首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have previously demonstrated that neuropeptide Y (NPY) inhibits voltage sensitive Ca2+ channels in rat dorsal root ganglion neurons and that this effect is mediated by a pertussis toxin-sensitive, guanyl nucleotide-binding protein (G-protein). We now demonstrate that NPY can also stimulate the synthesis of inositol trisphosphate (InsP3) and diacylglycerol in dorsal root ganglion neurons. The effects of NPY were compared with those of bradykinin (BK) which also stimulates phosphoinositide turnover in these cells. NPY-stimulated InsP3 synthesis could be completely blocked by treatment with pertussis toxin and significantly enhanced by cholera toxin although not by other agents which raised cellular concentrations of cyclic AMP. In contrast, the effects of BK were completely unaltered by either toxin. Furthermore the maximal effects of BK and NPY were additive. In spite of the lack of toxin effects, stimulation of InsP3 synthesis produced by BK was clearly mediated by a G-protein. Thus BK stimulated InsP3 production in digitonin-permeabilized neurons, and these effects were enhanced by guanosine 5'-O-(3-thiotriphosphate) and blocked by guanosine 5'-O-(2-thiodiphosphate). The stimulatory effects of both NPY and BK were also blocked by treatment of neurons with phorbol esters. Fura-2-based microfluorimetry of single dorsal root ganglion neurons demonstrated that both BK and NPY increased cytoplasmic-free Ca2+ concentration and that both peptides could produce this effect in the same neuron. Both agents could still increase cytoplasmic-free Ca2+ concentration in Ca2+-free medium indicating that the source of the Ca2+ was an intracellular store. Thus, both NPY and BK can activate InsP3 synthesis in the same cell but seem to utilize different G-proteins. NPY utilizes a pertussis toxin-sensitive G-protein and BK a toxin-insensitive one.  相似文献   

2.
To investigate the roles of inositol 1,4,5-trisphosphate (InsP3) and guanyl nucleotide binding proteins (G-proteins) in the transduction mechanism coupling fertilization and exocytosis of cortical vesicles in sea urchin eggs, we microinjected InsP3 and guanyl nucleotide analogs into eggs of Lytechinus variegatus. Injection of 28 nM InsP3 caused exocytosis. However, if the egg was first injected with EGTA ([Cai] less than or equal to 0.1 microM; EGTA = 1.6 mM), InsP3 injection did not cause exocytosis, supporting the hypothesis that InsP3 acts by causing a rise in intracellular free calcium. Injection of 28 microM guanosine-5'-0-(3-thiotriphosphate) (GTP-gamma-S), a hydrolysis-resistant analog of GTP, caused exocytosis, but exocytosis did not occur if the egg was pre-injected with EGTA. Injection of 3 mM guanosine-5'-0-(2-thiodiphosphate) (GDP-beta-S), a metabolically stable analog of GDP, prevented sperm from stimulating exocytosis. However, injection of GDP-beta-S did not prevent the stimulation of exocytosis by InsP3. These results suggested the following sequence of events. The sperm activates a G-protein, which stimulates production of InsP3. InsP3 elevates intracellular free calcium, which causes exocytosis.  相似文献   

3.
It has been proposed that the inositol 1,4,5-trisphosphate receptor (InsP(3)R) type III acts as a trigger for InsP(3)-mediated calcium (Ca(2+)) signaling, because this InsP(3) isoform lacks feedback inhibition by cytosolic Ca(2+). We tested this hypothesis in RIN-m5F cells, which express predominantly the type III receptor. Extracellular ATP increases Ca(2+) in these cells, and we found that this effect is independent of extracellular Ca(2+) but is blocked by the InsP(3)R antagonist heparin. There was a dose-dependent increase in the number of cells responding to ATP and two-photon flash photolysis of caged-Ca(2+) heightened the sensitivity of RIN-m5F cells to this increase. These findings provide evidence that Ca(2+) increases the sensitivity of the InsP(3)R type III in intact cells and supports the idea that this isoform can act as a trigger for hormone-induced Ca(2+) signaling.  相似文献   

