首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In response to stress stimuli, mammalian cells activate an ancient signaling pathway leading to the transient expression of heat shock proteins (HSPs). HSPs are a family of proteins serving as molecular chaperones that prevent the formation of nonspecific protein aggregates and assist proteins in the acquisition of their native structures. Physiologically, HSPs play a protective role in the homeostasis of the vessel wall but have an impact on immunoinflammatory processes in pathological conditions involved in the development of atherosclerosis. For instance, some members of HSPs have been shown to have immunoregulatory properties and modification of innate and adaptive response to HSPs, and can protect the vessel wall from the disease. On the other hand, a high degree of sequence homology between microbial and mammalian HSPs, due to evolutionary conservation, carries a risk of misdirected autoimmunity against HSPs expressed on the stressed cells of vascular endothelium. Furthermore, HSPs and anti-HSP antibodies have been shown to elicit production of proinflammatory cytokines. Potential therapeutic use of HSP in prevention of atherosclerosis involves achieving optimal balance between protective and immunogenic effects of HSPs and in the progress of research on vaccination. In this review, we update the progress of studies on HSPs and the integrity of the vessel wall, discuss the mechanism by which HSPs exert their role in the disease development, and highlight the potential clinic translation in the research field.  相似文献   

2.
Stress or heat shock proteins (HSPs) are remarkably conserved in all living organisms. Their expression is induced in response to a variety of physiological and environmental insults. In the cytosol these proteins play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, preventing protein aggregation, transport of proteins, and supporting antigen processing and presentation. Following stress, intracellularly located HSPs fulfill protective functions and thus prevent lethal damage. In contrast, membrane-bound or extracellularly located HSPs act as danger signals and elicit immune responses mediated either by the adaptive or innate immune system. Here, HSPs act as carriers for immunogenic peptides, induce cytokine release or provide recognition sites for natural killer (NK) cells. This article will discuss methods for the detection of membrane-bound and extracellular HSPs and methods for determining their immunological functions.  相似文献   

3.
Stress or heat shock proteins (HSPs) are ubiquitous and highly conserved proteins whose expression is induced in response to a wide variety of physiological and environmental insults. They allow the cells to survive to otherwise lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. These proteins play an essential role in intracellular "house-keeping" by assisting the correct folding of nascent and stress-accumulated misfolded proteins and preventing their aggregation. Several HSPs have also demonstrated to directly interact with various components of the tightly regulated programmed cell death machinery, upstream, and downstream of the mitochondrial events. Finally, HSPs could play a role in the proteasome-mediated degradation of selected proteins under stress conditions. Altogether, these properties could make HSPs appropriate targets for modulating cell death pathways.  相似文献   

4.
Plants are sessile organisms, and their ability to adapt to stress is crucial for survival in natural environments. Many observations suggest a relationship between stress tolerance and heat shock proteins (HSPs) in plants, but the roles of individual HSPs are poorly characterized. We report that transgenic Arabidopsis plants expressing less than usual amounts of HSP101, a result of either antisense inhibition or cosuppression, grew at normal rates but had a severely diminished capacity to acquire heat tolerance after mild conditioning pretreatments. The naturally high tolerance of germinating seeds, which express HSP101 as a result of developmental regulation, was also profoundly decreased. Conversely, plants constitutively expressing HSP101 tolerated sudden shifts to extreme temperatures better than did vector controls. We conclude that HSP101 plays a pivotal role in heat tolerance in Arabidopsis. Given the high evolutionary conservation of this protein and the fact that altering HSP101 expression had no detrimental effects on normal growth or development, one should be able to manipulate the stress tolerance of other plants by altering the expression of this protein.  相似文献   

5.
We propose that type 2 diabetes results from a vicious cycle of metabolically induced inflammation, impaired insulin responsiveness, and subsequent loss of homeostatic signaling. A crucial and previously under-recognized event contributing to this loss of homeostasis is a reduction in heat shock proteins (HSPs, or stress proteins). The central causal pathways of this cycle are the following: (a) obesity-driven inflammation promotes insulin resistance; (b) impaired insulin signaling in turn reduces the expression of HSPs, leaving tissues vulnerable to damage and allowing the accumulation of harmful proteins aggregates; and (c) resulting damage to the pancreatic beta-cell leads to further losses in insulin signaling, while a decline in anti-inflammatory HSPs allows inflammation to expand unhindered. Obesity and sedentary lifestyle perpetuate this cycle, while dieting and exercise forestall it by raising HSPs, reducing inflammation, and improving insulin signaling. Because HSP expression carries substantial metabolic costs, it is likely that an evolutionary history of high activity levels and resource scarcity selected for more conservative HSP expression than is appropriate for our current environment of caloric abundance.  相似文献   

6.

