首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
【目的】本研究旨在通过焦磷酸测序技术对我国分离的H1N1、H3N2、H9N2等3种基因型的10株猪流感病毒分离株进行金刚烷胺耐药性鉴定。【方法】流感病毒M2蛋白5个关键位点氨基酸残基(第26、27、30、31和34位)中的任何一个发生突变会导致抗流感病毒药物中金刚烷胺抗药性的产生。本研究利用焦磷酸测序技术对2004-2008年国内分离的10株猪流感病毒M基因金刚烷胺耐药性分子决定区进行了鉴定,并进行抗药性分析。【结果】基于M2蛋白基因保守区序列建立的焦磷酸测序技术能用于国内猪流感病毒的快速检测,且具有较好的特异性和重复性。抗药性分析表明10株猪流感病毒国内分离株中5株H1N1分离株全部耐药,主要存在M2蛋白的V27T、V27I或S31N位点的突变,而4株H3N2和1株H9N2猪流感病毒分离株在M2蛋白5个关键位点上均未出现变异,表明其对金刚烷胺敏感。【结论】基于M基因的焦磷酸测序技术可以用于我国猪流感病毒金刚烷胺耐药性快速鉴定。  相似文献   

2.
2009~2011年从江苏省、湖北省和安徽省等地来源于鸡、鸭、鹌鹑和鸽子的样品中分离鉴定出16株H9N2亚型禽流感病毒。通过反转录聚合酶链式反应(RT-PCR)扩增出分离株的全基因片段,并对其进行测序及遗传进化分析。序列分析显示,16株病毒HA基因裂解位点氨基酸序列为P-S-R/K-S-S-R,符合低致病性禽流感的分子特征;226位均为L,具有与哺乳动物唾液酸α,2-6受体结合的特性。M2基因均出现了对金刚烷胺产生耐药性的N31S突变。不同宿主来源的H9亚型AIV的主要分子特征一致。全基因遗传进化分析表明16株H9N2亚型禽流感病毒全基因发生了3配体重组,即以F98亚系AIV为骨架,HA来源于Y280亚系,PB2和M基因来源于G1亚系,形成了2种新的基因型。因此,要加强对H9N2亚型禽流感病毒的监测,密切关注它的重组趋势。  相似文献   

3.
【目的】揭示一例混合感染中H3N2和N7N9流感病毒的分子遗传特性。【方法】通过荧光定量PCR法对标本进行流感病毒分型检测。通过二代测序技术对病毒分离物进行全基因组测序分析。【结果】2013年4月在南京市检测到一例人季节性H3N2流感病毒和禽流感H7N9病毒混合感染,混合病毒分别命名为A/Nanjing/M1/2013 (H3N2) (M1-H3N2)和A/Nanjing/M2/2013 (H7N9) (M2-H7N9)。分离株M2-H7N9 HA蛋白的Q226L位点和PB2蛋白E627K位点发生突变,增强了病毒对人体的感染能力。【结论】报道了一起人混合感染H3N2和N7N9流感病毒病例,提示人可能成为流感病毒基因“混合器”,应高度关注H7N9病毒与人季节性流感病毒的基因重配现象。  相似文献   

4.
目的:建立基于核酸序列分析的快速、准确、低成本的甲型H1N1流感病毒检测方法。方法:通过优化焦测序反应体系中ATP硫酸化酶和荧光素酶的浓度,建立高灵敏的焦测序反应体系;将该体系应用于低成本、小型化的便携式生物发光分析仪,焦测序分析流感病毒M、NP、HA基因片段的核酸序列。结果:优化后的焦测序反应体系可检测低至10 fmol的DNA样本,检测灵敏度较传统焦测序提高了10倍以上。对两例样本进行检测,根据所测得的M、NP、HA基因特异性片段序列,可以确认其均为甲型H1N1感染;另外,对M2蛋白阻断剂耐药性标志位点(S31N突变)的测定结果显示该病毒存在S31N突变,为M2蛋白阻断剂耐药型。结论:高灵敏焦测序体系结合便携式生物发光分析仪成功实现了对甲型H1N1流感病毒快速、准确的低成本检测。  相似文献   

