首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 145 毫秒
1.
 研究了物种库限制与生态位限制在湖滨湿地植物分布格局形成过程中的相对重要性。在龙感湖湖滨湿地具有明显水位梯度的湿生植物区、挺水植物区和沉水植物区采集种子库土样, 采用幼苗萌发法确定了不同水位区种子库的物种成分; 并将不同水位区的种子库土样分别置于0、25和50 cm 3个水位下萌发和生长, 45和90 d后比较不同取样区种子库在不同水位处理下所建立的植物群落的异同。结果表明, 不同取样区的种子库物种成分有显著差异, 沿水深梯度呈现明显的带状分布格局。水位处理实验表明, 0 cm水位条件下的群落主要由湿生植物和挺水植物组成, 而25和50 cm水位下只有沉水植物, 表明不同功能群的物种对水深有不同的耐受力, 生态位限制是决定湿地植物分布格局的关键因子。同时, 挺水植物区的种子库置于沉水条件下, 以及沉水植物区的种子库置于0 cm水位下都只能形成极为简单的植物群落, 表明物种库限制对湿地植物群落的形成同样具有显著影响。研究表明, 湿地植物的群落构成与分布格局是由生态位限制和物种库限制共同决定的, 两者的相对重要性可能取决于水体的稳定性。  相似文献   

2.
Furcraea foetida (Asparagaceae) is a native plant of Central America and northern South America but there is no information about its country of origin. The species was introduced into Brazil and is now considered invasive, particularly in coastal ecosystems. To date, nothing is known about the environmental factors that constrain its distribution and there is only inconclusive information about its location of origin. We used reciprocal distribution models (RDM) to assess invasion risk of F. foetida across Brazil and to identify source regions in its native range. We also tested the niche conservatism hypothesis using Principal Components Analyses and statistical tests of niche equivalency and similarity between its native and invaded ranges. For RDM analysis, we built two models using maximum entropy, one using records in the native range to predict the invaded distribution (forward‐Ecological Niche Model or forward‐ENM) and one using records in the invaded range to predict the native distribution (reverse‐ENM). Forward‐ENM indicated invasion risk in the Cerrado region and the innermost region of the Atlantic Forest, however, failed to predict the current occurrence in southern Brazil. Reverse‐ENM supported an existing hypothesis that F. foetida originated in the Orinoco river basin, Amazon basin and Caribbean islands. Prediction errors in the RDM and multivariate analysis indicated that the species expanded its realized niche in Brazil. The niche similarity test further suggested that the niche differences are because of differences in habitat availability between the two ranges, not because of evolutionary changes. We hypothesize that physiological pre‐adaptation (especially, the crassulacean acid metabolism), human‐driven propagule pressure and high competitive ability are the main factors determining the current spatial distribution of the species in Brazil. Our study highlights the need to include F. foetida in plant invasion monitoring programs, especially in priority conservation areas where the species has still not been introduced.  相似文献   

3.
Theoretical models predict that effects of dispersal on local biodiversity are influenced by the size and composition of the species pool, as well as ecological filters that limit local species membership. We tested these predictions by conducting a meta-analysis of 28 studies encompassing 62 experiments examining effects of propagule supply (seed arrival) on plant species richness under contrasting intensities of ecological filters (owing to disturbance and resource availability). Seed arrival increased local species richness in a wide range of communities (forest, grassland, montane, savanna, wetland), resulting in a positive mean effect size across experiments. Mean effect size was 70% higher in disturbed relative to undisturbed communities, suggesting that disturbance increases recruitment opportunities for immigrating species. In contrast, effect size was not significantly influenced by nutrient or water availability. Among seed-addition experiments, effect size was positively correlated with species and functional diversity within the pool of added seeds (species evenness and seed-size diversity), primarily in disturbed communities. Our analysis provides experimental support for the general hypothesis that species pools and local environmental heterogeneity interactively structure plant communities. We highlight empirical gaps that can be addressed by future experiments and discuss implications for community assembly, species coexistence, and the maintenance of biodiversity.  相似文献   