Background  

Heat shock proteins (HSPs), including mainly HSP110, HSP90, HSP70, HSP60 and small HSP families, are evolutionary conserved proteins involved in various cellular processes. Abnormal expression of HSPs has been detected in several tumor types, which indicates that specific HSPs have different prognostic significance for different tumors. In the current studies, the expression profiling of HSPs in human low-grade glioma tissues (HGTs) were investigated using a sensitive, accurate SILAC (stable isotope labeling with amino acids in cell culture)-based quantitative proteomic strategy.  相似文献   

7.
Heat shock proteins: essential proteins for apoptosis regulation   总被引:4,自引:0,他引:4  
Many different external and intrinsic apoptotic stimuli induce the accumulation in the cells of a set of proteins known as stress or heat shock proteins (HSPs). HSPs are conserved proteins present in both prokaryotes and eukaryotes. These proteins play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, and by preventing their aggregation. HSPs have a protective function, that is they allow the cells to survive to otherwise lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. Several of these proteins have demonstrated to directly interact with components of the cell signalling pathways, for example those of the tightly regulated caspase-dependent programmed cell death machinery, upstream, downstream and at the mitochondrial level. HSPs can also affect caspase-independent apoptosis-like process by interacting with apoptogenic factors such as apoptosis-inducing factor (AIF) or by acting at the lysosome level. This review will describe the different key apoptotic proteins interacting with HSPs and the consequences of these interactions in cell survival, proliferation and apoptotic processes. Our purpose will be illustrated by emerging strategies in targeting these protective proteins to treat haematological malignancies.  相似文献   

8.
Cells from virtually all organisms respond to a variety of stresses by the rapid synthesis of a highly conserved set of polypeptides termed heat shock proteins (HSPs). The precise functions of HSPs are unknown, but there is considerable evidence that these stress proteins are essential for survival at both normal and elevated temperatures. HSPs also appear to play a critical role in the development of thermotolerance and protection from cellular damage associated with stresses such as ischemia, cytokines, and energy depletion. These observations suggest that HSPs play an important role in both normal cellular homeostasis and the stress response. This mini-review examines recent evidence and hypotheses suggesting that the HSPs may be important modifying factors in cellular responses to a variety of physiologically relevant conditions such as hyperthermia, exercise, oxidative stress, metabolic challenge, and aging.  相似文献   

9.
Summary Heat shock and ethanol stress of brewing yeast strains resulted in the induction of a set of proteins referred to as heat shock proteins (HSPs). At least six strongly induced HSPs were identified in a lager brewing strain and four HSPs in an ale brewing strain. Four of these HSPs with molecular masses of approximately 70, 38, 26 and 23 kDa were also identified in two laboratory strains ofSaccharomyces cerevisiae. The appearance of HSPs correlated with increased survival of strains at elevated temperatures and high concentrations of ethanol. These results suggest that HSPs may play a role in the ethanol and thermotolerance of yeasts. The properties of these proteins and membrane fatty acids in relation to heat and ethanol shock are being investigated.  相似文献   

10.
Small heat shock proteins (HSPs) have been shown to confer thermotolerance in many organisms. Here, we demonstrate that small HSPs (sHSPs) can also be involved in development of thermotolerance in Pisolithus sp. In heat shock response, Pisolithus isolate RV82 synthesized proteins of molecular mass 28, 26 and 15–18 kDa. These group of proteins are synthesized when mycelial mass are exposed to heat shock temperature (42 °C) for short period (30 min) and incubated back at 28 °C, the optimal temperature for growth. Our results show sHSPs are an important biochemical alteration in ectomycorrhizal fungi under thermal stress.  相似文献   

11.
Roles of heat-shock proteins in innate and adaptive immunity   总被引:1,自引:0,他引:1  
Heat-shock proteins (HSPs) are the most abundant and ubiquitous soluble intracellular proteins. In single-cell organisms, invertebrates and vertebrates, they perform a multitude of housekeeping functions that are essential for cellular survival. In higher vertebrates, their ability to interact with a wide range of proteins and peptides--a property that is shared by major histocompatibility complex molecules--has made the HSPs uniquely suited to an important role in organismal survival by their participation in innate and adaptive immune responses. The immunological properties of HSPs enable them to be used in new immunotherapies of cancers and infections.  相似文献   

12.
Heat shock proteins (HSPs), known as molecular chaperone to assist protein folding, have recently become a research focus in Parkinson's disease (PD) because the pathogenesis of this disease is highlighted by the intracellular protein misfolding and inclusion body formation. The present review will focus on the functions of different HSPs and their protective roles in PD. It is postulated that HSPs may serve as protein folding machinery and work together with ubiquitin-proteasome system (UPS) to assist in decomposing aberrant proteins. Failure of UPS is thought to play a key role in the pathogenesis of PD. In addition, HSPs may possess anti-apoptotic effects and keep the homeostasis of dopaminergic neurons against stress conditions. The critical role of HSPs and recent discovery of some novel HSPs inducers suggest that HSPs may be potential therapeutic targets for PD and other neurodegenerative disorders.  相似文献   