5.
为明确广东地区分离的一株禽流感病毒H5N1的遗传背景,建立流感病毒反向遗传的平台。对该株禽流感病毒进行了空斑纯化与组织细胞培养,检测其在MDCK细胞中的增殖特性;利用H5N1病毒通用引物,通过RT-PCR对该病毒全基因组的8条片段进行全长克隆及测序分析;将H5N1的8条全长基因组片段分别插入反向遗传通用载体中,构建禽流感病毒H5N1的感染性克隆。结果表明,该H5N1毒株在MDCK细胞中可不依赖胰酶进行有效增殖与复制,可使MDCK细胞出现典型细胞病变,具有高致病性禽流感病毒的细胞增殖特征。RT-PCR克隆得到该H5N1毒株的PB2、PB1、PA、HA、NP、NA、M和NS八条全长片段,经测序分析确认该毒株的基因序列,其内部编码序列出现多处突变,其中HA连接肽为多个连续碱性氨基酸,表明该毒株可不依赖胰酶进行有效复制,与细胞培养结果一致,未出现抗药性的遗传突变。PCR与测序证明,插入H5N1八个全长基因组片段的载体序列完全正确,表明成功构建了该毒株的感染性克隆。为明确病毒遗传信息,建立流感病毒反向遗传的平台,为进一步研究禽流感病毒相关疫苗提供了研究基础。  相似文献   

6.
雍玮  乔梦凯  石利民  王璇  何敏  丁洁 《微生物学通报》2019,46(11):3058-3069
【背景】H5N1禽流感病毒可以感染人类导致重症呼吸道感染,致死率高。【目的】研究我中心确认的一例人感染高致病性禽流感H5N1病毒A/Nanjing/1/2015的可能起源及基因组分子特征。【方法】对病人痰液样本中的H5N1病毒进行全基因组测序,使用CLC Genomics Workbench 9.0对序列进行拼接,使用BLAST和MEGA 5.22软件进行同源性比对和各片段分子特征分析。【结果】该株禽流感病毒属于H5亚型的2.3.2.1c家系,其8个片段均与江浙地区禽类中分离的病毒高度同源,未发现有明显的重配。分子特征显示,该病毒血凝素(Hemagglutinin,HA)蛋白裂解位点为PQRERRRR/G,受体结合位点呈现禽类受体特点,但出现D94N、S133A和T188I氨基酸置换增强了病毒对人类受体的亲和性。神经氨酸酶(Neuraminidase,NA)蛋白颈部在49-68位缺失20个氨基酸,非结构蛋白1 (Non-structure protein,NS1)存在P42S置换和80-84位氨基酸的缺失。其他蛋白中也存在多个增强病毒致病力和对人类细胞亲和力的氨基酸突变。对耐药位点分析发现存在对奥司他韦的耐药突变H_274Y,病毒对金刚烷胺仍旧敏感。【结论】人感染高致病性禽流感H5N1病毒A/Nanjing/1/2015属于2.3.2.1c家系,禽类来源,关键位点较保守,但仍出现了多个氨基酸的进化与变异使其更利于感染人类。H5N1禽流感病毒进化活跃,持续动态监测不能放松。  相似文献   

7.
本研究旨在建立H7N9亚型禽流感病毒NA基因分子标签的焦磷酸测序检测方法,用于H7N9型禽流感病毒的快速检测和鉴定。通过对公开发表的H7N9亚型禽流感病毒NA基因序列进行比对,发现分离株在NA基因特定区域缺失的15个核苷酸可作为H7N9亚型禽流感病毒NA基因特异性的分子标签。通过设计覆盖此区域的特异性扩增引物和测序引物,建立了H7N9型禽流感病毒NA基因焦磷酸测序检测方法。基于NA基因特定缺失区域建立的焦磷酸测序技术能用于H7N9亚型禽流感病毒国内分离株NA基因的快速检测和鉴定,且具有较好的特异性和重复性。通过对3株H7N9亚型禽流感病毒分离株的检测,表明3株H7N9亚型禽流感病毒的NA基因均存在15个核苷酸缺失的分子标签。本研究建立的H7N9亚型禽流感病毒NA焦磷酸测序检测方法,可用于H7N9禽流感病毒的检测和鉴定。  相似文献   