4.
WB Monahan  MW Tingley 《PloS one》2012,7(7):e42097
The ability of species to respond to novel future climates is determined in part by their physiological capacity to tolerate climate change and the degree to which they have reached and continue to maintain distributional equilibrium with the environment. While broad-scale correlative climatic measurements of a species' niche are often described as estimating the fundamental niche, it is unclear how well these occupied portions actually approximate the fundamental niche per se, versus the fundamental niche that exists in environmental space, and what fitness values bounding the niche are necessary to maintain distributional equilibrium. Here, we investigate these questions by comparing physiological and correlative estimates of the thermal niche in the introduced North American house sparrow (Passer domesticus). Our results indicate that occupied portions of the fundamental niche derived from temperature correlations closely approximate the centroid of the existing fundamental niche calculated on a fitness threshold of 50% population mortality. Using these niche measures, a 75-year time series analysis (1930-2004) further shows that: (i) existing fundamental and occupied niche centroids did not undergo directional change, (ii) interannual changes in the two niche centroids were correlated, (iii) temperatures in North America moved through niche space in a net centripetal fashion, and consequently, (iv) most areas throughout the range of the house sparrow tracked the existing fundamental niche centroid with respect to at least one temperature gradient. Following introduction to a new continent, the house sparrow rapidly tracked its thermal niche and established continent-wide distributional equilibrium with respect to major temperature gradients. These dynamics were mediated in large part by the species' broad thermal physiological tolerances, high dispersal potential, competitive advantage in human-dominated landscapes, and climatically induced changes to the realized environmental space. Such insights may be used to conceptualize mechanistic climatic niche models in birds and other taxa.  相似文献   

5.
Russell FL  Roy A 《Oecologia》2008,158(3):569-578
The relative importance of seed availability versus biotic interactions that affect early life stages in limiting plant population sizes and determining composition of plant communities is a central debate in plant ecology. We conducted a seed addition experiment in restored tallgrass prairie in central Kansas to determine (1) whether addition of seed of 18 native forb species produced persistent (three growing seasons) increases in the species' population sizes and plant species richness, (2) what properties of recipient communities best explained spatial variation in added species' establishment, and (3) whether seed size explained interspecific patterns in establishment success. Adding seed led to persistent increases in the number of added species present and in plant species richness at one of three sites. Increased species richness at the one site where community composition was structured by seed availability largely resulted from greater densities of four species. Seed size did not predict species' establishment success. Pre-existing plant species richness was correlated with added species' establishment success, but the direction of the relationship (positive vs. negative) varied among sites. Living aboveground plant biomass in experimental plots in the year of seed addition was negatively correlated with the number of added species established three years later. Our results provide further evidence for large spatial variation in seed limitation of plant community composition. Surprisingly, mean light availability and heterogeneity in light, both important parameters in conceptual models of grassland plant coexistence, did not predict the response of the recipient plant community to seed addition as well as pre-existing plant species richness and living aboveground biomass.  相似文献   

6.
袁秀  马克明  王德 《生态学报》2011,31(7):1955-1961
物种分布与多度间的正相关格局非常普遍,但该格局的生态机制却一直不太明确。研究者提出了很多假说来解释这种分布-多度关系,其中物种的生态幅和生态位(资源可利用性)机制的研究较多。为了验证物种的生态幅和生态位是否能解释物种的多度-分布格局,本文研究了黄河三角洲地区湿地植物分布、多度、生态位和生态幅间的关系,结果表明:该区物种分布与多度呈显著正相关,且均与生态幅显著正相关,物种分布与生态位显著负相关,但物种多度与生态位相关性不显著。这说明物种的分布越广,其多度越高,环境容忍度越大;而可利用资源更多的物种分布更广,环境容忍度越大的物种多度越多,资源可利用性对该区物种多度影响不大。本研究说明物种生态幅能解释物种分布-多度正相关格局,而生态位假说不能很好的解释这一格局;应该还有其他因素一起解释这一物种分布-多度正相关格局。  相似文献   

7.
Foundation (dominant or matrix) species play a key role in structuring plant communities, influencing processes from population to ecosystem scales. However, the effects of genotypic diversity of foundation species on these processes have not been thoroughly assessed in the context of assembling plant communities. We modified the classical filter model of community assembly to include genotypic diversity as part of the biotic filter. We hypothesized that the proportion of fit genotypes (i.e. competitively superior and dominant) affects niche space availability for subordinate species to establish with consequence for species diversity. To test this hypothesis, we used an individual‐based simulation model where a foundation species of varying genotypic diversity (number of genotypes and variability among genotypes) competes for space with subordinate species on a spatially heterogeneous lattice. Our model addresses a real and practical problem in restoration ecology: choosing the level of genetic diversity of re‐introduced foundation and subordinate species. Genotypic diversity of foundation species significantly affected equilibrium community diversity, measured as species richness, either positively or negatively, depending upon environmental heterogeneity. Increases in genotypic diversity gave the foundation species a wider niche breadth. Under conditions of high environmental heterogeneity, this wider niche breadth decreased niche space for other species, lowering species richness with increased genotypic diversity until the genotypes of the foundation species saturated the landscape. With a low level of environmental heterogeneity, increasing genotypic diversity caused the foundation species niche breadth to be overdispersed, resulting in a weak positive relationship with species richness. Under these conditions, some genotypes are maladapted to the environment lowering fitness of the foundation species. These effects of genotypic diversity were secondary to the larger effects of overall foundation species fitness and environmental heterogeneity. The novel aspect of incorporating genotype diversity in combination with environmental heterogeneity in community assembly models include predictions of either positive or negative relationships between species diversity and genotypic diversity depending on environmental heterogeneity, and the conditions under which these factors are potentially relevant. Mechanistically, differential niche availability is imposed by the foundation species.  相似文献   