13.
Failure of immune surveillance related to inadequate host antitumor immune responses has been suggested as a possible cause of the high incidence of recurrence and poor overall survival outcome of hepatocellular carcinoma. The stress-induced heat shock proteins (HSPs) are known to act as endogenous "danger signals" that can improve tumor immunogenicity and induce natural killer (NK) cell responses. Exosome is a novel secretory pathway for HSPs. In our experiments, the immune regulatory effect of the HSP-bearing exosomes secreted by human hepatocellular carcinoma cells under stress conditions on NK cells was studied. ELISA results showed that the production of HSP60, HSP70, and HSP90 was up-regulated in both cell lines in a stress-specific manner. After exposure to hepatocellular carcinoma cell-resistant or sensitive anticancer drugs (hereafter referred to as "resistant" or "sensitive" anticancer drug), the membrane microvesicles were actively released by hepatocellular carcinoma cells, differing in their ability to present HSPs on the cell surface, which were characterized as exosomes. Acting as a decoy, the HSP-bearing exosomes efficiently stimulated NK cell cytotoxicity and granzyme B production, up-regulated the expression of inhibitory receptor CD94, and down-regulated the expression of activating receptors CD69, NKG2D, and NKp44. Notably, resistant anticancer drugs enhanced exosome release and generated more exosome-carried HSPs, which augmented the activation of the cytotoxic response. In summary, our findings demonstrated that exosomes derived from resistant anticancer drug-treated HepG2 cells conferred superior immunogenicity in inducing HSP-specific NK cell responses, which provided a clue for finding an efficient vaccine for hepatocellular carcinoma immunotherapy.  相似文献   

14.
《环境昆虫学报》2014,(5):805-813
昆虫是变温动物,温度对其生长发育、基本行为及进化途径都会产生很大的影响,种群的繁衍面临如何安全度过漫长而寒冷的冬季的挑战。通过长时间的进化,昆虫获得一系列完整的耐寒策略。绝大多数的昆虫都是耐寒昆虫,在陆地寒冷温度刺激下,昆虫受抗寒基因的调控,体内产生大量抗寒物质,如海藻糖、甘油、山梨醇、抗冻蛋白、热激蛋白等,提高昆虫的耐寒能力,使其得以在低温寒冷的条件下成功越冬。同样,经过冷驯化后的昆虫能显著提高昆虫的耐寒力。近年来,关于昆虫耐寒性、抗寒类蛋白的研究不断开展,研究内容涉及昆虫的耐寒性、抗寒基因HSPs和AFPs的调控、冷驯化诱导抗寒等方面。本文综述了昆虫耐寒性、主要耐寒策略及冷驯化诱发昆虫耐寒性增强等研究内容。有助于全面认识昆虫耐寒性及其作用机制,为天敌昆虫低温储存和提高生物防治等应用打下坚实的基础。  相似文献   

15.
Kant's conception of organisms as natural purposes raises a challenge to the adequacy of mechanistic explanation in biology. Certain features of organisms appear to be inexplicable by appeal to mechanical law alone. Some biological phenomena, it seems, can only be accounted for teleologically. Contemporary evolutionary biology has by and large ignored this challenge. It is widely held that Darwin's theory of natural selection gives us an adequate, wholly mechanical account of the nature of organisms. In contemporary biology, the category of the organism plays virtually no explanatory role. Contemporary evolutionary biology is a science of sub-organismal entities-replicators. I argue that recent advances in developmental biology demonstrate the inadequacy of sub-organismal mechanism. The category of the organism, construed as a 'natural purpose' should play an ineliminable role in explaining ontogenetic development and adaptive evolution. According to Kant the natural purposiveness of organisms cannot be demonstrated to be an objective principle in nature, nor can purposiveness figure in genuine explain. I attempt to argue, by appeal to recent work on self-organization, that the purposiveness of organisms is a natural phenomenon, and, by appeal to the apparatus of invariance explanation, that biological purposiveness provides genuine, ineliminable biological explanations.  相似文献   

