首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
我们通过用非离子去垢剂Triton X-100处理破碎掏去阳离子的叶绿体膜,经过蔗糖梯度离心,获得高度纯化的捕获光能叶绿素a/b-蛋白质复合体(LHCP),分离出的捕获光能叶绿素a/b-蛋白质复合体具有1.26的Chl a/b比值,它的吸收光谱表明:它在红区的吸收峰为653nm和675nm,蓝区的吸收峰为473nm和436nm。低温萤光激发光谱表明:它的最强激发波长在416、434和476nm。低温萤光发射光谱表明:它的最强发射波长在681nm。通过蔗糖梯度离心,分离提纯的这个LHCP再经SDS聚丙烯酰胺凝胶电泳展现出分子量分别为21、44、62千道尔顿的三条叶绿素带。这些含叶绿素的复合物按其电泳迁移率,从慢到快,并经室温吸收光谱和萤光光谱分别鉴定命名为LHCP~3、LHCP~2和LHCP~1。  相似文献   

2.
小麦叶绿体类囊体膜用SDS短时间增溶后,在不连续的SDS-聚丙烯酰胺凝胶电泳上分离出七条含叶绿素的带,我们依其迁移率的增加及参考文献上的定名,称为CPI_a、CPI(P700-叶绿素α-蛋白质)、LHCP~1、LHCP~2、CP_a(含光系统Ⅱ反应中心的复合体)、LHCP~3(捕光叶绿素α/b-蛋白质)和FC(游离色素-SDS复合物)。在叶绿体类囊体膜的SDS提取物中加入Mg~( )后,则只能分离出四条含叶绿素的带,依其迁移率,并经室温吸收光谱和萤光光谱鉴定为CPI、CP_a、LHCP~3和FC。Mg~( )强烈地引起CPI_a和CPI相聚合,LHCP~1、LHCP~2和LHCP~3相聚合。聚合后的蛋白复合体的吸收光谱表明:CPI在红区的吸收峰为675nm,蓝区的吸收峰为436nm;CP_a在红区的吸收峰为669nm,蓝区的吸收峰为434nm;LHCP~3在红区的吸收峰为652和671nm,蓝区的吸收峰为436和470nm。分别与对照的CPI、CP_a和LHCP~3的吸收光谱相类似。而室温下二者的LHCP的萤光激发光谱和发射光谱也彼此相似。Mg~( )引起LHCP的聚合对叶绿体类囊体膜的结构具有重要意义。值得注意的是在叶绿体类囊体膜的SDS提取物中加入Mg~( )后,引起CPI_a与CPI的聚合,这种聚合对膜的结构与功能的影响目前仍不清楚,还有待进一步探索。  相似文献   

3.
小麦叶绿体类囊体膜用SDS 短时间增溶后,在不连续的SDS-聚丙烯酰胺凝胶电泳上分离出七条含叶绿素的带,我们依其迁移率的增加及参考文献上的定名,称为CPI_(?)、CPI(P700-叶绿素a-蛋白质)、LHCP~1、LHCP~2、CP_(?)(含光系统Ⅱ反应中心的复合体)、LHCP~3(捕光叶绿素a/b-蛋白质)和FC (游离色素-SDS 复合物)。在叶绿体类囊体膜的SDS 提取物中加入Mg~( )后,则只能分离出四条含叶绿素的带,依其迁移率,并经室温吸收光谱和萤光光谱鉴定为CPI、CP_a、LHCP~3和FC。Mg~( )强烈地引起CPI_(?)和CPI 相聚合,LHCP~1、LHCP~2和LHCP~3相聚合。聚合后的蛋白复合体的吸收光谱表明:CPI 在红区的吸收峰为675nm,蓝区的吸收峰为436nm;CP_(?)在红区的吸收峰为669nm,蓝区的吸收峰为434nm;LHCP~3在红区的吸收峰为652和671nm,蓝区的吸收峰为436和470nm。分别与对照的CPI、CP_(?)和LHCP~(?)的吸收光谱相类似。而室温下二者的LHCP 的萤光激发光谱和发射光谱也彼此相似。Mg~( )引起LHCP 的聚合对叶绿体类囊体膜的结构具有重要意义。值得注意的是在叶绿体类囊体膜的SDS 提取物中加入Mg~( )后,引起CPI_(?)与CPI 的聚合,这种聚合对膜的结构与功能的影响目前仍不清楚,还有待进一步探索。  相似文献   

