首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The effects of lead on Ca2+ homeostasis in nerve terminals was studied. Incubation with leadin vitro stimulated the activity of calmodulin and the maximum effect was observed at 30 M lead, higher concentrations had an inhibitory effect.In vivo exposure to lead increased the activity of calmodulin by 45%. Lead had an inhibitory effect on Ca2+ ATPase activity in both calmodulin-rich and calmodulin-depleted synaptic plasma membranes, the IC50 values for inhibition being 13.34 and 16.69 M respectively. Exogenous addition of calmodulin (5 g) and glutathione (1 mM) to calmodulin rich synaptic plasma membranes reversed the inhibition by IC50 concentration of lead.In vivo exposure of lead also significantly reduced the Ca2+ ATPase activity, resulting in an increase in intrasynaptosomal calcium. Concomitant with the increase in intrasynaptosomal calcium, lipid peroxidation values also increased significantly in lead-treated animals. In addition lead also had an inhibitory effect on depolarization induced Ca2+ uptake and the inhibition was found to be a competitive one. The results sugest that lead exerts its toxic effects by modifications of the intracellular calcium messenger system which would have serious consequences on neuronal functioning.  相似文献   

2.
Several studies have shown that organophosphate pesticides affect carbohydrate metabolism and produce hyperglycemia. It has been reported that exposure to the organophosphate pesticide dichlorvos affects glucose homeostasis and decreases liver glycogen content. Glucokinase (EC 2.7.1.1) is a tissue-specific enzyme expressed in liver and in pancreatic beta cells that plays a crucial role in glycogen synthesis and glucose homeostasis. In the present study we analyzed the effect of one or three days of dichlorvos administration [20 mg/kg body weight] on the activity and mRNA levels of hepatic and pancreatic glucokinase as well as on insulin mRNA abundance in the rat. We found that the pesticide affects pancreatic and hepatic glucokinase activity and expression differently. In the liver the pesticide decreased the enzyme activity; on the contrary glucokinase mRNA levels were increased. In contrast, pancreatic glucokinase activity as well as mRNA levels were not affected by the treatment. Insulin mRNA levels were not modified by dichlorvos administration. Our results suggest that the decreased activity of hepatic glucokinase may account for the adverse effects of dichlorvos on glucose metabolism.  相似文献   

3.
In depolarised anoxic synaptosomes, in which lactate production was significantly raised compared with normoxic conditions, calcium uptake, net acetylcholine release, and the intrasynaptosomal calcium concentration were all significantly lowered. In contrast, lactate production in synaptosomes incubated under aglycaemic- and ischaemic-type conditions was significantly lower and basal calcium uptake, acetylcholine release, and intrasynaptosomal calcium concentration were elevated compared with normoxia. In addition, the increase in intrasynaptosomal calcium concentration under the ischaemic-type condition appeared to be greater than could be accounted for by the rise in calcium uptake alone. Intrasynaptosomal pH reflected the lactate production under each condition investigated. Addition of exogenous lactate to normoxic synaptosomes mimicked the effects observed in anoxia, suggesting that lactate itself may have blocked the calcium uptake, inhibiting the rise in intrasynaptosomal calcium and acetylcholine release occurring in depolarised anoxic synaptosomes. When lactate was added to ischaemic synaptosomes, the large rise in intrasynaptosomal calcium concentration, calcium uptake, and acetylcholine release were decreased, suggesting that lactate may have a protective role in preventing cell death by calcium overload under ischaemic-type conditions. Evidence is presented to suggest that the effect of L-lactate was due to the lactate moiety itself rather than the associated acidosis.  相似文献   