16.
Heat-shock proteins (HSPs), or so-called stress proteins may play an important role in cutaneous pathophysiology. HSPs are a group of highly conserved molecules that are expressed by all cells when subjected to heat or other forms of physical or chemical stress. The physiological roles of stress proteins are varied and are important in stress and nonstress conditions. They bind to other cellular proteins and participate in protein folding pathways during stress and also during the synthesis of new polypeptides. HSPs are also essential for thermotolerance and for prevention and repair of damage caused in DNA after ultraviolet exposure. Although HSPs are expressed in the skin in both epidermis and dermis, HSPs may influence many other cellular processes in the inflammatory and immune skin response. Many authors have speculated on a link between HSPs and human skin disease characterized by inflammation and proliferation.Abbreviations HSP heat-shock protein - IL-1 interleukin-1  相似文献   

17.
Populations often face changes in environmental conditions in a relatively short timescale, which may lead to microevolution of traits to cope with these changing selective pressures. Here, we demonstrate microevolution of a physiological trait in a natural population of the water flea Daphnia magna. Levels of the stress protein Hsp60 showed genetic variation, indicating in situ evolutionary potential, and the levels increased through time. The observed microevolutionary increase did not fit the historically documented changes in fish predation pressure in this pond, but it paralleled an increase in the load of infective stages of epibionts through time. In line with this, the locally most abundant epibiont caused an induction of Hsp60. Because stress proteins show evolutionary potential and protect organisms against a wide array of environmental factors, microevolution of stress proteins in natural populations is likely to be common.  相似文献   

18.
Abstract: Acquired thermotolerance, the associated synthesis of heat-shock proteins (HSPs) under stress conditions, and the role of HSPs as molecular chaperones under normal growth conditions have been studied extensively in eukaryotes and bacteria, whereas research in these areas in archaea is only beginning. All organisms have evolved a variety of strategies for coping with high-temperature stress, and among these strategies is the increased synthesis of HSPs. The facts that both high temperatures and chemical stresses induce the HSPs and that some of the HSPs recognize and bind to unfolded proteins in vitro have led to the theory that the function of HSPs is to prevent protein aggregation in vivo. The facts that some HSPs are abundant under normal growth conditions and that they assist in protein folding in vitro have led to the theory that they assist protein folding in vivo; in this role, they are referred to as molecular chaperones. The limited research on acquired thermotolerance, HSPs, and molecular chaperones in archaea, particularly the hyperthermophilic archaea, suggests that these extremophiles provide a new perspective in these areas of research, both because they are members of a separate phylogenetic domain and because they have evolved to live under extreme conditions.  相似文献   

19.
Diverse higher plant species synthesize low molecular weight (LMW) heat shock proteins (HSPs) which localize to chloroplasts. These proteins are homologous to LMW HSPs found in the cytoplasm of all eukaryotes, a class of HSPs whose molecular mode of action is not understood. To obtain basic information concerning the role of chloroplast HSPs, we examined the accumulation, stability, tissue specificity, and intra-chloroplast localization of HSP21, the major LMW chloroplast HSP in pea. Intact pea plants were subjected to heat stress conditions which would be encountered in the natural environment and HSP21 mRNA and protein levels were measured in leaves and roots. HSP21 was not detected in leaves or roots before stress, but the mature, 21-kD protein accumulated in direct proportion to temperature and HSP21 mRNA levels in both tissues. All of the HSP21 in leaves was localized to chloroplasts; there was no evidence for its transport into other organelles. In chloroplast fractionation experiments, greater than 80% of HSP21 was recovered in the soluble chloroplast protein fraction. The half-life of HSP21 at control temperatures was 52 +/- 12 h, suggesting the protein's function is critical during recovery as well as during stress. We hypothesize that HSP21 functions in a catalytic fashion in both photosynthetic and nonphotosynthetic plastids.  相似文献   

20.
The significant disadvantages accompanied with the use of antibiotics in aquaculture, emphasize the need for developing alternative disease control strategies, like novel vaccine approaches and immunostimulating measures. Several studies have already pointed out the ability of heat shock proteins (HSPs) to modulate innate and adaptive immune responses, what makes them potent candidates for the development of a new disease prevention method. In this study, the use of self and non-self heat shock proteins as a new prophylactic treatment against bacterial diseases in freshwater aquaculture was investigated. Therefore, an infection model was developed with platyfish as a host for Yersinia ruckeri infections. In this infection model, the effect of different treatments with HSPs on the survival of the fish after bacterial infection was tested: non-lethal heat shock, intracoelomal injection with two recombinant bacterial HSPs, GroEL and DnaK, and a combination of a non-lethal heat shock and an injection with bacterial HSPs. The results show that a non-lethal heat shock could not protect fish against a subsequent infection with Y. ruckeri. However, when the fish received an injection with bacterial HSPs, Y. ruckeri induced mortality was reduced. This effect became significant when the administration of bacterial HSPs was combined with a non-lethal heat shock. These data suggest a possible role for heat shock proteins as an immunostimulating treatment in fish against bacterial infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号