4.
These studies demonstrate a novel mechanism for the coupling of the muscarinic receptor to phospholipase C activity in embryonic chick atrial cells. In monolayer cultures of atrial cells from hearts of embryonic chicks at 14 days in ovo, carbamylcholine stimulated the sequential appearance of InsP3, InsP2 and InsP1 with an EC50 (concn. causing 50% of maximal stimulation) of 30 microM. In the presence of 15 mM-Li, a 5 min exposure to carbamylcholine (0.1 mM) increased InsP3 levels to a maximum of 47 +/- 12% over basal, InsP2 to 108 +/- 13% over basal and InsP1 to 42 +/- 5% over basal. This effect was blocked by 5 microM-atropine. Incubation of these cells with pertussis toxin (15 h; 0.5 ng/ml) inhibited carbamylcholine-stimulated InsP3, InsP2 and InsP1 formation by 42 +/- 7%, 30 +/- 3% and 48 +/- 7% respectively. The IC50 (concn. causing 50% inhibition) for pertussis toxin inhibition of all three inositol phosphates was 0.01 ng/ml, with a half-time of 6 h at 0.5 ng/ml. This partial sensitivity to pertussis toxin was not due to incomplete ADP-ribosylation of the guanine-nucleotide-binding protein (G-protein), since autoradiography of polyacrylamide gels of cell homogenates incubated with [32P]NAD+ in the presence of pertussis toxin demonstrated that incubation of cells with 0.5 ng of pertussis toxin/ml for 15 h resulted in complete ADP-ribosylation of pertussis toxin substrates by endogenous NAD+. In cells permeabilized with saponin (10 micrograms/ml), 0.1 mM-GTP[S] (guanosine 5'-[gamma-thio]triphosphate) stimulated InsP1 by 102 +/- 15% (mean +/- S.E.M., n = 4), InsP2 by 421 +/- 67% and InsP3 by 124 +/- 33% above basal. Incubation of cells for 15 h with 0.5 ng of pertussis toxin/ml decreased GTP[S]-stimulated InsP1 production in saponin-treated cells by 30 +/- 10% (n = 3), InsP2 production by 45 +/- 7% (n = 4) and InsP3 production by 49 +/- 6% (n = 4). These data demonstrate that in embryonic chick atrial cells at least two independent G-proteins, a pertussis toxin-sensitive G-protein and a pertussis toxin-insensitive G-protein, play a role in coupling muscarinic agonist binding to phospholipase C activation and to inositol phosphate production.  相似文献   

5.
The regulation of the cytosolic calcium concentration was investigated in freshly isolated adult bovine tracheal smooth muscle cells using fura 2. These cells contain 1.1 and 1.8 pmol of cGMP kinase and cAMP kinase per mg protein, respectively. Carbachol, histamine, serotonin, isoproterenol, and salbutamol increased the cytosolic calcium in a dose-dependent manner from 79 nM to about 650 nM. Preincubation of these cells for 20 min with isoproterenol, forskolin, 8-Br-cAMP and 8-(4-Cl-phenyl)thio-cAMP did not lower carbachol-induced increases in cytosolic calcium concentration, whereas the phorbol ester 12-O-tetradecanoylphorbol 13-acetate, the atrionatriuretic factor, isobutylmethylxanthine, and 8-Br-cGMP lowered cytosolic calcium. The active fragment of cGMP kinase, but not the catalytic subunit of cAMP kinase lowered carbachol-induced calcium levels. Carbachol released calcium from intracellular stores and increased calcium influx from the extracellular space. The influx was inhibited by preincubation with the calcium channel blockers nitrendipine or gallopamil. Both carbachol-stimulated pathways were suppressed by 8-Br-cGMP. Isoproterenol increased only the influx of calcium from the outside by a channel which was blocked by calcium channel blockers or 8-Br-cGMP. Forskolin and 8-Br-cAMP lowered carbachol- and isoproterenol-stimulated increases in calcium when added shortly before or after the addition of the agonist. In addition, isoproterenol decreased carbachol-stimulated calcium levels when added 10 s after carbachol. The calcium stimulatory effect of isoproterenol was abolished by preincubation of the cells with pertussis toxin or cholera toxin. These results show (a) that the beta 2-adrenoceptor couples in isolated tracheal smooth muscle cells to a dihydropyridine- and pertussis toxin-sensitive calcium channel; (b) that the same channel is opened by carbachol; (c) that cGMP kinase is very effective in decreasing elevated cytosolic calcium concentrations, whereas cAMP-dependent protein kinase has a variable effect on stimulated cytosolic calcium levels.  相似文献   