8.
目的利用A/H6N1亚型禽流感病毒的反向遗传平台,评估PB2 E627K对A/H6N1亚型禽流感病毒的致病性,探究A/H6N1流感病毒的致病性分子基础。方法通过A/H6N1亚型禽流感病毒A/Mallard/San-Jiang/275/2007株反向遗传操作系统和点突变技术拯救病毒rA/H6N1和PB2 E627K位点发生突变的rA/H6N1-627,两株拯救病毒分别以101EID50~106EID50的攻毒剂量人工感染BALB/c小鼠,通过体重变化、死亡率、病毒滴定等方面进行致病性分析。结果成功构建A/H6N1亚型禽流感病毒的反向遗传平台,rA/H6N1的8个基因片段完全源于A/H6N1的基因组,核苷酸序列及生物学特性与A/H6N1完全一致。rA/H6N1能够人工感染BALB/c小鼠,但不致死,对BALB/c小鼠呈现低致病性(MLD50>106.5EID50),病毒在小鼠体内的分布情况及各个脏器中的病毒滴度与A/H6N1保持一致;rA/H6N1-627能感染小鼠,引起小鼠体重下降,但不能引起所有106EID50组小鼠死亡,病毒能在小鼠的肺脏和脑部进行增殖。结论实验结果表明,在H5N1禽流感中发挥重要作用的PB2-E627K位点并非A/H6N1流感病毒的毒力决定因子。A/H6N1流感病毒致病性的分子基础还有待继续研究,该反向遗传操作系统和点突变技术的建立为研究该亚型流感病毒致病机制、传播机制及病毒基因功能奠定了基础,同时也为A/H6N1亚型禽流感病毒新型疫苗的研制开辟了新途径。  相似文献   

9.
【背景】1997年香港发生人感染禽流感事件以来,禽流感病毒成为持续威胁人类健康和公共卫生的重要病原体。【目的】对一例人感染新型H10N3禽流感病毒病例开展分子溯源研究。【方法】流感病毒分型检测采用RT-qPCR法,在下一代测序平台上完成病毒基因组测序,序列和系统进化分析采用BLAST和MEGA 6.1等生物信息学软件。【结果】2021年4月从严重呼吸道疾病患者体内分离到一株病毒,经核酸检测和序列分析,结果表明其为H10N3亚型禽流感病毒。从患者居所附近的农贸市场分离到一株基因高度同源的H10N3亚型禽流感病毒。分离株是一种新的基因重配H10N3禽流感病毒,其血凝素hemagglutinin(HA)和神经氨酸酶neuraminidase(NA)组合最早在2019年华东地区的家禽中检测到,6个内部基因来源于近年来中国南方家禽中流行的H9N2病毒。病毒的HA蛋白的裂解位点含有1个碱性氨基酸R,未插入多个碱性氨基酸,理论上不属于高致病性禽流感病毒。HA蛋白受体结合位点228位氨基酸残基由G突变为S,理论上增强了对人SAα2,6受体的亲和力。另外,未发现PB2蛋白E627K突变,但591位氨基酸...  相似文献   

10.
浙江省首例人禽流感病例的病原学与分子生物学研究   总被引:3,自引:0,他引:3  
为确认浙江省首例疑似人禽流感病例,进行病原学分析,对患者气管吸出物进行核酸RT-PCR、荧光定量RT-PCR检测以及病毒分离,并对患者血清进行HI抗体测定.结果表明患者气管吸出物H5N1亚型和A型流感病毒特异核酸均呈阳性,分离到禽流感病毒A/Zhejiang/16/06(H5N1)株;双份血清中禽流感病毒(H5N1)HI抗体滴度分别为1320和1640,从病原学和血清学上证实为人禽流感病例.分离毒株测序结果显示,A/Zhejiang/16/06(H5N1)株在HA裂解位点为多个碱性氨基酸,符合高致病性禽流感病毒特征;该毒株的HA、NA、PB2、NP、M和NS基因序列均为禽源,与2005年我国福建、安徽等地禽流感病毒分离株高度同源,而与越南、泰国以及香港1997年分离到的禽流感病毒株之间存在明显差异.  相似文献   