8.
Despite the general success of species envelope models, capturing the fine-scale detail of patchiness in the distributions of some species is problematic. For great bustards in Spain, apparently suitable habitat patches remain unoccupied and cannot be distinguished from occupied patches in current distribution models. We consider philopatry and conspecific attraction as main behavioural mechanisms which could account for this patchiness, and then look for evidence of their influence on the distribution of great bustards across the whole of Spain. We compared the characteristics of habitat patches classed as suitable by a distribution model according to whether they were actually used or not. Occupied patches were larger than unoccupied patches and over-used in proportion to their size, suggesting aggregation and a metapopulation structure. Arguing that conspecific attraction may serve to transfer information about site history and environmental predictability (at least over a short time period), we compared the coefficients of variation in time-series of vegetation and climatic factors at occupied and unoccupied sites. Great bustards chose sites which were more environmentally stable at critical periods in the breeding cycle, "public information" that can only be gained from others rather than through sampling. There is thus evidence that both metapopulation dynamics and conspecific attraction influence the large scale distribution of great bustards in Spain. We discuss how alternative predictor variables and multi-stage analyses may help us to incorporate behavioural mechanisms into distribution models, but acknowledge that there are limits to the value of species envelope models for animal species making decisions.  相似文献   

9.
1. The mechanisms that structure biological communities hold the key to understanding ecosystem functioning and the maintenance of biodiversity. Patterns of species abundances have been proposed as a means of differentiation between niche-based and neutral processes, but abundance information alone cannot provide unequivocal discrimination. 2. We combined species niche information and species' relative abundances to test the effects of two opposing structuring mechanisms (environmental filtering and niche complementarity) on species' relative abundances in French lacustrine fish communities. The test involved a novel method comparing the abundance-weighted niche overlap within communities against that expected when relative abundances were randomized among species within the community. 3. Observed overlap was consistently significantly lower than expected at random for two (swimming ability and trophic status) of four primary niche axes across lakes of differing physical environments. Thus, for these niche axes, pairs of abundant species tended to have relatively low niche overlap, while rare species tended to have relatively high niche overlap with abundant species. 4. This suggests that niche complementarity may have acted to enhance ecosystem function and that it is important for species coexistence in these fish communities. The method used may be easily applied to any sort of biological community and thus may have considerable potential for determining the generality of niche complementarity effects on community structure.  相似文献   

10.
Variation in nitrogen and phosphorus concentrations of wetland plants   总被引:11,自引:0,他引:11  
The use of nutrient concentrations in plant biomass as easily measured indicators of nutrient availability and limitation has been the subject of a controversial debate. In particular, it has been questioned whether nutrient concentrations are mainly species' traits or mainly determined by nutrient availability, and whether plant species have similar or different relative nutrient requirements. This review examines how nitrogen and phosphorus concentration and the N:P ratio in wetland plants vary among species and sites, and how they are related to nutrient availability and limitation. We analyse data from field studies in European non-forested wetlands, from fertilisation experiments in these communities and from growth experiments with wetland plants. Overall, the P concentration was more variable than the N concentration, while variation in N:P ratios was intermediate. Field data showed that the N concentration varies more among species than among sites, whereas the N:P ratio varies more among sites than among species, and the P concentration varies similarly among both. Similar patterns of variation were found in fertilisation experiments and in growth experiments under controlled nutrient supply. Nutrient concentrations and N:P ratios in the vegetation were poorly correlated with various measures of nutrient availability in soil, but they clearly responded to fertilisation in the field and to nutrient supply in growth experiments. In these experiments, biomass N:P ratios ranged from 3 to 40 and primarily reflected the relative availabilities of N and P, although N:P ratios of plants grown at the same nutrient supply could vary three-fold among species. The effects of fertilisation with N or P on the biomass production of wetland vegetation were well related to the N:P ratios of the vegetation in unfertilised plots, but not to N or P concentrations, which supports the idea that N:P ratios, rather than N or P concentrations, indicate the type of nutrient limitation. However, other limiting or stressing factors may influence N:P ratios, and the responses of individual plant species to fertilisation cannot be predicted from their N:P ratios. Therefore, N:P ratios should only be used to assess which nutrient limits the biomass production at the vegetation level and only when factors other than N or P are unlikely to be limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号