4.
The protective effects of N-acetylcysteine (NAC) on carbofuran-induced alterations in calcium homeostasis and neurobehavioral functions were investigated in rats. Rats were exposed to carbofuran at a dose of 1 mg/kg body weight, orally for a period of 28 days. A significant decrease in Ca2+ATPase activity was observed following carbofuran exposure with a concomitant increase in K+-induced 45Ca2+ uptake through voltage operated calcium channels. This was accompanied with a marked accumulation of intracellular free calcium in synaptosomes. The increase in intracellular calcium levels were associated with an increased lipid peroxidation and decreased glutathione content in carbofuran exposed animals. NAC administration (200 mg/kg body weight, orally) to the carbofuran exposed animals had a beneficial effect on carbofuran-induced alterations in calcium homeostasis and resulted in repletion in glutathione levels and resulted in lowering the extent of lipid peroxidation. Marked impairment in the motor functions were seen following carbofuran exposure, which were evident by the significant decrease in the locomotor activity and reduction in the retention time of the rats on rotating rods. Cognitive deficits were also seen as indicated by the significant decrease in active and passive avoidance response. NAC treatment, on the other hand, protected the animals against carbofuran-induced neurobehavioral deficits. The results support the hypothesis that carbofuran exerts its toxic effects by disrupting calcium homeostasis, which may have serious consequences on neuronal functioning, and clearly show the potential beneficial effects of N-acetylcysteine on carbofuran induced alterations in synaptosomal calcium homeostasis.  相似文献   

5.
Ultraviolet B (UVB) could lead to the apoptosis of human lens epithelial cell and be hypothesized to be one of the important factors of cataractogenesis. In the human lens, Ca2+-ATPase is a major determinant of calcium homeostasis. Plasma membrane calcium ATPase1 (PMCA1) is a putative “housekeeping” isoform and is widely expressed in all tissues and cells, which plays an important role in calcium homeostasis. However, the effects of UVB-irradiation on the expression of PMCA1 and the cellular calcium homeostasis are still unclear. In the present study, we cultured human lens epithelial cells (HLE B-3) in vitro and investigated the effects of UVB irradiation on the expression of PMCA1 and the intracellular calcium homeostasis using real-time cell electronic sensing system, flow cytometry, fluo-3/AM probes, real-time quantitative PCR, and enzyme-linked immunosorbent assay techniques. We found that UVB irradiation could induce human lens epithelial cell death, cause intracellular calcium ion (Ca2+) elevation, inhibit Ca2+-ATPase activity and decrease the expression of PMCA1 at gene and protein levels, suggesting that the downregulation of PMCA1 and the disruption of calcium homeostasis may play important roles in UVB-induced HLE B-3 cell apoptosis.  相似文献   

6.
L-Lactate (4-32 mM) added exogenously to resting or depolarised rat forebrain synaptosomes led to a significant decrease in intrasynaptosomal pH. Similarly depolarisation-induced increases in intrasynaptosomal calcium, calcium uptake, and acetylcholine release were all inhibited. These effects mimicked those previously observed in synaptosomes under anoxic conditions and suggest that lactate may be involved in limiting the damage due to calcium accumulation occurring during ischaemia. D-Lactate (added exogenously up to 32 mM) did not produce similar effects on these parameters even though the concentrations of intrasynaptosomal D-lactate reached levels comparable to those obtained with L-lactate (at 8-16 mM exogenous concentration). The results suggest that the mechanism of action of lactate on these parameters is stereospecific for the L-enantiomer. The effect of glucose availability on lactate production was assessed to explore the role of substrate availability on ischaemia/anoxic events. When exogenous glucose was increased (10-60 mM), there was no further increase in lactate production in normoxic synaptosomes, which suggests that glucose is not limiting under these conditions. When glucose was removed, as may occur in complete ischaemia, there was a significant decrease in lactate production after 60 min under anoxic or normoxic conditions. It would seem likely therefore that the mechanism underlying the changes observed in synaptosomes incubated under conditions reflecting complete ischaemia does not involve lactate.  相似文献   