6.
Infection of cultured endothelial cells with Trypanosoma cruzi alters intracellular Ca2+ homeostasis. To help understand the biochemical basis for this phenomenon, we determined the influence of infection on inositol phosphate formation in a broken cell preparation. Inositol phosphates participate in the regulation of cytosolic Ca2+. In uninfected endothelial cells, bradykinin guanosine 5'-O-thiophosphate (GTP tau S), and calcium all stimulated inositol phosphate (IP1), inositol bisphosphate (IP2), and inositol trisphosphate (IP3) formation within 5 sec of incubation. At longer periods of incubation with GTP tau S and bradykinin, formation of IP1 was linear for 30 sec, whereas the rate of IP2 and IP3 generation was maximal at 20 and 5 sec, respectively. Second, infection markedly changed these aspects of inositol phosphate generation. First, unstimulated (basal) levels of IP1 and IP3 were markedly increased over those levels in membranes of uninfected cells. Infection decreased the rate of formation for the three inositol phosphates in response to GTP tau S and bradykinin. Finally, infection diminished the magnitude of inositol phosphate synthesis in response to Ca2+ for IP1, IP2, and IP3, respectively. Studies on G proteins using cholera and pertussis toxin were carried out to determine if the infection-associated changes in inositol phosphate generation could be attributed to functional changes in these regulatory proteins known to participate in the activation of phospholipase C. Infection markedly decreased the magnitude of cholera and pertussis toxin-dependent ADP ribosylation, as compared to control uninfected cells. Incubation of uninfected endothelial cells with cholera and pertussis toxin also decreased the magnitude of cholera and pertussis toxin ADP ribosylation. Despite the similar effects of infection and toxin treatment on subsequent toxin-catalyzed ADP ribosylation, toxin treatment did not influence inositol phosphate generation. Collectively, these results demonstrate an influence of infection on receptor-dependent and -independent synthesis of inositol phosphates, possibly by an action on phospholipase C. The results help to explain the apparent infection-associated increase in basal Ca2+ previously observed and suggest that interference with signal transduction may be a consequence of the presence of the parasite.  相似文献   

7.
The exotoxins of Bordetella pertussis and Vibrio cholera have been used to investigate signal transduction in the human T-cell lymphoma Jurkat. Stimulation of the cells, leading to an increase in cytoplasmic free calcium, could be achieved by the anti-T-cell receptor complex antibody OKT3 and by pertussis holotoxin (PTHT), or its B-subunit (PTB), but not by cholera holotoxin (CTHT) or its B-subunit (CTB). Both holotoxins ADP-ribosylated specifically G-proteins in the plasma membrane of intact cells, while their B-subunits had no ADP-ribosyltransferase activity. Incubation of the cells with CTHT led to a state of unresponsiveness to all stimulants. CTB was without any effect, indicating that the ADP-ribosyltransferase activity of cholera toxin (located in the A-subunit of the holotoxin) was necessary for the inhibition of cellular signalling. The inhibitory effect of cholera toxin on the pertussis toxin action was not due to a blockade of pertussis toxin interaction with the cell surface, because pertussis toxin was still able to ADP-ribosylate membrane proteins in cholera toxin treated intact cells. In addition, the cholera toxin mediated inhibition was not due to elevated levels of cyclic-AMP, as forskolin (a direct activator of the adenylate cyclase) and no inhibitory effect. The stimulating effect of PTHT was independent of its ADP-ribosyltransferase activity, because it could also be obtained by the B-subunit alone. In addition, the increase of cytoplasmic free calcium after stimulation by PTHT clearly preceded the ADP-ribosylation. Pre-treatment with PTHT, PTB or OKT3, led to a long lasting increase in the level of intracellular Ca2+ in Jurkat cells, which could not, therefore, be stimulated further. Inhibition by cholera holotoxin of the stimulation by OKT3 and pertussis toxin (PTHT and PTB) imply that the mitogenic effect of pertussis toxin is perhaps mediated via the T-cell antigen receptor signalling cascade. The presented data do not support the idea that a pertussis toxin-sensitive G-protein is involved in coupling the T-cell antigen receptor to the phospholipase C.  相似文献   

