首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
2.
Neural crest cells (NCCs) are physically responsible for craniofacial skeleton formation, pharyngeal arch artery remodeling and cardiac outflow tract septation during vertebrate development. Cdc42 (cell division cycle 42) is a Rho family small GTP-binding protein that works as a molecular switch to regulate cytoskeleton remodeling and the establishment of cell polarity. To investigate the role of Cdc42 in NCCs during embryonic development, we deleted Cdc42 in NCCs by crossing Cdc42 flox mice with Wnt1-cre mice. We found that the inactivation of Cdc42 in NCCs caused embryonic lethality with craniofacial deformities and cardiovascular developmental defects. Specifically, Cdc42 NCC knockout embryos showed fully penetrant cleft lips and short snouts. Alcian Blue and Alizarin Red staining of the cranium exhibited an unfused nasal capsule and palatine in the mutant embryos. India ink intracardiac injection analysis displayed a spectrum of cardiovascular developmental defects, including persistent truncus arteriosus, hypomorphic pulmonary arteries, interrupted aortic arches, and right-sided aortic arches. To explore the underlying mechanisms of Cdc42 in the formation of the great blood vessels, we generated Wnt1Cre-Cdc42-Rosa26 reporter mice. By beta-galactosidase staining, a subpopulation of Cdc42-null NCCs was observed halting in their migration midway from the pharyngeal arches to the conotruncal cushions. Phalloidin staining revealed dispersed, shorter and disoriented stress fibers in Cdc42-null NCCs. Finally, we demonstrated that the inactivation of Cdc42 in NCCs impaired bone morphogenetic protein 2 (BMP2)-induced NCC cytoskeleton remodeling and migration. In summary, our results demonstrate that Cdc42 plays an essential role in NCC migration, and inactivation of Cdc42 in NCCs impairs craniofacial and cardiovascular development in mice.  相似文献   

3.
The Hedgehog signaling pathway is critical for a significant number of developmental patterning events. In this study, we focus on the defects in pharyngeal arch and cardiovascular patterning present in Sonic hedgehog (Shh) null mouse embryos. Our data indicate that, in the absence of Shh, there is general failure of the pharyngeal arch development leading to cardiac and craniofacial defects. The cardiac phenotype results from arch artery and outflow tract patterning defects, as well as abnormal development of migratory neural crest cells (NCCs). The constellation of cardiovascular defects resembles a severe form of the human birth defect syndrome tetralogy of Fallot with complete pulmonary artery atresia. Previous studies have demonstrated a role for Shh in NCC survival and proliferation at later stages of development. Our data suggest that SHH signaling does not act directly on NCCs as a survival factor, but rather acts to restrict the domains that NCCs can populate during early stages (e8.5-10.5) of cardiovascular and craniofacial development.  相似文献   

4.
Evidence in animal models indicates that signaling networks functioning in the developing pharyngeal arches regulate stereotyped processes critical for proper development of the aortic arch and cardiac outflow tract. Here, we describe the phenotype of mice lacking fibroblast growth factor 15 (Fgf15), which encodes a secreted signaling molecule expressed within the developing pharyngeal arches. Homozygous Fgf15 mutants present heart defects consistent with malalignment of the aorta and pulmonary trunk. These defects correlate with early morphological defects of the outflow tract due to aberrant behavior of the cardiac neural crest. We demonstrate that Fgf15 expression within the pharyngeal arches is unaltered by a loss of Tbx1, a key regulator of pharyngeal arch development implicated in DiGeorge syndrome. In addition, Fgf15 and Tbx1 do not interact genetically, suggesting that Fgf15 operates through a pathway independent of Tbx1. These studies reveal a novel role of Fgf15 during development of the cardiac outflow tract.  相似文献   

5.
Cardiac and cephalic neural crest cells (NCCs) are essential components of the craniofacial and aortic arch mesenchyme. Genetic disruption of the platelet-derived growth factor receptor alpha (PDGFRalpha) results in defects in multiple tissues in the mouse, including neural crest derivatives contributing to the frontonasal process and the aortic arch. Using chimeric analysis, we show that loss of the receptor in NCCs renders them inefficient at contributing to the cranial mesenchyme. Conditional gene ablation in NCCs results in neonatal lethality because of aortic arch defects and a severely cleft palate. The conotruncal defects are first observed at E11.5 and are consistent with aberrant NCC development in the third, fourth and sixth branchial arches, while the bone malformations present in the frontonasal process and skull coincide with defects of NCCs from the first to third branchial arches. Changes in cell proliferation, migration, or survival were not observed in PDGFRalpha NCC conditional embryos, suggesting that the PDGFRalpha may play a role in a later stage of NCC development. Our results demonstrate that the PDGFRalpha plays an essential, cell-autonomous role in the development of cardiac and cephalic NCCs and provides a model for the study of aberrant NCC development.  相似文献   

6.
Several syndromes characterized by defects in cardiovascular and craniofacial development are associated with a hemizygous deletion of chromosome 22q11 in humans and involve defects in pharyngeal arch and neural crest cell development. Recent efforts have focused on identifying 22q11 deletion syndrome modifying loci. In this study, we show that mouse embryos deficient for Gbx2 display aberrant neural crest cell patterning and defects in pharyngeal arch-derived structures. Gbx2(-/-) embryos exhibit cardiovascular defects associated with aberrant development of the fourth pharyngeal arch arteries including interrupted aortic arch type B, right aortic arch, and retroesophageal right subclavian artery. Other developmental abnormalities include overriding aorta, ventricular septal defects, cranial nerve, and craniofacial skeletal patterning defects. Recently, Fgf8 has been proposed as a candidate modifier for 22q11 deletion syndromes. Here, we demonstrate that Fgf8 and Gbx2 expression overlaps in regions of the developing pharyngeal arches and that they interact genetically during pharyngeal arch and cardiovascular development.  相似文献   