7.
In the present study we demonstrated that synaptosomes isolated from rabbit brain cortex contain NO synthase and xanthine oxidase that can be activated by ultraviolet B radiation and Ca2+ accumulation to produce nitric oxide and superoxide which react together to form peroxynitrite. Irradiation of synaptosomes with ultraviolet B (up to 100 mJ/cm2), or increase the intrasynaptosomal calcium concentration using various doses (up to 100 μM) of the calcium ionophore A 23187, a gradual increase in both nitric oxide and peroxynitrite release that was inhibited by N-monomethyl-L-arginine (100 μM) was observed. The rate of nitric oxide release and cyclic GMP production by NO synthase and soluble guanylate cyclase, both located in the soluble fraction of synaptosomes (synaptosol), were increased approximately eight fold after treatment of synaptosomes with Ultraviolet B radiation (100 mJ/cm2). In reconstitution experiments, when purified NO synthase isolated from synaptosol was added to xanthine oxidase, in the presence of the appropriate cofactors and substrates, a ten fold increase in peroxynitrite production at various doses (up to 20 mJ/cm2) of UVB radiation was observed. Ultraviolet B irradiated synaptosomes promptly increased malondialdehyde production with subsequent decrease of synaptosomal plasma membrane fluidity estimated by fluorescence anisotropy of 1-4-(trimethyl-amino-phenyl)-6-phenyl-hexa-1,3,5-triene. Desferrioxamine (100 μM) tested in Ultraviolet B-irradiated synaptosomes showed a decrease (approximately 80%) in malondialdehyde production with subsequent restoration of the membrane fluidity to that of non-irradiated (control) synaptosomes. Ca2+-stimulated ATPase activity was decreased after Ultraviolet B (100 mJ/cm2) radiation of synaptosomes indicating that the subsequent increase of intrasynaptosomal calcium promoted peroxynitrite production by a calmodulin-dependent increase of NO synthase and xanthine oxidase activities. Furthermore, it was shown that UVB-irradiated synaptosomes were subjected to higher oxidative stress by exogenous peroxynitrite (100 μM) compared to non-irradiated (control) synaptosomes. In summary, the present results indicate that activation of NO synthase and xanthine oxidase of brain cells lead to the formation of peroxynitrite providing important clues in the role of peroxynitrite as a causative factor in neurotoxicity.  相似文献   

8.
Synaptosomes exposed to anoxic insult produce lactate at a slow rate (measured over 60 min). No measurable damaging effects were produced by prolonged depolarisation, anoxic insult, or exogenous lactate (2-32 mM) either on the synaptic plasma membrane (as judged by release of lactate dehydrogenase and soluble proteins), or on synaptosomal phospholipases (as judged by choline release from membrane phospholipids). Potassium-stimulated acetylcholine release was decreased by incubation in the presence of lactate (2-32 mM), as was potassium- and veratrine-stimulated calcium uptake and the calcium content of depolarised synaptosomes. The intrasynaptosomal pH was also reduced but there was no stimulation of oxygen radical production (as judged by H2O2 generation) by exogenous lactate. The role that lactic acidosis may play in giving rise to the altered calcium homeostasis and decreased acetylcholine release from synaptosomes exposed to anoxic insult is discussed.  相似文献   