8.
1. Some of the actions of pertussis toxin on the rabbit luteal adenylyl cyclase system were analyzed. 2. Incubation of luteal membranes with pertussis toxin and [32P]NAD resulted in the [32P]ADP-ribosylation of a 40,000 Da protein that is distinct from the proteins ADP-ribosylated by cholera toxin. 3. Pertussis toxin specific [32P]ADP-ribosylation was time-dependent and dependent upon the concentration of pertussis toxin present during the incubation. 4. Pertussis toxin mediated [32P]ADP-ribosylation was enhanced by ATP, ADP, adenylyl imidodiphosphate, GTP, guanosine-5'-O-(2-thiodiphosphate), guanosine-5'-O-(3-thiotriphosphate), and NaF but not AMP or guanylyl imidodiphosphate [GMP-P(NH)P]. 5. Treatment of luteal membranes with NAD and pertussis toxin prevents GTP and enkephalin but not GMP-P(NH)P mediated inhibition of forskolin stimulated adenylyl cyclase, demonstrating the existence of a functional Gi in the rabbit corpus luteum.  相似文献   

9.
To determine whether a cloned receptor coupled to pertussis toxin (PTx)-sensitive G-proteins can induce cell proliferation and oncogenic transformation, as observed for receptors that elicit PTx-insensitive enhancement of phosphatidyl inositol (PI)-specific phospholipase-C (PLC) activity, nontransformed murine BALB/c-3T3 cells were transfected with the rat serotonin-1A (5-HT1A) receptor. The 5-HT1A receptor is coupled to PTx-sensitive G-proteins to induce a cell-specific activation of PLC. While 1 microM 5-HT induced no change in PI turnover or cytosolic free calcium levels ([Ca2+]i) in receptor-negative nontransfected 3T3 cells, 5-HT induced a 2-fold increase in inositol trisphosphate accumulation and a 2.5-fold increase in [Ca2+]i in the 3T3-ZD8 clone, which expressed 0.6 +/- 0.2 pmol/mg protein of specific 5-HT1A binding sites. The stimulatory actions of 5-HT on PI turnover and [Ca2+]i in 3T3ZD8 cells displayed the pharmacology of the 5-HT1A receptor and were abolished by pretreatment with PTx. Thus, BALB/c-3T3 fibroblast cells express the PLC-linked pathway of the 5-HT1A receptor. Overnight treatment with 5-HT (1 microM) enhanced incorporation of [3H]thymidine into DNA extracted from serum-starved 3T3ZD-8 cells, an action that was also blocked by pretreatment with pertussis toxin. Long term (1-2 weeks) exposure to 5-HT in the medium led to phenotypic transformation of the cells, including the formation of foci with 1 microM 5-HT. These actions of 5-HT were not observed in untransformed 3T3 cells. We conclude that the PTx-sensitive PLC-linked pathway of the 5-HT1A receptor expressed in nontransformed BALB/c-3T3 cells, in concert with other serum-derived factors, predisposes the cells to enhanced proliferation and transformation.  相似文献   

10.
Acetylcholine receptor appearance rate in the presence of the phenothiazines trifluoperazine and chlorpromazine was measured in cultured embryonic chick myotubes by means of 125I-alpha-bungarotoxin. At drug concentrations of 5 to 10 X 10(-6) M, receptor appearance rate was significantly enhanced while receptor half-life, cellular protein, net protein synthesis rate, and acetylcholinesterase levels were not similarly affected. The sulfoxide derivatives were without effect. At concentrations of 3 X 10(-5) M and above, both trifluoperazine and chlorpromazine caused myotube contracture and cell loss. Drug combination experiments revealed that receptor stimulation caused by phenothiazines is overcome by low concentrations of veratridine and ryanodine, but not by membrane depolarization with 20 mM KCl. These results lend support to the role of calcium as an intracellular messenger in acetylcholine receptor synthesis regulation, but are difficult to reconcile with the notion that cytosolic calmodulin serves as the calcium receptor in this signaling pathway. Since the trifluoperazine effect resembles that caused by the calcium antagonist D-600, phenothiazines may stimulate receptor synthesis by blocking a voltage-gated calcium channel.  相似文献   