11.
We surveyed the incidence of amantadine-resistant influenza A viruses both at sentinel surveillance sites and at nursing homes, and verified their types of change by partial nucleotide sequence analysis of the M2 protein. Fifty-five influenza A viruses from 27 sentinel surveillance sites during six influenza seasons from 1993 to 1999, and 26 influenza A viruses from 5 nursing homes from 1996 to 1999 were examined for susceptibility to the drug by virus titration in the presence or absence of amantadine. While amantadine-resistant viruses were not found in sentinel surveillance sites, a high frequency of resistance (8/26, 30.8%) in nursing homes was observed. Resistant viruses can occur quickly and be transmitted when used in an outbreak situation at nursing homes, where amantadine is used either for neurologic indications or for influenza treatment. Eight resistant viruses had a single amino acid change of the M2 protein at residue 30 or 31. In vitro, all 11 sensitive viruses turned resistant after 3 or 5 passages in the presence of 2 microg/ml amantadine, and they showed an amino acid change at residue 27, 30, or 31. The predominant amino acid substitution in the M2 protein of resistant viruses is Ser-31-Asp (a change at 31, serine to asparagine). The results indicate that a monitoring system for amantadine-resistant influenza viruses should be established without delay in Japan.  相似文献   

12.
We established a reverse genetics system for the M gene of influenza A virus, using amantadine resistance as a selection criterion. Transfection of an artificial M ribonucleoprotein complex of A/Puerto Rico/8/34 (H1N1), a naturally occurring amantadine-resistant virus, and superinfection with amantadine-sensitive A/equine/Miami/1/63 (H3N8), followed by cultivation in the presence of the drug, led to the generation of a transfectant virus with the A/Puerto Rico/8/34 (H1N1) M gene. With this system, we attempted to generate a virus containing a deletion in an M-gene product (M2 protein). Viruses lacking the carboxyl-terminal Glu of M2, but not those lacking 5 or 10 carboxyl-terminal residues, were rescued in the presence of amantadine. These findings indicate that carboxyl-terminal residues of the M2 protein play an important role in influenza virus replication. The M-gene-based reverse genetics system will allow the study of different M-gene mutations to achieve a balance between attenuation and virus replication, thus facilitating the production of live vaccine strains.  相似文献   

13.
The emergence of influenza A viruses which had acquired resistance to rimantadine during a clinical trial (C. B. Hall, R. Dolin, C. L. Gala, D. M. Markovitz, Y. Q. Zhang, P. H. Madore, F. A. Disney, W. B. Talpey, J. L. Green, A. B. Francis, and M. E. Pichichero, Pediatrics 80:275-282, 1987) provided the opportunity to determine the genetic basis of this phenomenon. Analysis of reassortant viruses generated with a resistant clinical isolate (H3N2) and the susceptible influenza A/Singapore/57 (H2N2) virus indicated that RNA segment 7 coding for matrix and M2 proteins conferred the resistant phenotype. Resistant viruses isolated from seven patients each contained a single change in the nucleotide sequence coding for the M2 protein which resulted in substitutions in amino acid 30 (two viruses) or 31 (five viruses) in the transmembrane domain of the molecule. These changes occurred in locations identified in influenza viruses selected for resistance to amantadine in tissue culture and indicate a common mechanism of action of the two compounds in cell culture and during chemotherapeutic use.  相似文献   