4.
小麦叶绿体膜用SDS短时间增溶后,用不连续的SDS—聚丙烯酰胺凝胶电泳分离出八条叶绿素带,我们依其迁移率的增加及参考文献上的定名称为CPI(P700—叶绿素a—蛋白质)、LHCP~1(捕光叶绿素a/b—蛋白质)、LHCP~2、LHCP~3,CPa(光系统Ⅱ反应中心)、LHCP~4和FC(游离色素—SDS复合物)。值得注意的是,在LHCP~4和FC之间观察到一条新的复合体,我们命名为CPa_1。 CPa_1的吸收光谱与CPa的吸收光谱相似,他们在红区的吸收峰分别在669nm和670nm,在蓝区的吸收峰为435nm,清楚地表明这些吸收光谱与文献中报导的复合体Ⅳ—系统Ⅱ反应中心复合物相似(Hayden等1977)。CPa和CPa_1具有相似的荧光发射光谱,最强的发射带分别在681nm和682nm。二者的荧光激发光谱亦是彼此相似的。CPa的分子量约为39.5KD,CPa_1的分子量约为19.6KD。因此,我们推测CPa可能是二聚体,而CPa_1可能是它的单体。  相似文献   

5.
当将辛基—β—D—吡喃葡萄糖苷的类囊体膜提取液进行凝胶电泳时,有7种叶绿素蛋白复合体被分离出来,它们分别是CPIa,CPI,LHCP~1,CPa1,Cpa2,LHCP~2和LHCP~3。 CPa1和CPa2在红区的吸收峰分别位于674nm和671nm。一阶导数光谱表明这两种复合体都含有叶绿素a和类胡萝卜素,但不含叶绿素b。四阶导数光谱证明CPa1的主要吸收形式为chla-680,而CPa2的主要形式为chl a-670。由77K的荧光发射光谱知道CPa1的荧光发射峰位于695nm,而CPa2的发射峰则位于685nm。LHCP~1和LHCP~3及LHCP~2的主要吸收形式分别为chlb-650和chl a-680。它们的荧光发射峰都位于680—682nm范围内。 可以断定CPa1是光系统Ⅱ反应中心P680-叶绿素a蛋白复合体;CPa2是光系统Ⅱ内周天线叶绿素a蛋白复合体;LHCP~1,LHCP~2和LHCP~3是光系统Ⅱ外周天线叶绿素a/b蛋白复合体。LHCP~2和LHCP~3是两种独立的单体。CPIa和CPI为光系统Ⅰ反应中心复合体。  相似文献   

6.
多变鱼腥藻(Anabaena variabilis)藻胆体一类囊体膜的吸收峰位于678,624,490,438和418nm.当用580nm波长光激发藻胆体一类囊体膜中藻胆蛋白时,室温荧光峰位于662nm,在680nm附近有一肩;液氮温度荧光峰位于655,666,695和730nm.这说明藻胆蛋白捕获的光能能有效地传给叶绿素a.当用436nm波长光激发藻胆体一类囊性膜中叶绿素a时,室温荧光峰(?)于683nm;液氮温室荧光峰在730nm,另一小峰在695nm.表明叶绿素a捕获的光能不能传递给藻胆蛋白.藻胆体一类囊体膜放氧速率为245μmoleO_2/小时,毫克叶绿素,电境照片显示在类囊体膜上有大量藻胆体.用0.3M蔗糖,O.05M磷酸缓冲溶液洗藻胆体一类囊体膜,能使藻胆体与类囊体膜分开.对藻胆体与类囊体之间的光能传递进行了讨论.  相似文献   

7.
多变鱼腥藻(Anabaena variabilis)藻胆体一类囊体膜的吸收峰位于678,624,490,438和418nm.当用580nm波长光激发藻胆体一类囊体膜中藻胆蛋白时,室温荧光峰位于662nm,在680nm附近有一肩;液氮温度荧光峰位于655,666,695和730nm.这说明藻胆蛋白捕获的光能能有效地传给叶绿素a.当用436nm波长光激发藻胆体一类囊性膜中叶绿素a时,室温荧光峰(?)于683nm;液氮温室荧光峰在730nm,另一小峰在695nm.表明叶绿素a捕获的光能不能传递给藻胆蛋白.藻胆体一类囊体膜放氧速率为245μmoleO_2/小时,毫克叶绿素,电境照片显示在类囊体膜上有大量藻胆体.用0.3M蔗糖,O.05M磷酸缓冲溶液洗藻胆体一类囊体膜,能使藻胆体与类囊体膜分开.对藻胆体与类囊体之间的光能传递进行了讨论.  相似文献   