11.
Inositol (1,4,5) trisphosphate (Ins(1,4,5)P(3)) is a well-known messenger molecule that releases calcium from intracellular stores. Homologues with up to six phosphates have been characterized and recently, homologues with seven or eight phosphate groups, including pyrophosphates, have been identified. These homologues are diphosphoinositol pentakisphosphate (PP-InsP(5)/InsP(7)) and bis(diphospho)inositol tetrakisphosphate (bis-PP-InsP(4)/InsP(8)) [1], the rapid turnover of which [2] is regulated by calcium [2] and adrenergic receptor activity [3]. It has been proposed that the high-energy pyrophosphates might participate in protein phosphorylation [4]. We have purified InsP(6) kinase [5] and PP-InsP(5) kinase [6], both of which display ATP synthase activity, transferring phosphate to ADP. Here, we report the cloning of two mammalian InsP(6) kinases and a yeast InsP(6) kinase. Furthermore, we show that the yeast protein, ArgRIII, is an inositol-polyphosphate kinase that can convert InsP(3) to InsP(4), InsP(5) and InsP(6). We have identified a new family of highly conserved inositol-polyphosphate kinases that contain a newly identified, unique consensus sequence.  相似文献   

12.
To investigate whether guanosine triphosphate-binding proteins (G proteins) are involved in T cell activation, tests were made of the effect of pertussis toxin, cholera toxin, guanosine 5'-(3-O-thio)-triphosphate, and fluoride ions on interleukin 2 (IL-2) synthesis in Jurkat cells. It was found: 1) that pertussis toxin interferes with the first pathway of T cell activation insofar as it can substitute for phytohemagglutinin or monoclonal antibodies directed against the CD3 surface proteins, suggesting that a G protein serves as transducer for signals via the T cell receptor-CD3 complex; and 2) that fluoride ions induce the release of diacylglycerol (DAG) from [3H] arachidonic acid or [3H]oleic acid-prelabeled cells. In [3H]inositol or 32P-prelabeled cells, the increase in DAG production was also found to be accompanied by a 280% increase of intracellular inositol phosphate (IP), without significant modification of IP2 and IP3. These results suggest that a G protein controls the activity of a phospholipase C in Jurkat cells that upon stimulation releases DAG but not IP3. Inasmuch as DAG, like the phorbol ester tetradecanoyl phorbol acetate, activates protein kinase C, it suggests that a G protein is also involved in the transduction of the second signal for lymphocyte activation. Fluoride ions were found to be as effective as tetradecanoyl phorbol acetate to stimulate IL-2 synthesis in Jurkat cells when used in combination with phytohemagglutinin. Finally, cholera toxin and guanosine 5'-(3-O-thio)-triphosphate were found to increase intracellular cyclic adenosine triphosphate and to inhibit IL-2 synthesis. All together these results suggest that several G proteins are involved in the transduction of the two signals necessary for T cell activation as well as in the negative regulation of IL-2 synthesis.  相似文献   

