Hap46 associates with the amino-terminal ATP binding domain and stimulates ATP binding two- to threefold but inhibits binding of misfolded protein substrate to hsc70 and reactivation of thermally denatured luciferase in an hsc70-dependent refolding system. By contrast, Hop/p60 interacts with a portion of the carboxy-terminal domain of hsp70s, which is distinct from that involved in the binding of misfolded proteins. Thus, Hop/p60 and substrate proteins can form ternary complexes with hsc70. Hop/p60 exerts no effect on ATP and substrate binding but nevertheless interferes with protein refolding. Even though there is no direct interaction between these accessory proteins, Hap46 inhibits the binding of Hop/p60 to hsc70 but Hop/p60 does not inhibit the binding of Hap46 to hsc70. As judged from respective deletions, the amino-terminal portions of Hap46 and Hop/p60 are involved in this interference. These data suggest steric hindrance between Hap46 and Hop/p60 during interaction with distantly located binding sites on hsp70s. Thus, not only do the major domains of hsp70 chaperones communicate with each other, but cofactors interacting with these domains affect each other as well.  相似文献   

6.
It has been convincingly demonstrated that genotoxic stresses cause the accumulation of the tumor suppressor gene p53. One important consequence of increased p53 protein levels in response to DNA damage is the activation of a G1-phase cell cycle checkpoint. It has also been shown that G1-phase cell cycle checkpoints are activated in response to other stresses, such as lack of oxygen. Here we show that hypoxia and heat, agents that induce cellular stress primarily by inhibiting oxygen-dependent metabolism and denaturing proteins, respectively, also cause an increase in p53 protein levels. The p53 protein induced by heat is localized in the cytoplasm and forms a complex with the heat shock protein hsc70. The increase in nuclear p53 protein levels and DNA-binding activity and the induction of reporter gene constructs containing p53 binding sites following hypoxia occur in cells that are wild type for p53 but not in cells that possess mutant p53. However, unlike ionizing radiation, the accumulation of cells in G1 phase by hypoxia is not strictly dependent on wild-type p53 function. In addition, cells expressing the human papillomavirus E6 gene, which show increased degradation of p53 by ubiquitination and fail to accumulate p53 in response to DNA-damaging agents, do increase their p53 levels following heat and hypoxia. These results suggest that hypoxia is an example of a "nongenotoxic" stress which induces p53 activity by a different pathway than DNA-damaging agents.  相似文献   

7.
P Hainaut  J Milner 《The EMBO journal》1992,11(10):3513-3520
In intact cells, hsp70 proteins selectively complex with mutant p53. We report here that rabbit reticulocyte lysate contains hsp70 which selectively complexes with the mutant p53 translated in vitro. Hsp70 complexes with dimers and possibly monomers of p53 in a manner that requires the terminal 28 amino acids of p53. Using murine p53Val135, which is temperature-sensitive for phenotype, we demonstrate that p53-hsp70 complexes can occur after post-translational switching from wild-type to mutant p53 phenotype. Moreover, the temperature-induced switch of full-length p53Val135 from wild-type to mutant phenotype is ATP-independent, whereas the switch from mutant to wild-type form requires ATP hydrolysis and involves hsp70. These results imply that hsp70 is involved in the regulation of p53 conformation.  相似文献   

8.
9.
Uncoating of clathrin-coated vesicles is mediated by the heat shock cognate protein, hsc70, and requires clathrin light chains (LCa and LCb) and ATP hydrolysis. We demonstrate that purified light chains and synthetic peptides derived from their sequences bind hsc70 to stimulate ATP hydrolysis. LCa is more effective than LCb in stimulating hsc70 ATPase and in inhibiting clathrin uncoating by hsc70. These differences correlate with high sequence divergence in the proline- and glycine-rich region (residues 47-71) that forms the hsc70 binding site. For LCa, but not LCb, this region undergoes reversible conformational changes upon perturbation of the ionic strength or the calcium ion concentration. Our results show that LCa is more important for interactions with hsc70 than is LCb and suggest a model in which the LCa conformation regulates coated vesicle uncoating.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号