8.
本文研究了大豆核、叶绿体DNA-溴化乙锭复合体吸收光谱、萤光光谱和萤光衰减特性。DNA-溴化乙锭复合体吸收光谱和DNA的吸收光谱是一致的,吸收峰在256nm,但它们的萤光光谱却极其类似溴化乙锭的萤光光谱,主要的萤光峰在595nm处。这指出复合体的吸收取决于DNA,而萤光取决于溴化乙锭,在DNA的碱基受激后,俘获的能量先在碱基之间顺序传递,最后传递到复合体中的溴化乙锭。由溴化乙锭发出萤光。DNA的萤光衰减信号极其微弱以至无法检测。溴化乙锭的萤光衰减曲线接近仪器的响应曲线,萤光寿命为1.18毫微秒,但两种DNA-溴化乙锭复合体的萤光衰减信号非常强烈。两种复合体的萤光衰减方式存在明显的差别。核DNA-溴化乙锭复合体的萤光寿命为27.10毫微秒,而叶绿体DNA-溴化乙锭复合体为24.79毫微秒。这种差别可能反映两种DNA结构和构型的差别。因此这种技术有可能用作判定各种DNA之间的差异。  相似文献   

9.
本文研究了大豆核、叶绿体DNA-溴化乙锭复合体吸收光谱、萤光光谱和萤光衰减特性。DNA-溴化乙锭复合体吸收光谱和DNA的吸收光谱是一致的,吸收峰在256nm,但它们的萤光光谱却极其类似溴化乙锭的萤光光谱,主要的萤光峰在595nm处。这指出复合体的吸收取决于DNA,而萤光取决于溴化乙锭,在DNA的碱基受激后,俘获的能量先在碱基之间顺序传递,最后传递到复合体中的溴化乙锭。由溴化乙锭发出萤光。DNA的萤光衰减信号极其微弱以至无法检测。溴化乙锭的萤光衰减曲线按近仪器的响应曲线,萤光寿命为1.18毫微秒,但两种DNA-溴化乙锭复合体的萤光衰减信号非常强烈。两种复合体的萤光衰减方式存在明显的差别。核DNA-溴化乙锭复合体的萤光寿命为27.10毫微秒,而叶绿体DNA-溴化乙锭复合体为24.79毫微秒。这种差别可能反映两种DNA结构和构型的差别。因此这种技术有可能用作判定各种DNA之间的差异。  相似文献   

10.
捕光叶绿素a/b蛋白复合体的蛋白磷酸化使叶绿体低温荧光(77K)在735 nm处的发射增强,间质片层膜的叶绿素a/b比值降低。聚丙烯酰胺凝胶电泳分析表明:LHCP蛋白磷酸化引起部分LHCP在膜上不仅以单体,而且以二聚体、三聚体的形式从富含PSⅡ的基粒膜横向移动到富含PS Ⅰ的间质膜,并与PS Ⅰ相结合,作为它的外周天线,扩大了PS Ⅰ的捕光面积,从而使激发能分配有利于PS Ⅰ。  相似文献   

11.
用胰蛋白酶消化菠菜叶绿体,叶绿体的F_(684)相对萤光强度下降。在反应液中加入光系统Ⅱ的电子受体(DCIP 或Fecy)和光系统Ⅱ的电子传递抑制剂—DCMU,可以改变叶绿体F_(684)的相对萤光强度,但不影响与胰蛋白酶消化有关的萤光强度下降。用不同波长的光(436nm 和470nm)激发胰蛋白酶消化过的叶绿体,所测得的F_(684)变化、叶绿体中叶绿素含量变化以及吸收光谱变化的实验结果,说明用胰蛋白酶消化叶绿体后,使部分叶绿素从叶绿体上脱落,其中叶绿素b 的脱落量较高。表明胰蛋白酶消化所诱导的萤光强度下降与色素蛋白复合体受损有关。  相似文献   

12.
用胰蛋白酶消化菠菜叶绿体,叶绿体的F_(684)相对萤光强度下降。在反应液中加入光系统Ⅱ的电子受体(DCIP或Fecy)和光系统Ⅱ的电子传递抑制剂—DCMU,可以改变叶绿体F_(684)的相对萤光强度,但不影响与胰蛋白酶消化有关的萤光强度下降。用不同波长的光(436nm和470nm)激发胰蛋白酶消化过的叶绿体,所测得的F_(684)变化、叶绿体中叶绿素含量变化以及吸收光谱变化的实验结果,说明用胰蛋白酶消化叶绿体后,使部分叶绿素从叶绿体上脱落,其中叶绿素b的脱落量较高。表明胰蛋白酶消化所诱导的萤光强度下降与色素蛋白复合体受损有关。  相似文献   