13.
A transient increase in intracellular free calcium is believed to be the signal responsible for the stimulation of the egg metabolism at fertilization and the resumption of the cell cycle. We have studied how the polyphosphoinositides (PPI) turn over at fertilization in sea urchin eggs, in order to determine the relationship between the metabolism of these lipids and the calcium signal. We compare the patterns of PPI turnover that occur during the first minute following fertilization in eggs in which PPI are labelled to steady state with [3H]inositol or [3H]arachidonate with that in which PPI are labelled for a shorter period with [3H]inositol. When eggs are labelled to apparent isotopic equilibrium with either [3H]inositol or [3H]arachidonate, no early increase in [3H]PtdInsP2 occurs while PtdIns decreases slightly. On the contrary, when not labelled to isotopic equilibrium, all [3H]PPI increase during the first 15 seconds following fertilization. We find that, within seconds, fertilization triggers a 600-fold increase in the turnover of PPI, producing an amount of InsP3 apparently sufficient to trigger calcium release. We suggest that phosphoinositidase C and PtdInsP kinase, responsible respectively for the hydrolysis and synthesis of PtdInsP2, are both stimulated to a comparable degree in the first 30 seconds following fertilization and that net changes in the amount of PtdInsP2 at fertilization are very sensitive to the relative levels of activation of the two enzymes. Activating the eggs with the calcium ionophore A23187 showed that both these enzymes are sensitive to calcium, suggesting that calcium-dependent InsP3 production might play a role in the initiation and/or the propagation of the fertilization calcium wave.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
P2-purinoceptor agonists stimulated the DNA synthesis of Jurkat cells via a pathway independent of cAMP and intracellular free calcium. The response was greatly enhanced by the synergistic action between adenine and guanine nucleotides, suggesting that binding sites of these nucleotides are different from each other, and the proliferation is stimulated by a novel interaction between adenine and guanine nucleotide receptors. The stimulatory effects of P2-agonists on proliferation was completely abolished by cholera toxin and attenuated by pertussis toxin, which suggests that substrates for cholera toxin and pertussis toxin are involved in the proliferative pathways associated with P2-purinoceptors.  相似文献   

15.
In pancreatic acinar cells prelabeled with either 32Pi or myo-[3H]inositol, arachidonic acid (10-50 microM) rapidly decreased the steady-state levels of [32P]phosphatidylinositol 4',5'-bisphosphate [( 32P]PtdIns4,5P2) and inhibited carbachol-stimulated accumulation of [3H]inositol trisphosphate [( 3H]InsP3). Both actions of arachidonic acid were rapidly reversed by bovine serum albumin (BSA). Indomethacin and nordihydoguaiaretic acid failed to block the inhibitory effects of arachidonic acid on [32P]PtdIns4,5P2 levels. Arachidonic acid (10-50 microM) also caused a prompt depletion of cellular ATP which was rapidly reversed by BSA. The ATP-depleting action of arachidonate paralleled in terms of concentration dependence and time course its inhibitory effects on [32P]PtdIns4,5P2 and [3H]InsP3 levels. Exposure of acinar cells to 50 microM arachidonic acid produced an increase in oxygen consumption which exceeded that elicited by either carbachol or ionomycin. Arachidonic acid (10-50 microM) also caused a concentration-dependent rise in cytosolic Ca2+, which was partially obtunded by Ca2+ deprivation. A proposed mechanism involving arachidonic acid as a negative feedback regulator of polyphosphoinositide turnover in exocrine pancreas is discussed.  相似文献   

16.
Mouse keratinocytes are induced to differentiate in vitro by elevating the level of extracellular calcium from 0.05 mM, where keratinocytes express a basal cell phenotype, to greater than 0.10 mM, where they express the differentiated phenotype. This process has been associated with a rapid, sustained increase in inositol phosphate (InsP) turnover, which precedes the expression of differentiation-specific proteins. In 0.05 mM Ca2+ medium, aluminum and fluoride salts (AIF4-), which combine to activate nonspecifically heterotrimeric guanine nucleotide-binding (G) proteins, cause a concentration-dependent increase in InsP metabolism in keratinocytes, and generate elevated intracellular diacylglycerol levels. This is associated with an inhibition of cell growth. Treatment with both AIF4- and Ca2+ greater than 0.10 mM resulted in an additive increase in InsP turnover, implying the presence of at least two responsive InsP pools. AIF4- inhibited the expression of differentiation markers induced by Ca2+ greater than 0.10 mM and altered the morphology of keratinocytes from squamous to dendritic, which was reversible upon withdrawal of AIF4-. Neoplastic keratinocytes, in which basal levels of InsP metabolism are higher than in normal cells, do not differentiate in response to Ca2+. Neoplastic keratinocytes responded to AIF-4 treatment with an even greater rise in InsP metabolism. AIF-4 also inhibited cell growth and reversibly altered morphology in neoplastic keratinocytes. These data suggest that InsP metabolism in keratinocytes is at least partially regulated by a G protein mechanism. Furthermore, an increase in InsP metabolism is not sufficient to stimulate differentiation and may be inhibitory to differentiation if exceeding limited increases. However, these observations cannot exclude the possibility that other AIF-4 stimulated pathways involving G or non-G proteins can also influence keratinocyte biology.  相似文献   

