首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
2.
Human plasma contains at least three forms of adiponectin: a trimer, a hexamer, and a high-molecular-weight (HMW) multimer. We purified HMW adiponectin from human plasma using its affinity to gelatin and obtained monoclonal antibodies against it. On Western blot analysis, the reactivity of these monoclonal antibodies was shown to be restricted to a non-heat-denatured form of adiponectin molecules. On heating, the collagen-like domain of adiponectin molecules became denatured, and thus the trimer form could not be maintained. From these, monoclonal antibodies against HMW adiponectin were suggested to react with the intact trimer of adiponectin. With these monoclonal antibodies, we developed a sandwich ELISA system for quantifying adiponectin in human serum. Its specificity was verified by analysis of serum fractions separated by gel-filtration chromatography, and our ELISA system was found to be HMW adiponectin-specific. With this novel ELISA, the HMW adiponectin concentrations were 8.4 +/- 5.5 microg/ml (mean +/- SD) in healthy women and 6.2 +/- 3.6 microg/ml in healthy men. Also, serum with a lower HMW adiponectin concentration was shown to have a lower HMW ratio (i.e., HMW adiponectin/total adiponectin).  相似文献   

3.
4.
We have screened a subtracted cDNA library in order to identify differentially expressed genes in omental adipose tissue of human patients with Type 2 diabetes. One clone (#1738) showed a marked reduction in omental adipose tissue from patients with Type 2 diabetes. Sequencing and BLAST analysis revealed clone #1738 was the adipocyte-specific secreted protein gene apM1 (synonyms ACRP30, AdipoQ, GBP28). Consistent with the murine orthologue, apM1 mRNA was expressed in cultured human adipocytes and not in preadipocytes. Using RT-PCR we confirmed that apM1 mRNA levels were significantly reduced in omental adipose tissue of obese patients with Type 2 diabetes compared with lean and obese normoglycemic subjects. Although less pronounced, apM1 mRNA levels were reduced in subcutaneous adipose tissue of Type 2 diabetic patients. Whereas the biological function of apM1 is presently unknown, the tissue specific expression, structural similarities to TNFα and the dysregulated expression observed in obese Type 2 diabetic patients suggest that this factor may play a role in the pathogenesis of insulin resistance and Type 2 diabetes.  相似文献   

5.
Adiponectin, a hormone secreted by adipose tissue, circulates at high concentrations in human plasma. Paradoxically, plasma levels of adiponectin are approximately 50% lower in obese than in lean subjects. An association between low plasma levels of adiponectin and higher risk of developing breast and other cancers was recently reported. Obesity and overweight have also been associated with increased mortality from cancer. To test the hypothesis that adiponectin exerts direct antiproliferative and/or pro-apoptotic effects on cancer cells, we used the MCF7 human breast adenocarcinoma cell line. The proliferation rate of the MCF7 cells was measured using the MTT method, while apoptosis was examined by quantifying the DNA fragmentation using an ELISA assay. In addition, adiponectin receptor 1 (AdipoR1) and AdipoR2 mRNA expression was detected using RT-PCR. Adiponectin diminished the proliferation rate of MCF7 cells; this effect was significant after 48-96 hours of treatment. The presence of receptor expression suggested that the effect of adiponectin on cell proliferation was most likely specific and adiponectin receptor-mediated. Adiponectin induced no apoptosis of MCF7 cells over 48 hours. We conclude that adiponectin inhibits proliferation but causes no apoptosis of MCF7 breast cancer cells. These data suggest that adiponectin may represent a direct hormonal link between obesity and cancer.  相似文献   

6.
7.
Human immunodeficiency virus (HIV)-associated lipodystrophy syndrome (HALS) is a side effect of highly active antiretroviral therapy of HIV-infected patients; however, the mechanism of the lipodystrophy and insulin resistance seen in this syndrome remains elusive. Adiponectin, an adipocyte-specific protein, is thought to play an important role in regulating insulin sensitivity. We investigated circulating levels and gene expression of adiponectin in subcutaneous abdominal adipose tissue (AT) from 18 HIV-infected patients with HALS compared with 18 HIV-infected patients without HALS. Implications of cytokines for adiponectin levels were investigated by determining circulating levels of TNF-alpha, IL-6, and IL-8 as well as gene expression of these cytokines in AT. HALS patients exhibited 40% reduced plasma adiponectin levels (P < 0.05) compared with non-HALS subjects. Correspondingly, adiponectin mRNA levels in AT were reduced by >50% (P = 0.06). HALS patients were insulin resistant, and a positive correlation was found between plasma adiponectin and insulin sensitivity (r = 0.55, P < 0.01) and percent limb fat (r = 0.61, P < 0.01). AT mRNA of TNF-alpha, IL-6, and IL-8 was increased in AT of HALS subjects (P < 0.05), and both AT TNF-alpha mRNA and plasma TNF-alpha were negatively correlated to plasma adiponectin (P < 0.05). Finally, TNF-alpha was found in vitro to inhibit human AT adiponectin mRNA by 80% (P < 0.05). In conclusion, HALS patients have reduced levels of plasma adiponectin and adiponectin mRNA in AT. Increased cytokine mRNA in AT is hypothesized to exert an inhibitory effect on adiponectin gene expression and, consequently, to play a role in the reduced plasma adiponectin levels found in HALS patients.  相似文献   

8.
9.
The genetic background of obesity is under research. Obesity-related phenotype candidate genes include the gene encoding adiponectin (AdipoQ). In this study, exon 3 of the adiponectin gene was screened for the Y111 H (Tyr111His, or T415C, rs17366743) polymorphism, and adiponectin serum concentrations were measured in 206 obese subjects (110 women and 96 men, aged 50.5+/-16.9 years). Their BMI, % of body fat, plasma glucose, insulin, and glycosylated hemoglobin were measured. Adiponectin was determined by enzyme-linked immunosorbent assay. Genomic DNA was extracted from peripheral blood leukocytes. A fragment of exon 3 of the adiponectin gene was amplified in PCR and screened for the Y111 H polymorphism in SSCP analysis. Genetic screening revealed a different SSCP pattern in 2 subjects. Subsequent genotyping disclosed the TC genotype in both subjects, resulting in Y111 H heterozygote variant frequency of 0.01 in the whole cohort. Other results for SNP (single nucleotide polymorphism) positive and negative subjects were as follows, respectively: BMI (kg/m (2)) 39.95+/-9.83 vs. 38.12+/-8.56; waist circumference (cm) 122+/-18.4 vs.115+/-16; glucose (mmol/l) 7.51+/-1.86 vs. 5.56+/-0.74; HbA1c (%) 7.55+/-1.86 vs. 6.58+/-1.36; body fat (%) 51+/-2 vs. 44+/-10; plasma insulin (mU/l) 28.92+/-16.50 vs. 37.59+/-47.34; adiponectin (ng/ml) 1301+/-15.8 vs. 5682+/-4156. Due to a proportion of 2 vs. 204, statistical calculations were not possible. The Y111 H adiponectin gene variant is uncommon in Polish obese subjects. Although we observed low adiponectin concentrations in Y111 H SNP heterozygote carriers, this finding was not confirmed by statistics.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号