9.
The following organophosphates were tested for their ability to induce DNA damage in a rec-type repair test with Proteus mirabilis strains PG713 (rec? hcr?) and PG273 (wild type) and point mutations in his? strain TA100 of Salmonella typhimurium — butonate: O,O-dimethyl-(1-n-butyryloxy-2,2,2-trichloroethyl)-phosphonate; vinylbutonate: O,O-dimethyl-(n-butyryloxy-2,2-dichlorovinyl)-phosphonate; trichlorfon: O,O-dimethyl-(1-hydroxy-2,2,2-trichloroethyl)-phosphonate; dichlorvos: O,O-dimethyl-O-(2,2-dichlorovinyl)-phosphate; the demethylated derivatives — demethyldichlorvos: O-methyl-O-(2,2-dichlorovinyl)-phosphoric acid; demethyl vinylbutonate: O-methyl-(1-n-butyryloxy-2,2-dichlorovinyl)phosphonic acid. Of the six compounds tested, dichlorvos and trichlorfon induced base pair substitutions and DNA damage. No mutagenicity and DNA damage were found in experiments with butonate, vinylbutonate, demethyl vinylbutonate and demethyl dichlorvos. Genotoxic activity for dichlorvos and the absence of both mutagenic and DNA damaging properties for its non-alkylating demethyl derivative favors the hypothesis that alkylation of DNA is the essential step for mutation induction by this organophosphate. Furthermore, the absence of genetic effects after treatment with vinylbutonate and demethyl dichlorvos does not support a crucial role of vinyl or allyl groups in side chains of organophosphates for genetic activity. Microsomal enzymes decreased genetic activity of dichlorvos and trichlorfon in vitro. No evidence for a role of metabolic activation in the mutagenic activity of any of these compounds was found.  相似文献   

10.
ATP stimulates [Ca2+]i increases in midbrain synaptosomes via specific ionotropic receptors (P2X receptors). Previous studies have demonstrated the implication of P2X3 subunits in these responses, but additional P2X subunits must be involved. In the present study, ATP and BzATP proved to be able to induce intrasynaptosomal calcium transients in the midbrain synaptosomes, their effects being potentiated when assayed in a Mg2+-free medium. Indeed, BzATP was shown to be more potent than ATP, and their effects could be inhibited by PPADS and KN-62, but not by suramin. This activity profile is consistent with the presence of functional P2X7 receptors in the midbrain terminals. The existence of presynaptic responses to selective P2X7 agonists could be confirmed by means of a microfluorimetric technique allowing [Ca2+]i measurements in single synaptic terminals. Additionally, the P2X7 receptor protein could be identified in the midbrain synaptosomes and in axodendritic prolongations of cerebellar granule cells by immunochemical staining.  相似文献   

11.
The effects of vanadate on calcium homeostasis and enzyme secretion have been assessed in the incubated pancreas of young rats. Vanadate causes an acceleration of 45Ca efflux from pre-loaded uncinate glands; amylase release is reversibly increased for the duration of exposure to vanadate. Alkaline orthovanadate is most effective in eliciting these responses; its effects are greatly reduced at pH 7.4. However, changes in pH alone do not mimic these effects. Other vanadium oxides (metavanadate, vanadium pentoxide and vanadyl sulphate) are poor secretagogues. Alkaline ortho-, or meta-vanadate also causes an increased calcium uptake although this does not seem to be responsible for the observed secretory response. Vanadate is thought to stimulate pancreatic secretion by an effect on intracellular calcium store(s).  相似文献   

12.
The effect of hydrogen sulfide (H2S) donor sodium hydrosulfide (NaHS) on the heat resistance of wheat (Triticum aestivum L.) coleoptile cells, the formation of reactive oxygen species (ROS), and the activity of the antioxidant enzymes in them was investigated. The treatment of coleoptiles with 100 µM NaHS caused transient enhancement of the generation of the superoxide anion radical (O2 ?) and an increased hydrogen peroxide content. The activities of antioxidant enzymes—superoxide dismutase, catalase, and guaiacol peroxidase— and coleoptile resistance to damaging heat was later found to have increased. The biochemical and physiological effects of the hydrogen sulfide donor described above were inhibited by the treatment of wheat coleoptiles with the hydrogen peroxide scavenger dimethylthiourea, the NADPH oxidase inhibitor imidazole, the extracellular calcium chelator EGTA, and the phosphatidylinositol-specific phospholipase C inhibitor neomycin. A conclusion was made on the role of ROS generation, which is dependent on the activity of NADPH oxidase and calcium homeostasis, in the transduction of the H2S signal, which induces antioxidant enzymes and the development of plant cell heat resistance.  相似文献   