17.
In pancreatic acinar cells, inositol 1,4,5-trisphosphate (InsP(3))-dependent cytosolic calcium ([Ca(2+)](i)) increases resulting from agonist stimulation are initiated in an apical "trigger zone," where the vast majority of InsP(3) receptors (InsP(3)R) are localized. At threshold stimulation, [Ca(2+)](i) signals are confined to this region, whereas at concentrations of agonists that optimally evoke secretion, a global Ca(2+) wave results. Simple diffusion of Ca(2+) from the trigger zone is unlikely to account for a global [Ca(2+)](i) elevation. Furthermore, mitochondrial import has been reported to limit Ca(2+) diffusion from the trigger zone. As such, there is no consensus as to how local [Ca(2+)](i) signals become global responses. This study therefore investigated the mechanism responsible for these events. Agonist-evoked [Ca(2+)](i) oscillations were converted to sustained [Ca(2+)](i) increases after inhibition of mitochondrial Ca(2+) import. These [Ca(2+)](i) increases were dependent on Ca(2+) release from the endoplasmic reticulum and were blocked by 100 microM ryanodine. Similarly, "uncaging" of physiological [Ca(2+)](i) levels in whole-cell patch-clamped cells resulted in rapid activation of a Ca(2+)-activated current, the recovery of which was prolonged by inhibition of mitochondrial import. This effect was also abolished by ryanodine receptor (RyR) blockade. Photolysis of d-myo InsP(3) P(4(5))-1-(2-nitrophenyl)-ethyl ester (caged InsP(3)) produced either apically localized or global [Ca(2+)](i) increases in a dose-dependent manner, as visualized by digital imaging. Mitochondrial inhibition permitted apically localized increases to propagate throughout the cell as a wave, but this propagation was inhibited by ryanodine and was not seen for minimal control responses resembling [Ca(2+)](i) puffs. Global [Ca(2+)](i) rises initiated by InsP(3) were also reduced by ryanodine, limiting the increase to a region slightly larger than the trigger zone. These data suggest that, while Ca(2+) release is initially triggered through InsP(3)R, release by RyRs is the dominant mechanism for propagating global waves. In addition, mitochondrial Ca(2+) import controls the spread of Ca(2+) throughout acinar cells by modulating RyR activation.  相似文献   

18.
Cerebellar Purkinje neurons demonstrate a form of synaptic plasticity that, in acutely prepared brain slices, has been shown to require calcium release from the intracellular calcium stores through inositol trisphosphate (InsP(3)) receptors. Similar studies performed in cultured Purkinje cells, however, find little evidence for the involvement of InsP(3) receptors. To address this discrepancy, the properties of InsP(3)- and caffeine-evoked calcium release in cultured Purkinje cells were directly examined. Photorelease of InsP(3) (up to 100 microM) from its photolabile caged analogue produced no change in calcium levels in 70% of cultured Purkinje cells. In the few cells where a calcium increase was detected, the response was very small and slow to peak. In contrast, the same concentration of InsP(3) resulted in large and rapidly rising calcium responses in all acutely dissociated Purkinje cells tested. Similar to InsP(3), caffeine also had little effect on calcium levels in cultured Purkinje cells, yet evoked large calcium transients in all acutely dissociated Purkinje cells tested. The results demonstrate that calcium release from intracellular calcium stores is severely impaired in Purkinje cells when they are maintained in culture. Our findings suggest that cultured Purkinje cells are an unfaithful experimental model for the study of the role of calcium release in the induction of cerebellar long term depression.  相似文献   