13.
比较了柱孢鱼腥藻(Anabaena cylindrica)营养细胞和异形胞类囊体膜叶绿素蛋白复合体的种类和性质。以SDS增溶营养细胞类囊体膜和不连续聚丙烯酰胺电泳分离得到4个P700叶绿素a蛋白复合体,分别为GPIa、CPIb、CPIc和CPI;和1个系统Ⅱ叶绿素蛋白复合体CPa。相对迁移率小的4个复合体含有P700,呼收光谱红区吸收峰为675nm,液氮低温荧光发射光谱有728nm荧光发射峰。CPIa和CPI的分量子分别为205 和105千道尔顿。未见诸文献的CPIb和CPIc复合体的分子量介于CPIa和CPI之间。相对迁移率较大的CPa有着吸收光谱红区672nm吸收峰,液氮低温荧光发射光谱有687nm荧光发射峰,分子量为56千道尔顿。同时化学氧化还原差示光谱不表现P700吸收降低。柱孢鱼腥藻异形胞类囊体膜经SDS增溶和电泳分离得到2个系统Ⅰ叶绿素蛋白复合体,它们的吸收光谱特性和分子量大小相近于营养细胞分离的CPIa和CPI复合体。异形胞类囊体膜缺少系统Ⅱ叶绿索蛋白复合体。  相似文献   

14.
研究了不同浓度(5和10mM)的镁离子对柱孢鱼腥藻类囊体膜吸收光谱和荧光光谱的影响。5mM镁离子浓度降低柱孢鱼腥藻类囊体膜的叶绿素α在红区和蓝区的吸收峰,表现相似于镁离子对叶绿体的叶绿素α吸收峰的变平效应。在室温下,加入5mM镁离子浓度使膜的光系统Ⅱ684nm发射荧光强度降低。在液氮低温下,镁离子降低膜的光系统Ⅱ684nm和光系统Ⅰ728nm发射荧光强度的比值。可能表明镁离子促进光系统问激发能的传递。同时,镁离子增大叶绿素α所吸收光的激发能对光系统Ⅰ发射荧光的贡献,促进叶绿素α至光系统Ⅰ的激发能传递。  相似文献   

15.
当蓝藻的囊状体膜在SDS与叶绿素之比为10:1的条件下增溶后,经不连续的SDS-聚丙烯酰胺凝胶电泳分离出六条含叶绿素的带。按照电泳迁移率增加的顺序,以及吸收光谱和荧光光谱的鉴定结果,自上而下分别命名为CP1a,CP1b,CP1c,CP1,CPa和FC。 CP1a,CP1b,CP1c和CP1四种复合体在蓝区和红区的吸收峰分别位于435 nm和675 nm处。该四种复合体在77°K的荧光发射峰位于726~728 nm。铁氰化钾-抗坏血酸氧化还原差异光谱证明这四种复合体都含有 P 700, 说明它们属于光系统Ⅰ反应中心复合体。低温荧光激发光谱表明这些复合体在625~626 nm,677 nm,690~692 nm和712~714 nm处有四个共同的荧光激发峰或肩。根据其E677/E714的比值,可将它们分为CP1a,CP1b和CP1c,CP1两种类型。它们之间的差异在于这两类复合体之间不同状态的色素比例明显不同。 第五种叶绿素蛋白复合体CPa在蓝区的吸收峰位于435nm处,在红区的吸收峰位于672nm处,CPa在77°K的荧光发射峰位于686 nm处,另外在690~696nm范围内还有一个较弱的肩。它属于光系统Ⅱ反应中心复合体。它仅存在于营养胞中。 异形胞中只有光系统Ⅰ反应中心复合体。  相似文献   