13.
The synaptosomal metabolism of glutamine was studied under in vitro conditions that simulate depolarization in vivo. With [2-15N]glutamine as precursor, the [glutamine]i was diminished in the presence of veratridine or 50 mM KCl, but the total amounts of [15N]glutamate and [15N]aspartate formed were either equal to those of control incubations (veratridine) or higher (50 mM [KCl]). This suggests that depolarization decreases glutamine uptake and independently augments glutaminase activity. Omission of sodium from the medium was associated with low internal levels of glutamine which indicates that influx occurs as a charged Na(+)-amino acid complex. It is postulated that a reduction in membrane potential and a collapse of the Na+ gradient decrease the driving forces for glutamine accumulation and thus inhibit its uptake and enhance its release under depolarizing conditions. Inorganic phosphate stimulated glutaminase activity, particularly in the presence of calcium. At 2 mM or lower [phosphate] in the medium, calcium inhibited glutamine utilization and the production of glutamate, aspartate, and ammonia from glutamine. At a high (10 mM) medium [phosphate], calcium stimulated glutamine catabolism. It is suggested that a veratridine-induced increase in intrasynaptosomal inorganic phosphate is responsible for the enhancement of flux through glutaminase; calcium affects glutaminase indirectly by modulating the level of free intramitochondrial [phosphate]. Because phosphate also lowers the Km of glutaminase for glutamine, augmentation of the amino acid breakdown may occur even when depolarization lowers [glutamine]i. Reducing the intrasynaptosomal glutamate to 26 nmol/mg of protein had little effect on glutamine catabolism, but raising the pH to 7.9 markedly increased formation of glutamate and aspartate. It is concluded that phosphate and H+ are the major physiologic regulators of glutaminase activity.  相似文献   

14.
The DNA damaging properties of dichlorvos (2,2 dichlorovinyl dimethyl phosphate), methyl methanesulphonate (MMS) and iodoacetamide (IAA) have been studied, using alkaline sucrose sedimentation. In a strain of E. coli deficient in DNA polymerase I (polA) both dichlorvos and MMS caused random strand breakage, MMS being about twice as efficient as dichlorvos on a molar basis. In pol+ bacteria, DNA strand breaks or alkali labile bonds were detected following treatment with roughly five-fold higher concentrations of MMS but at similar high concentrations of dichlorvos there was an all or none breakdown of DNA molecules to fragments of very low molecular weight which correlated well with lethality.DNA synthesized after treatment of pol+ and polA bacteria with MMS was of low molecular weight, indicating the presence of discontinuities. With dichlorvos, the effect was much smaller.Apparent all-or-none DNA breakdown was also found when the polA strain of E. coli was treated with low concentrations of iodoacetamide, an agent that does not detectably alkylate DNA. At higher concentrations the breakdown was suppressed and random strand breakage occurred instea. These effects did not occurr with pol+ bacteria and correlated well with the greater sensitivity to iodoacetamide of the polA strain in survival experiments. We suggest that the major DNA damage resulting from treatment with iodoacetamide and dichlorvos arises indirectly through alkylation of other cellular constituents and consequent uncontrolled nuclease attack on the DNA. Discontinuities in newly synthesized DNA and mutagenesis following dichlorvos treatment, however, presumably result from direct alkylation of DNA.Strand breakage caused by dichlorvos and MMS in Chinese hamster cells tended to correlate with the extent to which these agents alkylate DNA, but survivval tended to correlate with the alkylation of protein.  相似文献   