19.
The action of carbamoylcholine (Cchol), NaF and other agonists on the generation of inositol phosphates (IPs) was studied in dog thyroid slices prelabelled with myo-[2-3H]inositol. The stimulation by Cchol (0.1 microM-0.1 mM) of IPs accumulation through activation of a muscarinic receptor [Graff, Mockel, Laurent, Erneux & Dumont (1987) FEBS Lett. 210, 204-210] was pertussis- and cholera-toxin insensitive. Ins(1,4,5)P3, Ins(1,3,4)P3 and InsP4 were generated. NaF (5-20 mM) also increased IPs generation (Graff et al., 1987); this effect was potentiated by AlCl3 (10 microM) and unaffected by pertussis toxin. Although phorbol dibutyrate (5 microM) abolished the cholinergic stimulation of IPs generation (Graff et al., 1987), it did not affect the fluoride-induced response. Cchol and NaF did not require extracellular Ca2+ to exert their effect, and neither KCl-induced membrane depolarization nor ionophore A23187 (10 microM) had any influence on basal IPs levels, or on cholinergic stimulation. However, more stringent Ca2+ depletion with EGTA (0.1 or 1 mM) decreased basal IPs levels as well as the amplitude of the stimulation by Cchol without abolishing it. Dibutyryl cyclic AMP, forskolin, cholera toxin and prostaglandin E1 had no effect on basal IPs levels and did not decrease the response to Cchol. Iodide (4 or 40 microM) also strongly decreased the cholinergic action on IPs, this inhibition being relieved by methimazole (1 mM). Our data suggest that Cchol activates a phospholipase C hydrolysing PtdIns(4,5)P2 in the dog thyroid cell in a cyclic AMP-independent manner. This activation requires no extracellular Ca2+ and depends on a GTP-binding protein insensitive to both cholera toxin and requires no extracellular Ca2+ and depends on a GTP-binding protein insensitive to both cholera toxin and pertussis toxin. The data are consistent with a rapid metabolism of Ins(1,4,5)P3 to Ins(1,3,4)P3 via the Ins(1,4,5)P3 3-kinase pathway, followed by dephosphorylation by a 5-phosphomonoesterase. Indeed, a Ca2+-sensitive InsP3 3-kinase activity was demonstrated in tissue homogenate. Stimulation of protein kinase C and an organified form of iodine inhibit the Cchol-induced IPs generation. The negative feedback of activated protein kinase C could be exerted at the level of the receptor or of the receptor-G-protein interaction.  相似文献   

20.
The relevance of phosphoinositide remodeling to calcium movements and to the physiological response of superoxide anion (O2-) generation was probed in neutrophils stimulated by the chemotactic peptide fMet-Leu-Phe and the lectin concanavalin A. fMet-Leu-Phe and concanavalin A triggered O2- generation but elicited different patterns of calcium mobilization and phosphoinositide remodeling. fMet-Leu-Phe (10(-7) M) triggered a rise in cytosolic calcium by mobilization of intracellular calcium (fura-2) and increased calcium permeability (45Ca uptake), while concanavalin A (100 micrograms/ml) elicited a rise in cytosolic calcium, primarily by uptake of extracellular calcium (45Ca uptake). fMet-Leu-Phe triggered rapid breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate and phosphatidylinositol, and generation of inositol 1,4,5-trisphosphate (IP3). In contrast concanavalin A triggered breakdown of phosphatidylinositol, but not PIP2, nor was there a significant increase in IP3. However, both fMet-Leu-Phe and concanavalin A triggered a rapid biphasic increase in levels of labeled diacylglycerol (in [3H]arachidonate or [14C]glycerol prelabeled cells) and a 3-fold increase in [32P] phosphatidic acid. These results are concordant with a role for PIP2 breakdown and generation of IP3 specifically in intracellular calcium mobilization but not for other aspects of the signaling pathway for O2- generation. Calcium permeability changes were associated with elevated diacylglycerol and [32P]phosphatidic acid, although a cause and effect relationship is not apparent. Ligands such as concanavalin A enhance cytosolic calcium and trigger generation of O2- without significant PIP2 remodeling; elevated diacylglycerol and cytosolic calcium are the common events associated with ligand-induced O2- generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号