16.
对玉米(Zea mays)营养生长期中的下位叶(第5叶)和生殖生长时期的中位叶(果穗叶)和上位叶(顶生叶)的成熟叶片的冰冻撕裂电镜观察,发现叶绿体类囊体膜所有撕裂面上各种功能蛋白颗粒的密度均以果穗叶中的最大,依次是顶生叶和第5叶的。以果穗叶与顶生叶相比,其类囊体膜中包含有绝大多数 LHCP 的 EFs 颗粒增加28%;包含有 PSI 反应中心与LHCP 相结合的 PFu 颗粒增加20%;包含有 PSII 反应中心与 LHCP 相结合的 EFs 颗粒增加19%。这一超分子结构的电镜观察结果与其 SDS-聚丙烯酰胺梯度凝胶板电泳解析的结果相一致。即 SDS-聚丙烯酰胺梯度凝胶板电泳解析的色素带上,同样是果穗叶类囊体膜上呈现的21kD(LHCP Ⅰ)和25 kD(LHCPⅡ)多肽的色素带相应地也比顶生叶的加宽,表明果穗叶叶绿体类囊体膜上镶嵌的叶绿素 a/b 蛋白复合体等比顶生叶的显著地增多,这有利于果穗叶光合作用中光能的吸收、传递、分配和转化。  相似文献   

17.
用光合膜片增溶和SDS-聚丙烯酰胺凝胶电泳方法,从固氮蓝藻Anabaena sp.7120分离到7条色素带。迁移率较慢的五条叶绿素蛋白复合体带,具有相同的吸收光谱和室温荧光光谱特性。它们的红区最大吸收峰在676nm;蓝区最大吸收峰在438nm。它们的室温荧光发射最高峰在672—673nm;在710,732和740nm都有小峰。这些是CPⅠ叶绿素所特有的。我们认为这5条带都是属于光系统Ⅰ的叶绿素蛋白复合体。另一条迁移率稍快的叶绿素蛋白复合体带为CPⅡ。它的红区最大吸收峰在672nm;蓝区最大吸收峰在436nm。与CPⅠ带相比,两个峰均向短波端偏移。它们的室温荧光发射最高峰在675nm,没有CPⅠ所特有的小峰。这些性质说明此带和CPⅠ带不同,而是和光系统Ⅱ反应中心相关的一个复合体。迁移率最快的带是游离色素带。  相似文献   

18.
用光合膜片增溶和SDS-聚丙烯酰胺凝胶电泳方法,从固氮蓝藻Anabaena sp.7120分离到7条色素带。迁移率较慢的五条叶绿素蛋白复合体带,具有相同的吸收光谱和室温荧光光谱特性。它们的红区最大吸收峰在676nm;蓝区最大吸收峰在438nm。它们的室温荧光发射最高峰在672-673nm;在710,732和740nm都有小峰。这些是CPI叶绿素所特有的。我们认为这5条带都是属于光系统Ⅰ的叶绿素蛋白复合体。另一条迁移率稍快的叶绿素蛋白复合体带为CPⅡ。它的红区最大吸收峰在672nm;蓝区最大吸收峰在436nm。与CPⅠ带相比,两个峰均向短波端偏移。它们的室温荧光发射最高峰在675nm,没有CPⅠ所特有的小峰。这些性质说明此带和CPⅠ带不同,而是和光系统Ⅱ反应中心相关的一个复合体。迁移率最快的带是游离色素带。  相似文献   

19.
用蔗糖梯度离心的方法,从胰蛋白酶处理叶绿体和对照叶绿体膜分离LHC。比较研究了它们的吸收光谱、荧光光谱、圆二色光谱和荧光偏振度的变化。观测到消化叶绿体LHC的吸收光谱除位于652nm的肩消失外,其它特征性吸收均无明显改变,荧光发射峰位和在670nm的C.D.信号峰位与对照相比发生偏移,叶绿素b和吸收≤670 Nm叶绿素a的荧光偏振度降低。结果说明含叶绿素b的蛋白和短波长叶绿素a的蛋白位于类囊体膜的外侧,胰蛋白酶消化引起LHC的构型改变,从而使色素与色素、色素与蛋白的相互关系及叶绿素分子排列和方向发生改变。讨论了LHC上蛋白构型、叶绿素分子机构和叶绿素分子间能量传递的相互关系。提出了蛋白质在色素能量传递过程中的作用。  相似文献   

20.
菠菜叶绿体用去污剂(毛地黄皂苷或Triton X-100)破碎后,经差异离心和DEAE-纤维素柱纯化,可分别得到富含光系统Ⅰ或光系统Ⅱ的颗粒。富含光系统Ⅰ的颗粒具有DCIP的光还原活性,从低温(-196℃)荧光发射光谱看来,其光系统Ⅰ的含量是相当低的。富含光系统Ⅰ的颗粒的P_(700)与Chl的比值可达到1 P_(700)/40~60 Chl。它的Chla/b值为12~18,吸收光谱类似于P_(700)·叶绿素α-蛋白质复合物的吸收光谱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号