15.
Dopamine Uptake by Rat Striatal Synaptosomes: A Compartmental Analysis   总被引:5,自引:3,他引:2  
Abstract: Dopamine (DA) uptake into synaptosomes from rat corpus striatum was studied in the presence of a monoamine oxidase (MAO) inhibitor and dithiothreitol, by means of a filtration technique. Under these conditions a steady state develops rapidly in which the synaptosomal DA content remains constant while the continuing DA uptake is counterbalanced by DA efflux from the synaptosome. Exchange of synaptosomal [3H]DA and [14C]DA was measured under these conditions. In timecourse experiments it was found that exchange could be described significantly better by a three-compartment model than by a two-compartment model. However, if synaptosomes from reserpine-pretreated animals were used, analysis according to a three-compartment model did not result in a significantly better fit compared with a two-compartment model. Subsequently, kinetic transfer parameters describing DA fluxes between compartments at different DA concentrations were calculated from the fitted exchange curves. A Michaelis-Menten kinetic analysis indicated that only the in-series three-compartment configuration, in which DA is taken up from the medium into one synaptosomal compartment, from which it can subsequently be transferred to a second compartment without direct access to the medium, gave kinetically acceptable results. Transfer parameters in synaptosomes from reserpine-treated rats were comparable to those parameters describing DA transport between the medium and the first intrasynaptosomal compartment as measured under control conditions. Morover, it was found that potassium depolarization of synaptosomes resulted in a release of DA in a quantity similar to that found in the second intrasynaptosomal compartment. It is suggested that the two intrasynaptosomal compartments found correspond to a cytoplasmatic and vesicular DA pool, respectively. The functional significance of these findings is discussed in terms of the regulation of DA levels within the nerve terminal.  相似文献   

16.
Mammalian non-selective transient receptor potential cation channels (TRPCs) are important in the regulation of cellular calcium homeostasis. In thyroid cells, including rat thyroid FRTL-5 cells, calcium regulates a multitude of processes. RT-PCR screening of FRTL-5 cells revealed the presence of TRPC2 channels only. Knockdown of TRPC2 using shRNA (shTRPC2) resulted in decreased ATP-evoked calcium peak amplitude and inward current. In calcium-free buffer, there was no difference in the ATP-evoked calcium peak amplitude between control cells and shTRPC2 cells. Store-operated calcium entry was indistinguishable between the two cell lines. Basal calcium entry was enhanced in shTRPC2 cells, whereas the level of PKCβ1 and PKCδ, the activity of sarco/endoplasmic reticulum Ca2+-ATPase, and the calcium content in the endoplasmic reticulum were decreased. Stromal interaction molecule (STIM) 2, but not STIM1, was arranged in puncta in resting shTRPC2 cells but not in control cells. Phosphorylation site Orai1 S27A/S30A mutant and non-functional Orai1 R91W attenuated basal calcium entry in shTRPC2 cells. Knockdown of PKCδ with siRNA increased STIM2 punctum formation and enhanced basal calcium entry but decreased sarco/endoplasmic reticulum Ca2+-ATPase activity in wild-type cells. Transfection of a truncated, non-conducting mutant of TRPC2 evoked similar results. Thus, TRPC2 functions as a major regulator of calcium homeostasis in rat thyroid cells.  相似文献   

17.
Randall SK 《Plant physiology》1992,100(2):859-867
The vacuole plays a major structural and biochemical role in the higher plant cell. Among the most studied properties of the vacuole have been transport activities. One important aspect of vacuolar function is its participation in the regulation of cytosolic calcium levels. To identify the molecular entities involved in calcium regulation, a study of vacuole-associated, calcium-binding proteins (CaBs) was initiated. A competition assay was used, and it was observed that the majority of the total cellular membrane-associated, calcium-binding activity resided in low-density fractions enriched in vacuole membranes. Much of that calcium-binding activity was inactivated by a 0.5 m KI wash, and of the remaining activity, 77% was estimated to be peripherally associated with vacuolar membranes, whereas 23% was integrally associated with the vacuolar membrane. Calcium-ligand blots were used, and four major CaBs, with apparent molecular masses of 64, 58, 55, and 42 kD, were detected in purified vacuole membrane fractions. Two of these, the 58- and the 55-kD polypeptide, also appear to be present in significant amounts in endoplasmic reticulum-enriched fractions. However, the 64- and the 42-kD polypeptide are found primarily in vacuolar fractions. It is interesting that expression of the 42-kD polypeptide appears to be restricted to the heavily vacuolated cortical tissues (i.e. it is not found in vascular tissues). The localization of CaBs in the vacuole is consistent with the presence of calcium uptake (H+/Ca2+ antiport) and release mechanisms (inositol trisphosphate sensitive) on vacuolar membranes. These vacuole-associated CaBs, which may play a role in calcium buffering, together with the calcium transport systems, could mediate the vacuolar component of cellular calcium homeostasis.  相似文献   