7.
An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome   总被引:12,自引:0,他引:12  
Deletion of chromosome 22q11, the most common microdeletion detected in humans, is associated with a life-threatening array of birth defects. Although 90% of affected individuals share the same three megabase deletion, their phenotype is highly variable and includes craniofacial and cardiovascular anomalies, hypoplasia or aplasia of the thymus with associated deficiency of T cells, hypocalcemia with hypoplasia or aplasia of the parathyroids, and a variety of central nervous system abnormalities. Because ablation of neural crest in chicks produces many features of the deletion 22q11 syndrome, it has been proposed that haploinsufficiency in this region impacts neural crest function during cardiac and pharyngeal arch development. Few factors required for migration, survival, proliferation and subsequent differentiation of pharyngeal arch neural crest and mesoderm-derived mesenchyme into their respective cardiovascular, musculoskeletal, and glandular derivatives have been identified. However, the importance of epithelial-mesenchymal interactions and pharyngeal endoderm function is becoming increasingly clear. Fibroblast growth factor 8 is a signaling molecule expressed in the ectoderm and endoderm of the developing pharyngeal arches and known to play an important role in survival and patterning of first arch tissues. We demonstrate a dosage-sensitive requirement for FGF8 during development of pharyngeal arch, pharyngeal pouch and neural crest-derived tissues. We show that FGF8 deficient embryos have lethal malformations of the cardiac outflow tract, great vessels and heart due, at least in part, to failure to form the fourth pharyngeal arch arteries, altered expression of Fgf10 in the pharyngeal mesenchyme, and abnormal apoptosis in pharyngeal and cardiac neural crest. The Fgf8 mutants described herein display the complete array of cardiovascular, glandular and craniofacial phenotypes seen in human deletion 22q11 syndromes. This represents the first single gene disruption outside the typically deleted region of human chromosome 22 to fully recapitulate the deletion 22q11 phenotype. FGF8 may operate directly in molecular pathways affected by deletions in 22q11 or function in parallel pathways required for normal development of pharyngeal arch and neural crest-derived tissues. In either case, Fgf8 may function as a modifier of the 22q11 deletion and contribute to the phenotypic variability of this syndrome.  相似文献   

8.
Most of the bone, cartilage and connective tissue of the lower jaw is derived from cranial neural crest cells (NCCs) arising from the posterior midbrain and hindbrain. Multiple factors direct the patterning of these NCCs, including endothelin-1-mediated endothelin A receptor (Edn1/Ednra) signaling. Loss of Ednra signaling results in multiple defects in lower jaw and neck structures, including homeotic transformation of lower jaw structures into upper jaw-like structures. However, since the Ednra gene is expressed by both migrating and post-migrating NCCs, the actual function of Ednra in cranial NCC development is not clear. Ednra signaling could be required for normal migration or guidance of NCCs to the pharyngeal arches or in subsequent events in post-migratory NCCs, including proliferation and survival. To address this question, we performed a fate analysis of cranial NCCs in Ednra-/- embryos using the R26R;Wnt1-Cre reporter system, in which Cre expression within NCCs results in permanent beta-galactosidase activity in NCCs and their derivatives. We find that loss of Ednra does not detectably alter either migration of most cranial NCCs into the mandibular first arch and second arch or their subsequent proliferation. However, mesenchymal cell apoptosis is increased two fold in both E9.5 and E10.5 Ednra-/- embryos, with apoptotic cells being present in and just proximal to the pharyngeal arches. Based on these studies, Ednra signaling appears to be required by most cranial NCCs after they reach the pharyngeal arches. However, a subset of NCCs appear to require Ednra signaling earlier, with loss of Ednra signaling likely leading to premature cessation of migration into or within the arches and subsequent cell death.  相似文献   

9.
Fibroblast growth factor 8 (Fgf8) is expressed in many domains of the developing embryo. Globally decreased FGF8 signaling during murine embryogenesis results in a hypomorphic phenotype with a constellation of heart, outflow tract, great vessel and pharyngeal gland defects that phenocopies human deletion 22q11 syndromes, such as DiGeorge. We postulate that these Fgf8 hypomorphic phenotypes result from disruption of local FGF8 signaling from pharyngeal arch epithelia to mesenchymal cells populating and migrating through the third and fourth pharyngeal arches. To test our hypothesis, and to determine whether the pharyngeal ectoderm and endoderm Fgf8 expression domains have discrete functional roles, we performed conditional mutagenesis of Fgf8 using novel Crerecombinase drivers to achieve domain-specific ablation of Fgf8 gene function in the pharyngeal arch ectoderm and endoderm. Remarkably, ablating FGF8 protein in the pharyngeal arch ectoderm causes failure of formation of the fourth pharyngeal arch artery that results in aortic arch and subclavian artery anomalies in 95% of mutants; these defects recapitulate the spectrum and frequency of vascular defects reported in Fgf8 hypomorphs. Surprisingly, no cardiac, outflow tract or glandular defects were found in ectodermal-domain mutants, indicating that ectodermally derived FGF8 has essential roles during pharyngeal arch vascular development distinct from those in cardiac, outflow tract and pharyngeal gland morphogenesis. By contrast, ablation of FGF8 in the third and fourth pharyngeal endoderm and ectoderm caused glandular defects and bicuspid aortic valve, which indicates that the FGF8 endodermal domain has discrete roles in pharyngeal and valvar development. These results support our hypotheses that local FGF8 signaling from the pharyngeal epithelia is required for pharyngeal vascular and glandular development, and that the pharyngeal ectodermal and endodermal domains of FGF8 have separate functions.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号