14.
Adamantanes (amantadine and rimantadine) have been used to prevent and treat influenza A virus infections for many years; however, resistance to these drugs has been widely reported in the world. To investigate the frequency and distribution of M2 gene mutations in adamantane-resistant influenza variants circulated in the world between 1902 and 2013, 31251 available M2 protein sequences from different HA-subtype influenza A viruses (H1–H17) were analyzed and adamantane resistance-associated mutations were compared (L26F, V27A, A30T, A30V, S31N, G34E, and L38F). We find that 45.2% (n = 14132) of influenza A (H1–H17) viruses circulating globally were resistant to adamantanes, and the vast majority of resistant viruses (95%) bear S31N mutations. Whereas, only about 1% have V27A mutations and other mutations (L26F, A30T, G34E, and L38F) were extremely rare (their prevalence appeared to be < 0.2%). Our results confirm that H1, H3, H5, H7, H9, and H17 subtype influenza A viruses exhibit high-level resistance to adamantanes. In contrast, the appearance of adamantane-resistant mutants in H2, H4, H6, H10, and H11 subtypes was rare. However, no adamantane resistance viruses were identified among other HA subtypes (H8, H12–H16). Our findings indicate that the frequency and distribution of adamantane-resistant influenza variants varied among different HA subtypes, host species, years of isolation, and geographical areas. This comprehensive study raises concerns about the increasing prevalence of adamantane-resistant influenza A viruses and highlights the importance of monitoring the emergence and worldwide spread of adamantane-resistant variants.  相似文献   

15.
The amantadine-sensitive ion channel activity of influenza A virus M2 protein was discovered through understanding the two steps in the virus life cycle that are inhibited by the antiviral drug amantadine: virus uncoating in endosomes and M2 protein-mediated equilibration of the intralumenal pH of the trans Golgi network. Recently it was reported that influenza virus can undergo multiple cycles of replication without M2 ion channel activity (T. Watanabe, S. Watanabe, H. Ito, H. Kida, and Y. Kawaoka, J. Virol. 75:5656-5662, 2001). An M2 protein containing a deletion in the transmembrane (TM) domain (M2-del(29-31)) has no detectable ion channel activity, yet a mutant virus was obtained containing this deletion. Watanabe and colleagues reported that the M2-del(29-31) virus replicated as efficiently as wild-type (wt) virus. We have investigated the effect of amantadine on the growth of four influenza viruses: A/WSN/33; N31S-M2WSN, a mutant in which an asparagine residue at position 31 in the M2 TM domain was replaced with a serine residue; MUd/WSN, which possesses seven RNA segments from WSN plus the RNA segment 7 derived from A/Udorn/72; and A/Udorn/72. N31S-M2WSN was amantadine sensitive, whereas A/WSN/33 was amantadine resistant, indicating that the M2 residue N31 is the sole determinant of resistance of A/WSN/33 to amantadine. The growth of influenza viruses inhibited by amantadine was compared to the growth of an M2-del(29-31) virus. We found that the M2-del(29-31) virus was debilitated in growth to an extent similar to that of influenza virus grown in the presence of amantadine. Furthermore, in a test of biological fitness, it was found that wt virus almost completely outgrew M2-del(29-31) virus in 4 days after cocultivation of a 100:1 ratio of M2-del(29-31) virus to wt virus, respectively. We conclude that the M2 ion channel protein, which is conserved in all known strains of influenza virus, evolved its function because it contributes to the efficient replication of the virus in a single cycle.  相似文献   

16.
The influenza A virus M2 integral membrane protein has ion channel activity that can be inhibited by the antiviral drug amantadine. Recently, a spirene-containing compound, BL-1743 (2-[3-azaspiro (5,5)undecanol]-2-imidazoline), that inhibits influenza virus growth was identified (S. Kurtz, G. Lao, K. M. Hahnenberger, C. Brooks, O. Gecha, K. Ingalls, K.-I. Numata, and M. Krystal, Antimicrob. Agents Chemother. 39:2204-2209, 1995). We have examined the ability of BL-1743 to inhibit the M2 ion channel when expressed in oocytes of Xenopus laevis. BL-1743 inhibition is complete as far as can be measured by electrophysiological methods and is reversible, with a reverse reaction rate constant of 4.0 x 10(-3) s(-1). In contrast, amantadine inhibition is irreversible within the time frame of the experiment. However, BL-1743 inhibition and amantadine inhibition have similar properties. The majority of isolated influenza viruses resistant to BL-1743 are also amantadine resistant. In addition, all known amino acid changes which result in amantadine resistance also confer BL-1743 resistance. However, one BL-1743-resistant virus isolated, designated M2-I35T, contained the change Ile-35-->Thr. This virus is >70-fold more resistant to BL-1743 and only 10-fold more resistant to amantadine than the wild-type virus. When the ion channel activity of M2-I35T was examined in oocytes, it was found that M2-I35T is BL-1743 resistant but is reversibly inhibited by amantadine. These findings suggest that these two drugs interact differently with the M2 protein transmembrane pore region.  相似文献   