18.
The in vitro effects of low-molecular-weight aluminum complexes (citrate, lactate, and ATP complex) on the Ca2+ uptake and aluminum-induced lipid peroxidation of brain tissue show that the modification of the calcium homeostasis is determined by the nature of the ligand and that there is no correlation between the aluminum-induced lipid peroxidation and the Ca2+ uptake. The same characteristics have been shown by a similar study performed with Ehrlich carcinoma cells. The electrophoretic analyses of the aluminum lactate-albumin and aluminum lactate-ATP interactions indicate an aluminum transfer from the lactate to the albumin and ATP ligands. The increased Ca2+ uptake when ATP is present in the incubation medium with aluminum citrate and aluminum lactate corroborates the suggested mediator role of ATP in cellular calcium homeostasis modification induced by iron.  相似文献   

19.
The effect of acute and subacute administration of cadmium chloride on calcium homeostasis and the trace metal content of the bone was investigated in the male rat. A single subcutaneous injection of cadmium chloride (1.5 mg Cd++/kg) produced a decreased plasma concentration of calcium and a decrease in the femur concentration of both calcium and zinc. Repeated administration of cadmium chloride (1.5 mg Cd++/kg daily, for 28 days) caused a marked hypocalciuria that persisted throughout the period of cadmium treatment. There was an accompanying increased excretion of alkaline phosphatase into the urine, and plasma inorganic phosphate was also elevated in these animals. Both of these effects are considered to be evidence of kidney damage.A possible mechanism for this cadmium-induced effect may involve a disturbance of the renal biotransformation of vitamin D, and decreased bioavailability of the essential trace metals due to metallothionein synthesis and excessive loss into the urine.  相似文献   

20.
Modulatory effects of diadenosine tetraphosphate (Ap4A) and diadenosine pentaphosphate (Ap5A) on Ca2+ channels were studied on isolated hippocampal neurons and synaptosomes taken from the rat midbrain. In experiments on synaptosomes obtained from the whole brain, Ap5A applied at a concentration of 100 µM increased the intrasynaptosomal calcium level (measured by means of spectrofluorometry) for 26±1.8 nM, i.e., by 24±2%. Nifedipine failed to block this effect in synaptosomes and in hippocampal neurons. The high voltage-activated Ca2+ currents were identified by recording from freshly isolatedCA3 neurons using a whole-cell patch-clamp technique. Current-voltage relationships were measured in control and after incubation with 5 µM Ap5A. In the majority of tested pyramidal neurons, the latter procedure resulted in a reversible increase in the high voltage-activated currents through Ca2+ channels measured at a holding potential of –100 mV, but not of –40 mV. Potentiation of the currents through Ca2+ channels in hippocampal neurons as well as an increase in intrasynaptosomal [Ca2+] could be irreversibly blocked by 5 µM -conotoxin, but not by 200 nM -Aga-IVA. These data indicate that diadenosine polyphosphates enhance the activity of N-type but not of L-type or P-type Ca2+ channels in many central neurons of the rat brain.Neirofiziologiya/Neurophysiology, Vol. 26, No. 6, pp. 409–416, November–December, 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号