17.
C Wang  K Takeuchi  L H Pinto    R A Lamb 《Journal of virology》1993,67(9):5585-5594
The influenza A virus M2 integral membrane protein has ion channel activity which can be blocked by the antiviral drug amantadine. The M2 protein transmembrane domain is highly conserved in amino acid sequence for all the human, swine, equine, and avian strains of influenza A virus, and thus, known amino acid differences could lead to altered properties of the M2 ion channel. We have expressed in oocytes of Xenopus laevis the M2 protein of human influenza virus A/Udorn/72 and the avian virus A/chicken/Germany/34 (fowl plague virus, Rostock) and derivatives of the Rostock ion channel altered in the presumed pore region. The pH of activation of the M2 ion channels and amantadine block of the M2 ion channels were investigated. The channels were found to be activated by pH in a similar manner but differed in their apparent Kis for amantadine block.  相似文献   

18.
To analyze the compatibility of avian influenza A virus hemagglutinins (HAs) and human influenza A virus matrix (M) proteins M1 and M2, we doubly infected Madin-Darby canine kidney cells with amantadine (1-aminoadamantane hydrochloride)-resistant human viruses and amantadine-sensitive avian strains. By using antisera against the human virus HAs and amantadine, we selected reassortants containing the human virus M gene and the avian virus HA gene. In our system, high virus yields and large, well-defined plaques indicated that the avian HAs and the human M gene products could cooperate effectively; low virus yields and small, turbid plaques indicated that cooperation was poor. The M gene products are among the primary components that determine the species specificities of influenza A viruses. Therefore, our system also indicated whether the avian HA genes effectively reassorted into the genome and replaced the HA gene of the prevailing human influenza A viruses. Most of the avian HAs that we tested efficiently cooperated with the M gene products of the early human A/PR/8/34 (H1N1) virus; however, the avian HAs did not effectively cooperate with the most recently isolated human virus that we tested, A/Nanchang/933/95 (H3N2). Cooperation between the avian HAs and the M proteins of the human A/Singapore/57 (H2N2) virus was moderate. These results suggest that the currently prevailing human influenza A viruses might have lost their ability to undergo antigenic shift and therefore are unable to form new pandemic viruses that contain an avian HA, a finding that is of great interest for pandemic planning.  相似文献   

19.

Background

Prior to 2007, highly pathogenic avian influenza (HPAI) H5N1 viruses isolated from poultry and humans in Vietnam were consistently reported to be clade 1 viruses, susceptible to oseltamivir but resistant to amantadine. Here we describe the re-emergence of human HPAI H5N1 virus infections in Vietnam in 2007 and the characteristics of the isolated viruses.

Methods and Findings

Respiratory specimens from patients suspected to be infected with avian influenza in 2007 were screened by influenza and H5 subtype specific polymerase chain reaction. Isolated H5N1 strains were further characterized by genome sequencing and drug susceptibility testing. Eleven poultry outbreak isolates from 2007 were included in the sequence analysis. Eight patients, all of them from northern Vietnam, were diagnosed with H5N1 in 2007 and five of them died. Phylogenetic analysis of H5N1 viruses isolated from humans and poultry in 2007 showed that clade 2.3.4 H5N1 viruses replaced clade 1 viruses in northern Vietnam. Four human H5N1 strains had eight-fold reduced in-vitro susceptibility to oseltamivir as compared to clade 1 viruses. In two poultry isolates the I117V mutation was found in the neuraminidase gene, which is associated with reduced susceptibility to oseltamivir. No mutations in the M2 gene conferring amantadine resistance were found.

Conclusion

In 2007, H5N1 clade 2.3.4 viruses replaced clade 1 viruses in northern Vietnam and were susceptible to amantadine but showed reduced susceptibility to oseltamivir. Combination antiviral therapy with oseltamivir and amantadine for human cases in Vietnam is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号